leftri rightri


This is PART 4: Centers X(5001) - X(7000)

Introduction and Centers X(1) - X(1000) Centers X(1001) - X(3000) Centers X(3001) - X(5000)
Centers X(5001) - X(7000) Centers X(7001) - X(10000) Centers X(10001) - X(12000)
Centers X(12001) - X(14000) Centers X(14001) - X(16000) Centers X(16001) - X(18000)
Centers X(18001) - X(20000) Centers X(20001) - X(22000) Centers X(22001) - X(24000)
Centers X(24001) - X(26000) Centers X(26001) - X(28000) Centers X(28001) - X(30000)
Centers X(30001) - X(32000) Centers X(32001) - X(34000) Centers X(34001) - X(36000)
Centers X(36001) - X(38000) Centers X(38001) - X(40000) Centers X(40001) - X(42000)
Centers X(42001) - X(44000) Centers X(44001) - X(46000) Centers X(46001) - X(48000)
Centers X(48001) - X(50000) Centers X(50001) - X(52000) Centers X(52001) - X(54000)
Centers X(54001) - X(56000) Centers X(56001) - X(58000) Centers X(58001) - X(60000)
Centers X(60001) - X(62000) Centers X(62001) - X(64000) Centers X(64001) - X(66000)
Centers X(66001) - X(68000) Centers X(68001) - X(70000) Centers X(70001) - X(72000)


X(5001) = INVERSE-IN-CIRCUMCIRCLE OF X(5000)

Barycentrics    (SB+SC)*(S*SB*SC + SA*sqrt(SA*SB*SC*SW)) : :
Barycentrics    S2 - SBSC - k2(S2 - 3SBSC) : : ,
              where k2 = (3SASBSC - S2Sω - 2(SASBSCS2Sω)1/2)/(9SASBSC - S2Sω)
Barycentrics   SSBSC(3SA - Sω) + (S2 - 3SBSC)(SASBSCSω)1/2 : :      (Peter Moses, December 8, 2014)
Tripolars    Sqrt[SA] : :
X(5001) = (1 - k2)X(3) + k2X(4)
X(5001) = 3k2X(2) + (1 - 3k2)X(3)

As a point on the Euler line, X(5001) has Shinagawa coefficients (1 -k2, -1 + 3k2).

X(5000) and X(5001) are the antiorthocorrespondents of X(6); i.e. they share the same orthocorrespondent, X(6). See Bernard Gibert, Table 55: X(5000, X(5001) and related curves.

For a construction of X(5000) and X(5001) see AdGeom 5185.

Click here for a 3-dimensional representation of X(5001).

X(5000) lies on 8th Grozdev-Dekov-Parry circle, Dao-Moses-Telv circle, Moses radical circle, Stevanovic circle, Walsmith rectangular hyperbola; cubics K018, K270, K336, K337, K570, K608, K828, K829, K1091, K1092, K1129, K1133a, K1133b; curves Q019, Q021, Q024, Q026, Q037, Q049, Q054, Q098, Q115, Q116, Q117, Q118, Q144, Q146, Q147 and this line: {2,3}

X(5001) = isogonal conjugate of X(32619)
X(5001) = isotomic conjugate of X(42812)
X(5001) = complement of X(5003)
X(5001) = circumcircle-inverse of X(5000)
X(5001) = nine-point-circle-circumcircle-inverse of X(5000)
X(5001) = orthocentrodal-circle-inverse of X(5000)
X(5001) = orthoptic circle of Steiner inellipse-inverse of X(5000)
X(5001) = polar-circle-inverse of X(5000)
X(5001) = tangential-circle-inverse of X(5000)
X(5001) = MacBeath-inconc-inverse of X(5000)
X(5001) = Yff-hypergbola-inverse of X(5000)
X(5001) = Walsmith-rectangular-hyperbola-inverse of X(5000)
X(5001) = polar conjugate of X(41195)
X(5001) = complementary conjugate of the complement of X(34135)
X(5001) = antigonal conjugate of X(42810)
X(5001) = orthoassociate of X(5000)


X(5002) = 1st WALSMITH-MOSES POINT

Barycentrics    S2 - SBSC + k2(S2 - 3SBSC) : : ,
             where k2 = (3SASBSC - S2Sω - 4(SASBSCS2Sω)1/2)/(-9SASBSC + S2Sω)
Tripolars    a : b : c
X(5002) = -3k2X(2) + (1 + 3k2)X(3)
X(5002) = (1 + k2)X(3) - k2X(4)

As a point on the Euler line, X(5002) has Shinagawa coefficients (1 +k2, -1 - 3k2).

X(5002) is the point whose tripolar distances in the plane of triangle ABC are proportional to (a, b, c); the actual tripolar distances in case ABC is acute are ka, kb, kc.

If the reference triangle ABC is obtuse, then the barycentrics of X(5002) are a nonreal complex numbers. Nevertheless, for all triangles ABC, the midpoint of X(5002) and X(5003) is X(858).

A method for converting from homogeneous tripolar coordinates (henceforth simply "tripolars") to homogeneous barycentrics, found by Peter Moses (March, 2012), depends on finding the point of intersection of the radical axes of radical circles centered at A, B, C. Write the tripolars for a point U as u : v : w, and let

da = b2 + c2 - a2, db = c2 + a2 - c2, dc = a2 + b2 - c2.

Then barycentrics x : y : z for U are given by

x = a2da + k2[dcv2 + dbw2 - 2a2u2]
y = b2db + k2[daw2 + dcu2 - 2b2v2]
z = c2dc + k2[dbu2 + dav2 - 2c2w2],

where k2 has two values (as in the quadratic formula): (-f - g)/h or (-f + g)/h, where

f = - a2u2da - b2v2db - c2w2dc
g = 2S[(-au + bv + cw)(au - bv + cw)(au + bv - cw)(au + bv + cw)]1/2
h = 2[a2(u2 - v2)(u2 - w2) + b2(v2 - w2)(v2 - u2) + c2(w2 - u2)(w2 - v2)]

The meaning of k can be stated thus: starting with tripolars u : v : w, the actual tripolar distances are ku, kv, kw. That is, |UA| = ku, |UB| = kv, |UC| = kw.

X(5002) lies on this line: {2,3}

X(5002) = isogonal conjugate of X(34136)
X(5002) = antigonal conjugate of X(34240)
X(5002) = circumcircle-inverse of X(5003)


X(5003) = INVERSE-IN-CIRCUMCIRCLE OF X(5002)

Barycentrics    S2 - SBSC - k2(S2 - 3SBSC) : : ,
               where k2 = (3SASBSC - S2Sω - 4(SASBSCS2Sω)1/2)/(-9SASBSC + S2Sω)
Tripolars    a : b : c

As a point on the Euler line, X(5003) has Shinagawa coefficients (1 - k2, -1 - 3k2).

The four points, X(i) for i = 5000, 5001, 5002, 5003, all lie on the Euler line of triangle ABC, and all are nonreal complex-valued if ABC is obtuse.

If the reference triangle ABC is obtuse, then the barycentrics of X(5002) are a nonreal complex numbers. Nevertheless, for all triangles ABC, the midpoint of X(5002) and X(5003) is X(858).

X(5003) lies on this line: {2,3}

X(5003) = isogonal conjugate of X(34135)
X(5003) = antigonal conjugate of X(34239)
X(5003) = circumcircle-inverse of X(5002)


X(5004) = 2nd WALSMITH-MOSES POINT

Barycentrics    a2S[S2 + (SA)2 - 4SBSC] + abc(S2 - 3SBSC)(2Sω)1/2 : :
Tripolars    Sqrt[b^2 + c^2] : :

As a point on the Euler line, X(5004) has Shinagawa coefficients ((E + 4F)S + abc(2Sω)1/2, -4(E + F)S - 3abc(2Sω)1/2).

X(5004) is the point in the plane of triangle ABC whose tripolar distances are proportional to ((b2 + c2)1/2, (c2 + a2)1/2, (a2 + b2)1/2). Like X(5000) and X(5002), the point X(5004) lies on the Euler line; unlike X(5000) and X(5002), this point is real-valued when ABC is obtuse.

X(5004) is the circumcircle-inverse of X(5005). The midpoint of X(5004) and X(5005) is X(23). Of the two points, X(5004) is the one outside the circumcircle. (Peter Moses, March 7, 2012)

X(5004) and X(5005) are the two points whose pedal antipodal perspectors (defined at Hyacinthos #20403 and #20405) are both X(6). (Randy Hutson, Febrary 20, 2015)

If you have The Geometer's Sketchpad, you can view X(5004) and X(5005).

X(5004) lies on this line: {2,3}

X(5004) = isogonal conjugate of X(34221)


X(5005) = INVERSE-IN-CIRCUMCIRCLE OF X(5004)

Barycentrics    a2S[S2 + (SA)2 - 4SBSC] - abc(S2 - 3SBSC)(2Sω)1/2 : :
Tripolars    Sqrt[b^2 + c^2] : :

As a point on the Euler line, X(5005) has Shinagawa coefficients ((E + 4F)S - abc(2Sω)1/2, -4(E + F)S + 3abc(2Sω)1/2).

X(5005) is the circumcircle-inverse of X(5004). The midpoint of X(504) and X(5005) is X(23). (Peter Moses, March 7, 2012)

X(5005) lies on this line: {2,3}

X(5005) = isogonal conjugate of X(34222)


X(5006) = INVERSE-IN-CIRCUMCIRCLE OF X(1333)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(A,B,C) = a2(a + b)(a + c)(a3 + abc - b2c - bc2)

X(5006) lies on these lines: {3, 6}, {60, 213}, {99, 712}, {104, 2715}, {110, 3230}, {112, 2699}, {163, 1914}, {172, 849}, {249, 1931}, {691, 739}, {713, 805}, {1325, 3125}


X(5007) = INVERSE-IN-MOSES-CIRCLE OF X(1691)

Trilinears       3 sin A - cos A tan ω : :
Trilinears       cos A - 3 sin A cot ω : :
Trilinears       2 cos(A - 2ω) - cos(A + 2ω) - cos A : :
Barycentrics   a2(2a2 + b2 + c2): :

Let T be the symmedial triangle, and let H be the bicevian conic of X(2) and X(6). Let V be the triangle formed by the lines tangent to H at the vertices of T. Then T and V are perspective, and their perspector is X(5007). (Randy Hutson, February 20, 2015)

X(5007) lies on these lines: {3, 6}, {23, 251}, {44, 3678}, {83, 385}, {115, 546}, {172, 1015}, {194, 3972}, {211, 4173}, {230, 1506}, {232, 3518}, {248, 1173}, {384,538}, {395, 635}, {396, 636}, {609, 2275}, {632, 3815}, {1078, 3329}, {1100, 3881}, {1193, 2251}, {1196, 1995}, {1500, 1914}, {1573, 4426}, {1574, 4386}, {2223, 2308}, {2241, 3303}, {2242, 3304}, {2243, 3670}, {2548, 3090}, {2549, 3529}, {3051, 3229}, {3091, 3767}, {3629,3933}

X(5007) = midpoint of X(61) and X(62)
X(5007) = isogonal conjugate of X(10159)
X(5007) = radical center of Lucas(-6 cot ω) circles
X(5007) = {X(371),X(372)}-harmonic conjugate of X(3098)
X(5007) = inverse-in-circle-{{X(371),X(372),PU(1),PU(39)}} of X(3098)
X(5007) = radical trace of Brocard circle and circle {{X(4),X(194),X(3557),X(3558)}}
X(5007) = inverse-in-1st-Brocard-circle of X(7772)
X(5007) = X(39)-of-5th-anti-Brocard-triangle
X(5007) = X(187)-of-X(6)PU(1)
X(5007) = polar conjugate of isotomic conjugate of X(22352)
X(5007) = {X(32),X(39)}-harmonic conjugate of X(187)


X(5008) = INVERSE-IN-MOSES-CIRCLE OF X(2030)

Barycentrics    a2(4a2 + b2 + c2) : :

X(5008) lies on these lines: {3, 6}, {111, 251}, {115, 3845}, {230, 547}, {538, 3972}, {609, 1015}, {1285, 2549}, {1506, 3054}, {3589, 3793}, {3767, 3832}

X(5008) = complement of X(7850)
X(5008) = crossdifference of every pair of points on line X(523)X(7840)


X(5009) = INVERSE-IN-1st-BROCARD-CIRCLE OF X(4283)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(a + b)(a + c)(a2 - bc)

X(5009) lies on these lines: {1, 82}, {3, 6}, {21, 976}, {60, 1178}, {81, 982}, {110, 2382}, {238, 2210}, {333, 4438}, {740, 1580}, {741, 919}, {757, 763}, {765, 1110}

X(5009) = isogonal conjugate of the isotomic conjugate of X(33295)
X(5009) = isogonal conjugate of the polar conjugate of X(31905)


X(5010) = INVERSE-IN-CIRCUMCIRCLE OF X(3245)

Trilinears    2a(b^2 + c^2 - a^2) + abc : :
Barycentrics   a2(2b2 + 2c2 - a2 + bc) : :

X(5010) lies on these lines: {1, 3}, {2, 3583}, {4, 4324}, {9, 1030}, {10, 4189}, {11, 549}, {12, 550}, {20, 498}, {31, 4256}, {33, 186}, {34, 3520}, {42, 4257}, {43, 4184}, {78, 191}, {90, 3467}, {99, 3761}, {100, 993}, {187, 609}, {203, 1250}, {214, 3877}, {376, 1478}, {386, 2308}, {388, 3528}, {404, 3624}, {495, 4995}, {497, 3524}, {499, 3523}, {574, 1914}, {601, 2964}, {631, 1479}, {672, 4262}, {678, 1623}, {750, 4653}, {902, 995}, {956, 4421}, {975, 1719}, {1006, 3586}, {1054, 4218}, {1078, 3760}, {1125, 4188}, {1151, 3301}, {1152, 3299}, {1203, 4255}, {1737, 4304}, {2163, 2177}, {2267, 2316}, {2278, 2364}, {2330, 3098}, {2975, 3632}, {3085, 3522}, {3086, 4309}, {3218, 3894}, {3614, 3627}, {3633, 3871}, {3647, 3876}, {3651, 4333}, {3751, 4265}, {3811, 4652}, {3872, 4996}, {3873, 4973}, {3899, 4511}


X(5011) = INVERSE-IN-BEVAN CIRCLE OF X(9)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b3 + c3 - a3 + abc - b2c - bc2)

X(5011) lies on these lines: {1, 1055}, {2, 5074}, {4, 9}, {8, 1759}, {20, 1729}, {30, 1146}, {32, 3959}, {36, 2170}, {46, 2082}, {57, 1323}, {65, 2301}, {101, 517}, {113, 1566}, {116, 4872}, {163, 1325}, {191, 3691}, {239, 514}, {284, 501}, {484, 672}, {519, 3509}, {572, 2262}, {758, 3684}, {759, 2702}, {995, 1572}, {1155, 1308}, {1212, 3579}, {1404, 3339}, {1475, 3336}, {1482, 3207}, {1652, 3638}, {1653, 3639}, {1730, 3101}, {1731, 2245}, {1761, 3686}, {1781, 2269}, {1845, 2202}, {1914, 3125}, {1951, 1983}, {2173, 2323}, {2246, 3245}, {2249, 2690}, {2328, 2355}, {3735, 4386}, {3871, 3970}, {3916, 4875}, {4165, 4680}, {4316, 4530}

X(5011) = midpoint of X(1276) and X(1277)
X(5011) = reflection of X(101) in antiorthic axis
X(5011) = complement of X(5195)
X(5011) = anticomplement of X(5074)
X(5011) = X(187)-of-excentral-triangle


X(5012) = INVERSE-IN-1st-BROCARD CIRCLE OF X(3448)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(a4 - a2b2 - a2c2 - b2c2)

X(5012) = is the pole of Brocard axis wrt the ellipse {{X(3), X(6), X(24), X(60), X(143), X(1511), X(1986)} (Randy Hutson, February 20, 2015)

X(5012) lies on these lines: {2, 98}, {3, 54}, {4, 569}, {5, 1614}, {6, 22}, {20, 578}, {23, 51}, {26, 3567}, {30, 567}, {49, 140}, {52, 1199}, {60, 386}, {143, 2937}, {154, 1995}, {156, 1656}, {206, 3618}, {237, 3398}, {249, 3111}, {323, 3917}, {404, 1437}, {511, 1994}, {572, 4184}, {580, 4225}, {620, 3044}, {631, 1147}, {692, 1621}, {1078, 3203}, {1092, 3523}, {1194, 1692}, {1627, 1691}, {1790, 4210}, {2056, 3231}, {2206, 4279}, {2330, 3920}, {3035, 3045}, {3218, 3955}, {3292, 3819}

X(5012) = isogonal conjugate of X(3613)


X(5013) = INVERSE-IN-1st-BROCARD CIRCLE OF X(3053)

Trilinears     sin A + 2 cos A tan ω : :
Trilinears     2 cos A + sin A cot ω : :
Trilinears     2 cos A sin ω + sin A cos ω :
Trilinears    a + 4R cos A tan ω : :
Barycentrics    a2(3b2 + 3c2 - a2) : :

Let U be the circle centered at X(371) and passing through X(1151), and let U′ the circle centered at X(372) and passing through X(1152); then X(5013) is the insimilicenter of U and U′. Let V be the circle centered at X(1151) and passing through X(371), and let V′ be the circle centered at X(371) and passing through X(1151); then X(5013) is the insimilicenter of V and V′. Let W be the circle having diameter X(371)X(372), and let W′ be the circle having diameter X(1151)X(1152); Then X(5013) is the exsimilicenter of W and W′. (Randy Hutson, September 5, 2014)

X(5013) lies on these lines: {2, 1975}, {3, 6}, {4, 3815}, {5, 2549}, {30, 2548}, {37, 988}, {53, 3088}, {55, 2275}, {56, 2276}, {83, 1003}, {99, 2023}, {115, 1656}, {140, 3767}, {141, 3926}, {154, 3148}, {183, 194}, {230, 631}, {232, 1593}, {378, 2207}, {381, 1506}, {517, 1571}, {524, 3785}, {599, 3933}, {958, 1575}, {999, 1500}, {1015, 3295}, {1107, 1376}, {1180, 1184}, {1181, 3269}, {1194, 1611}, {1572, 3579}, {1597, 3199}, {1968, 3516}, {3054, 3525}, {3055, 3090}, {3329, 3552}, {3788, 4045}

X(5013) = isogonal conjugate of X(5395)
X(5013) = radical center of Lucas(cot ω) circles
X(5013) = {(X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,6,3053), (3,39,6), (371,372,5050), (8406,8414,182)
X(5013) = insimilicenter of circumcircle and (1/2)-Moses circle


X(5014) = INVERSE-IN-FUHRMANN CIRCLE OF X(4696)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b3 + c3 - a3 + a2b + a2c - ab2 - ac2

X(5014) lies on these lines: {1, 4202}, {2, 1279}, {4, 8}, {10, 748}, {38, 4660}, {42, 4865}, {55, 3006}, {63, 4450}, {75, 1369}, {100, 3705}, {149, 312}, {319, 4441}, {320, 4430}, {497, 4358}, {519, 3891}, {528, 3703}, {740, 4137}, {902, 4438}, {1150, 1754}, {1479, 3701}, {2280, 4071}, {2550, 4359}, {2886, 4030}, {2887, 3938}, {3058, 3932}, {3416, 4863}, {3632, 4442}, {3696, 4914}, {3722, 3771}, {3870, 3936}, {3873, 4645}, {3886, 3969}, {3935, 4417}, {3966, 4651}

X(5014) = anticomplement of X(3744)


X(5015) = INVERSE-IN-FUHRMANN CIRCLE OF X(4385)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b4 + c4 - a4 + a2bc + b3c + bc3

X(5015) lies on these lines: {1, 977}, {3, 3705}, {4, 8}, {10, 82}, {12, 4030}, {21, 3006}, {69, 3673}, {75, 315}, {76, 319}, {149, 3702}, {312, 1479}, {320, 3874}, {333, 1780}, {345, 4294}, {442, 3757}, {518, 1330}, {528, 3704}, {752, 1046}, {942, 4645}, {986, 4660}, {1089, 3583}, {1930, 4872}, {2475, 4968}, {3178, 3750}, {3496, 4136}, {3585, 4692}, {3684, 4109}, {3685, 3695}, {3811, 4417}, {4153, 4251}


X(5016) = INVERSE-IN-FUHRMANN CIRCLE OF X(321)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b4 + c4 - a4 + b3c + bc3 + ab2c + + abc2

X(5016) lies on these lines: {1, 3454}, {2, 1104}, {4, 8}, {10, 31}, {40, 4450}, {41, 4109}, {44, 391}, {75, 2475}, {141, 4950}, {145, 4514}, {149, 4673}, {306, 950}, {377, 4359}, {518, 4812}, {519, 4101}, {958, 3006}, {1330, 3868}, {1478, 4968}, {1479, 3702}, {1834, 3187}, {1837, 3056}, {2478, 4358}, {2887, 3924}, {2975, 3705}, {3496, 4165}, {3586, 3969}, {4201, 4850}, {4642, 4660}

X(5016) = anticomplement of X(37539)


X(5017) = INVERSE-IN-CIRCUMCIRCLE OF X(2021)

Trilinears     sin A - cos A sin 2ω : :
Barycentrics    a2( b4 + c4 - a4 - 2a2b2 - 2a2c2) : :

X(5017) lies on these lines: {3, 6}, {22, 3051}, {24, 2211}, {25, 694}, {69, 384}, {141, 315}, {154, 2056}, {159, 3499}, {172, 3056}, {193, 3552}, {251, 2979}, {263, 3148}, {352, 1383}, {394, 1915}, {524, 1003}, {599, 754}, {626, 3763}, {732, 1975}, {760, 3242}, {1184, 3981}, {1460, 2162}, {1469, 1914}, {1501, 1993}, {1627, 3060}, {1843, 1968}, {1995, 3231}

X(5017) = reflection of X(6) in X(32)


X(5018) = INVERSE-IN-INCIRCLE OF X(4298)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(a + b - c)(a - b + c)(b3 + c3 - a3 - abc)

X(5018) lies on these lines: {1, 7}, {34, 87}, {43, 223}, {46, 3468}, {57, 985}, {59, 484}, {65, 4649}, {109, 1758}, {171, 1427}, {226, 1961}, {238, 241}, {296, 3466}, {514, 4581}, {651, 1757}, {664, 740}, {741, 927}, {846, 1214}, {934, 2700}, {982, 1407}, {1020, 1756}, {1046, 1409}, {1054, 1465}, {1386, 1418}, {1404, 3339}, {1419, 3751}, {1735, 2958}


X(5019) = INVERSE-IN-1st-BROCARD-CIRCLE OF X(2092)

Trilinears    a2(as + bc) : b2(bs + ca) : c2(cs + ab) : :
Barycentrics    a3(a2 + ab + ac + 2bc) : :
Barycentrics    a^2 (a^2 + 4 R r) : :

X(5019) lies on these lines: {2, 261}, {3, 6}, {9, 172}, {31, 184}, {36, 2277}, {37, 993}, {48, 213}, {56, 478}, {87, 1716}, {609, 1743}, {672, 2273}, {941, 4189}, {980, 1444}, {992, 1724}, {1100, 2241}, {1172, 1968}, {1449, 1914}, {1468, 2268}, {1572, 3554}, {1631, 4749}, {1761, 3735}, {2298, 2975}, {3169, 3550}, {3686, 4386}

X(5019) = isogonal conjugate of X(34258)
X(5019) = crosspoint of X(i) and X(j) for these {i,j}: {2, 20029}, {56, 2221}, {1252, 34074}
X(5019) = crosssum of X(i) and X(j) for these (i,j): {2, 5739}, {6, 11337}, {8, 2345}, {386, 573}, {1086, 4801}
X(5019) = crossdifference of every pair of points on line X(523)X(4391)
X(5019) = {X(371),X(372)}-harmonic conjugate of X(970)


X(5020) = INVERSE-IN-ORTHOCENTROIDAL-CIRCLE OF X(1368)

Trilinears        a2(aR - bc) : b2(bR - ca) : c2(cR - ab)
Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(b4 + c4 - a4 - 6b2c2)

As a point on the Euler line, X(5020) has Shinagawa coefficients (E - F,E + F).

X(5020) lies on these lines: {2, 3}, {6, 1196}, {32, 1611}, {51, 394}, {111, 907}, {115, 2936}, {154, 182}, {159, 3589}, {184, 373}, {197, 1001}, {238, 1460}, {262, 801}, {612, 3295}, {614, 999}, {1007, 3964}, {1070, 3011}, {1184, 3291}, {1350, 3819}, {1376, 1486}, {1473, 3306}, {1495, 3796}, {1619, 1853}, {3556, 3812}

X(5020) = circumcircle-inverse of X(37897)
X(5020) = homothetic center of medial triangle and 3rd antipedal triangle of X(3)
X(5020) = trilinear pole of polar of X(3527) wrt 2nd Lemoine circle
X(5020) = {X(8854),X(8855)}-harmonic conjugate of X(6)
X(5020) = {X(2),X(3)}-harmonic conjugate of X(16419)

X(5021) = INVERSE-IN-1st-BROCARD-CIRCLE OF X(2271)

Trilinears       cos A - sin A (csc A + csc B + csc C) : : Barycentrics   a2(b2 + c2 - a2 - 2ab - 2ac - 2bc) : :

X(5021) lies on these lines: {2, 967}, {3, 6}, {25, 2350}, {31, 1475}, {56, 213}, {172, 218}, {220, 2242}, {474, 2238}, {604, 2200}, {672, 1468}, {750, 3691}, {956, 2295}, {999, 2176}, {1015, 1191}, {1046, 3061}, {1106, 1400}, {1571, 4646}, {1834, 2549}, {2241, 3052}, {3230, 3304}, {3290, 3338}, {3496, 4650}

X(5021) = isogonal conjugate of X(32022)
X(5021) = crosssum of X(2) and X(391)


X(5022) = INVERSE-IN-1st-BROCARD-CIRCLE OF X(4258)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(3b2 + 3c2 - a2 - 2ab - 2ac - 2bc)

X(5022) lies on these lines: {2, 1434}, {3, 6}, {9, 3361}, {36, 218}, {37, 3333}, {55, 1475}, {56, 220}, {57, 1212}, {604, 1802}, {999, 3730}, {1011, 2350}, {1015, 1616}, {1146, 1788}, {1155, 2082}, {1191, 2275}, {1334, 3304}, {1732, 2182}, {2332, 3516}, {3230, 3445}, {3691, 4413}


X(5023) = INVERSE-IN-CIRCUMCIRCLE OF X(1570)

Trilinears    3 sin(A + ω) - 5 sin(A - ω) : :
Trilinears    4 cos A - sin A cot ω : :
Trilinears    sin A - 4 cos A tan ω : :
Barycentrics    a2(3b2 + 3c2 - 5a2)

X(5023) lies on these lines: {3, 6}, {20, 230}, {22, 1611}, {26, 2079}, {64, 1971}, {69, 439}, {115, 1657}, {160, 682}, {183, 3552}, {186, 2207}, {248, 3532}, {548, 2549}, {549, 2548}, {550, 3767}, {599, 3785}, {1003, 1078}, {1968, 3515}, {3054, 3091}, {3523, 3815}

X(5023) = midpoint of X(1151) and X(1152)
X(5023) = isogonal conjugate of X(38259)
X(5023) = center of inverse-in-circumcircle-of-Moses-circle
X(5023) = center of inverse-in-circumcircle-of-2nd-Lemoine-circle
X(5023) = {X(371),X(372)}-harmonic conjugate of X(5093) X(5023) = radical center of Lucas(-1/2 cot ω) circles


X(5024) = INVERSE-IN-1st-BROCARD-CIRCLE OF X(1384)

Trilinears    5 sin(A + ω) - sin(A - ω) : :
Trilinears    3 cos A + 2 sin A cot ω : :
Trilinears    2 sin A + 3 cos A tan ω : :
Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(5b2 + 5c2 - a2)

Let A′B′C′ be the circumcevian triangle of the symmedian point (Lemoine point), X(6). The sidelines BC, CA, AB meet the sidelines of B′C′, C′A′, A′B′ in 9 points, of which 6 do not lie on the trilinear polar of K; barycentrics for the 6 points are 0 : b2 : 2c2, 0 : 2b2 : c2, 2a2 : 0 : c2, a2 : 0 : 2c2, a2 : 2b2 : 0, 2a2 : b2 : 0. The 6 points lie on a conic with center X(5024) and equation

2(b4c4x2 + c4a4y2 + a4b4z2) -5a2b2c2(a2yz + b2zx + c2xy) = 0.


Moreover, the center of the conic tangent to the 6 lines BC, CA, AB, B′C′, C′A′, A′B′ is X(39), and an equation for this conic is

b4c4x2 + c4a4y2 + a4b4z2 -2a2b2c2(a2yz + b2zx + c2xy) = 0.


(From Angel Montesdeoca, March 28, 2013)

The conic described above is an ellipse with major axis X(512)X(5024). (Randy Hutson, February 20, 2015)

X(5024) lies on these lines: {2, 2418}, {3, 6}, {22, 1383}, {232, 1597}, {353, 3148}, {381, 2549}, {382, 2548}, {988, 3731}, {999, 2276}, {1003, 3329}, {1506, 3851}, {1656, 3055}, {1992, 3793}, {2275, 3295}, {3054, 3526}, {3172, 3520}, {3331, 3426}, {3619, 3926}, {3620, 3933}

X(5024) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,6,1384), (3,39,9605), (6,574,3)
X(5024) = radical center of Lucas(4/3 cot ω) circles
X(5024) = insimilicenter of (1/2)-Moses and Stammler circles; the exsimilicenter is X(9605)


X(5025) = INVERSE-IN-ORTHOCENTROIDAL-CIRCLE OF X(384)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b4 + c4 - b2c2

As a point on the Euler line, X(5025) has Shinagawa coefficients ((E + F)2 - S2, -2S2).

X(5025) lies on these lines: {2, 3}, {32, 316}, {39, 625}, {76, 115}, {83, 3407}, {99, 3788}, {148, 1975}, {183, 2896}, {194, 325}, {315, 385}, {623, 3104}, {624, 3105}, {1348, 2559}, {1349, 2558}, {1479, 4366}, {1506, 4045}, {2548, 3329}, {3096, 3934}

X(5025) = midpoint of X(7807) and X(33229)
X(5025) = reflection of X(3552) in X(7807)
X(5025) = reflection of X(33246) in X(2)
X(5025) = complement of X(3552)
X(5025) = anticomplement of X(7807)
X(5025) = {X(2),X(3)}-harmonic conjugate of X(7907)
X(5025) = {X(2),X(4)}-harmonic conjugate of X(384)
X(5025) = {X(2),X(5)}-harmonic conjugate of X(16921)
X(5025) = {X(2),X(20)}-harmonic conjugate of X(16925)


X(5026) = INVERSE-IN-1st-BROCARD-CIRCLE OF X(3734)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (a4 - b2c2)(b2 + c2 - 2a2)

X(5026) lies on these lines: {2, 353}, {6, 99}, {114, 1503}, {115, 3589}, {141, 542}, {148, 3618}, {182, 2782}, {187, 524}, {385, 732}, {538, 2030}, {543, 597}, {698, 1569}, {804, 4107}, {1428, 3027}, {2330, 3023}, {2796, 3946}, {2854, 3111}

X(5026) = X(187)-of-1st-Brocard-triangle
X(5026) = 1st-Brocard-isogonal conjugate of X(599)


X(5027) = INVERSE-IN-PARRY-CIRCLE OF X(669)

Barycentrics    a2(b2 - c2)(a4 - b2c2) : :

X(5027) lies on these lines: {6, 888}, {99, 110}, {111, 729}, {182, 2793}, {187, 237}, {688, 3050}, {707, 737}, {804, 4107}, {808, 3267}, {882, 2422}, {1511, 2780}, {1580, 4367}, {1976, 2395}, {2492, 2872}, {2799, 3506}, {3049, 3221}, {4155, 4435}

X(5027) = isogonal conjugate of X(18829)
X(5027) = cevapoint of X(2491) and X(9429)
X(5027) = crosspoint of X(i) and X(j) for these {i,j}: {6, 805}, {25, 685}, {99, 3225}, {110, 1976}, {385, 880}, {733, 4577}, {2966, 14382}
X(5027) = crosssum of X(i) and X(j) for these {i,j}: {2, 804}, {69, 684}, {325, 523}, {512, 3229}, {694, 881}, {732, 3005}, {812, 6682}, {1634, 2421}, {3569, 14251}
X(5027) = crossdifference of every pair of points on line X(2)X(694)
X(5027) = trilinear pole of line X(2086)X(2679)
X(5027) = inverse-in-Parry-circle of X(669)
X(5027) = inverse-in-2nd-Lemoine-circle of X(2456)
X(5027) = radical center of circumcircle, Brocard circle, Brocard circle of 1st Brocard triangle
X(5027) = radical center of Brocard circles of ABC, 1st Brocard triangle, 1st anti-Brocard triangle
X(5027) = (Lemoine axis of ABC)∩(Lemoine axis of the 1st Brocard triangle)
X(5027) = X(182)-of-1st-Parry-triangle
X(5027) = inverse-in-Parry-isodynamic-circle of X(3231); see X(2)
X(5027) = X(669)-of-1st-Brocard-triangle
X(5027) = 1st-Brocard-isogonal conjugate of X(30229)
X(5027) = intersection of perspectrix of ABC and 1st Brocard triangle (line X(804)X(4107)) and perspectrix of ABC and 1st anti-Brocard triangle (line X(187)X(237))
X(5027) = trilinear product X(i)*X(j) for these {i,j}: {31, 804}, {42, 4164}, {171, 4455}, {213, 4107}, {238, 7234}, {385, 798}, {419, 810}, {512, 1580}, {523, 1933}, {560, 14295}, {661, 1691}, {662, 2086}, {667, 4039}, {669, 1966}, {875, 4154}, {880, 4117}, {923, 11183}, {1577, 14602}, {1918, 14296}, {1924, 3978}, {1926, 9426}, {2210, 2533}, {2236, 18105}, {2295, 8632}, {3573, 4128}, {3747, 4367}, {4010, 7122}


X(5028) = INVERSE-IN-1st-BROCARD-CIRCLE OF X(1692)

Trilinears    2 sin(A + 2ω) + sin(A - 2ω) - sin A : :
Barycentrics    a2(a4 + 2b4 + 2c4 - a2b2 - a2c2) : :

Let P1′ and U1′ be the 2nd-Lemoine-circle-inverses of P(1) and U(1), resp. Then X(5028) = P(1)U1′∩U(1)P1′. (Randy Hutson, January 17, 2020)

X(5028) lies on these lines: {2, 2987}, {3, 6}, {69, 626}, {115, 1352}, {193, 315}, {394, 1196}, {611, 1500}, {613, 1015}, {754, 1992}, {760, 3751}, {1180, 1994}, {1184, 3787}, {1194, 1993}, {1469, 2242}, {2241, 3056}, {2549, 2794}

X(5028) = reflection of X(32) in X(6)


X(5029) = INVERSE-IN-PARRY-CIRCLE OF X(649)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(b - c)(b2 + c2 - a2 - ab - ac + bc)

X(5029) lies on these lines: {2, 4107}, {101, 110}, {106, 111}, {187, 237}, {245, 3708}, {661, 4367}, {798, 2605}, {1015, 3124}, {1635, 3722}, {2054, 3572}, {2183, 2609}, {3723, 4145}, {3733, 4079}, {3960, 4813}, {4024, 4560}, {4160, 4893}

X(5029) = isogonal conjugate of X(35148)
X(5029) = complement of anticomplementary conjugate of X(39368)
X(5029) = crossdifference of every pair of points on line X(2)X(846)
X(5029) = inverse-in-Parry-isodynamic-circle of X(902); see X(2)


X(5030) = INVERSE-IN-1st-BROCARD-CIRCLE OF X(4262)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(2b2 + 2c2 - a2 - ab - ac - bc)

X(5030) lies on these lines: {3, 6}, {35, 1475}, {36, 101}, {56, 3730}, {106, 292}, {484, 2170}, {595, 2275}, {661, 1019}, {1155, 1308}, {2285, 3361}, {2332, 3520}, {2350, 4184}, {3247, 3333}, {3509, 4973}


X(5031) = INVERSE-IN-NINE-POINT-CIRCLE OF X(626)

Barycentrics   b^6 + c^2 + 2 a^2 b^2 c^2 : :
X(5031) = X[141] + 2 X[625], X[2076] - 5 X[3763], X[316] + 5 X[3763], 7 X[3619] - X[5104], 2 X[3631] + X[5107], 3 X[2] + X[5207], X[2458] - 5 X[7867], 5 X[3620] + X[8586], 5 X[7925] + X[11646], 5 X[7925] - X[12215], 3 X[599] + X[15514].

X(5031) lies on these lines: {2,1501}, {5,141}, {6,7752}, {69,5111}, {114,1503}, {115,698}, {125,9152}, {182,7862}, {187,6292}, {316,2076}, {325,732}, {524,1570}, {542,13196}, {599,15514}, {1352,2456}, {1506,1692}, {2021,8362}, {2024,3815}, {2080,7800}, {2458,7867}, {3094,5025}, {3098,7825}, {3619,5104}, {3620,8586}, {3631,5107}, {3788,3818}, {4074,5133}, {5017,7773}, {5039,7775}, {5116,7769}, {5162,7822}, {5969,6393}, {6656,10007}, {6680,16385}, {7746,8177}, {7777,13331}, {7778,10516}, {7785,12212}, {7789,18860}, {7810,10631}, {7815,14693}, {7821,14994}, {7832,24273}, {7842,14810}, {7925,11646}, {14603,18896}, {14712,16898}, {17047,20255}

X(5031) = crosspoint of X(2) and X(18896)
X(5031) = crosssum of X(6) and X(14602)
X(5031) = nine-point-circle-inverse of X(626)
X(5031) = complement of the isogonal conjugate of X(1916)
X(5031) = complement of the isotomic conjugate of X(18896)
X(5031) = X(i)-complementary conjugate of X(j) for these (i,j): {1, 5976}, {2, 19563}, {256, 17755}, {257, 17793}, {694, 37}, {733, 16600}, {805, 14838}, {882, 16592}, {1577, 2679}, {1581, 2}, {1916, 10}, {1927, 8265}, {1934, 141}, {1956, 14382}, {1967, 39}, {7018, 20333}, {9468, 16584}, {14970, 1215}, {17980, 16583}, {18829, 4369}, {18896, 2887}
X(5031) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (2, 5207, 1691), (5, 141, 24256), (626, 24206, 141), (2039, 2040, 626), (3788, 3818, 4048), (5403, 5404, 18806)

X(5032) = INVERSE-IN-2nd-LEMOINE-CIRCLE OF X(352)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b2 + c2 - 11a2

X(5032) lies on these lines: {2, 6}, {20, 576}, {145, 4663}, {376, 1351}, {381, 1353}, {542, 3839}, {575, 3523}, {598, 2996}, {1570, 3849}, {3241, 3751}, {3545, 3564}


X(5033) = INVERSE-IN-1st-LEMOINE-CIRCLE OF X(1570)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(3a4 - a2b2 - a2c2 - 4b2c2)

X(5033) lies on these lines: {3, 6}, {69, 620}, {184, 3231}, {206, 3016}, {729, 3565}, {1078, 3620}, {1196, 3796}, {1428, 2241}, {2242, 2330}, {3618, 4045}

X(5033) = {X(1687),X(1688)}-harmonic conjugate of X(1351)


X(5034) = INVERSE-IN-1st-LEMOINE-CIRCLE OF X(187)

Barycentrics   a2(a4 - 3a2b2 - 3a2c2 - 4b2c2) : :

X(5034) lies on these lines: {3, 6}, {83, 2996}, {193, 1078}, {611, 1015}, {613, 1500}, {1352, 1506}, {1428, 2242}, {2241, 2330}, {3564, 3815}, {3618, 3767}

X(5034) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,6,5052), (1687,1688,5050)
X(5034) = inverse-in-1st-Brocard-circle of X(5052)
X(5034) = pole of Lemoine axis wrt 1st Lemoine circle


X(5035) = INVERSE-IN-1st-BROCARD-CIRCLE OF X(4277)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a3(a2 + ab + ac + 3bc)

X(5035) lies on these lines: {3, 6}, {31, 692}, {37, 2975}, {44, 172}, {45, 2242}, {593, 662}, {1405, 1415}, {1468, 2267}, {1914, 4689}


X(5036) = INVERSE-IN-1st-BROCARD-CIRCLE OF X(4287)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(2b3 + 2c3 - 2a2b - 2a2c + abc)

X(5036) lies on these lines: {3, 6}, {9, 484}, {45, 71}, {966, 2475}, {1213, 2476}, {1400, 2099}, {2209, 4484}, {3196, 3197}


X(5037) = INVERSE-IN-1st-BROCARD-CIRCLE OF X(4284)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(2a3 + b3 + c3 + a2b + a2c - abc)

X(5037) lies on these lines: {3, 6}, {9, 976}, {595, 2911}, {609, 2260}, {995, 2174}, {1449, 3509}, {1914, 2273}, {2251, 2277}


X(5038) = INVERSE-IN-1st-LEMOINE-CIRCLE OF X(2076)

Trilinears    2 sin A - sin(A - 2ω) : :
Trilinears    a - R sin(A - 2ω) : :
Barycentrics    a2(a4 - 2a2b2 - 2a2c2 - 3b2c2) : :

X(5038) lies on these lines: {2, 2056}, {3, 6}, {83, 597}, {98, 3815}, {524, 1078}, {542, 1506}, {2023, 3329}

X(5038) = {X(1687),X(1688)}-harmonic conjugate of X(575)
X(5038) = Brocard axis intercept, other than X(2080), of the circle {{X(2080),PU(1)}}
X(5038) = harmonic center of 2nd Lemoine circle and Ehrmann circle


X(5039) = INVERSE-IN-1st-LEMOINE-CIRCLE OF X(2030)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(a4 + 3a2b2 + 3a2c2 + 2b2c2)

X(5039) lies on these lines: {3, 6}, {69, 83}, {184, 251}, {206, 3203}, {609, 1428}, {732, 3734}, {1078, 3618}

X(5039) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (371,372,5188), (1687,1688,5085)


X(5040) = INVERSE-IN-PARRY-CIRCLE OF X(667)

Barycentrics    a2(b - c)(a3 + abc - b2c - bc2) : :

X(5040) lies on these lines: {2, 4164}, {31, 4455}, {100, 110}, {111, 739}, {187, 237}, {650, 1980}, {1977, 3124}

X(5040) = isogonal conjugate of X(35147)
X(5040) = crossdifference of every pair of points on line X(2)X(3125)
X(5040) = inverse-in-Parry-isodynamic-circle of X(3230); see X(2)


X(5041) = INVERSE-IN-MOSES-CIRCLE OF X(2076)

Trilinears    3 sin(A + ω) + 2 sin(A - ω) : :
Trilinears    cos A + 5 sin A cot ω : :
Trilinears    5 sin A + cos A tan ω : :
Barycentrics    a2(2a2 + 3b2 + 3c2) : :

X(5041) lies on these lines: {3, 6}, {83, 538}, {115, 3850}, {547, 1506}, {597, 3933}, {2548, 3545}, {3329, 3934}

X(5041) = center of inverse-in-Moses-circle-of-circumcircle
X(5041) = radical center of Lucas(10 cot ω) circles


X(5042) = INVERSE-IN-1st-BROCARD-CIRCLE OF X(4263)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a3(a2 + ab + ac + 4bc)

X(5042) lies on these lines: {3, 6}, {9, 2242}, {172, 1743}, {213, 604}, {594, 996}, {1449, 2241}, {4497, 4749}


X(5043) = INVERSE-IN-1st-BROCARD-CIRCLE OF X(4289)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(2b3 + 2c3 - 2a2b - 2a2c - 3abc)

X(5043) lies on these lines: {3, 6}, {9, 3337}, {31, 4484}, {45, 672}, {1334, 2260}, {2503, 4383}


X(5044) = INVERSE-IN-SPIEKER-CIRCLE OF X(3814)

Trilinears        R cos A - s cot A/2 : :
Trilinears        4s^2(b + c - a) - a(b^2 + c^2 - a^2) : :
Barycentrics   a(b3 + c3 - a2b - a2c + 2abc + 3b2c + 3bc2) : :

X(5044) = r*X(3) - (r + 4R)(X(9)
X(5044) = r*X(5) - (r + 2R)*X(10)
X(5044) = X(1) + 3X(210)
X(5044) = 3X(2) + x(72)     (Peter Moses, April 3, 2012)

X(5044) lies on these lines: {1, 210}, {2, 72}, {3, 9}, {5, 10}, {6, 975}, {8, 392}, {35, 3683}, {37, 386}, {43, 3931}, {44, 58}, {45, 4255}, {46, 4413}, {56, 3715}, {57, 3927}, {63, 474}, {65, 1698}, {78, 405}, {140, 912}, {191, 1155}, {200, 3295}, {201, 1465}, {226, 3824}, {281, 1871}, {329, 443}, {354, 3624}, {355, 2551}, {404, 3219}, {442, 908}, {496, 4847}, {500, 1818}, {518, 1125}, {519, 4015}, {536, 3159}, {581, 1212}, {631, 1071}, {748, 976}, {756, 1193}, {758, 3634}, {762, 3230}, {899, 2292}, {958, 997}, {966, 3781}, {978, 984}, {1001, 3811}, {1018, 4520}, {1089, 4009}, {1203, 3745}, {1376, 3579}, {1479, 4679}, {1621, 4420}, {1864, 3601}, {2140, 3739}, {2478, 3419}, {2771, 3035}, {2802, 4540}, {3057, 3679}, {3216, 3666}, {3290, 3954}, {3294, 3693}, {3303, 3711}, {3306, 3951}, {3555, 3616}, {3617, 3877}, {3625, 3898}, {3626, 3880}, {3636, 4547}, {3687, 3695}, {3689, 3746}, {3702, 4651}, {3742, 3874}, {3753, 3869}, {3754, 3828}, {3827, 3844}, {3833, 4127}, {3838, 3841}, {3848, 3988}, {3873, 4539}, {3885, 4678}, {3889, 4661}, {3893, 4668}, {3899, 4731}, {3952, 4968}, {4113, 4975}, {4158, 4187}

X(5044) = complement of X(942)
X(5044) = centroid of {A,B,C,X(72)}


X(5045) = INVERSE-IN-INCIRCLE OF X(484)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b3 + c3 - a2b - a2c - 6abc - b2c - bc2)

Let A′ be the inverse-in-incircle of the A-excenter, and define B′, C′ cyclically. The triangle A′B′C′ is homothetic to ABC, and its circumcenter is X(5045). (Randy Hutson, February 16, 2015)

X(5045) lies on these lines: {1, 3}, {2, 3555}, {5, 3947}, {7, 1058}, {8, 4002}, {10, 3742}, {30, 4298}, {37, 4253}, {58, 1279}, {72, 3616}, {145, 3753}, {210, 3624}, {226, 496}, {355, 938}, {392, 3622}, {404, 3957}, {405, 4666}, {474, 3870}, {495, 1210}, {500, 1458}, {518, 1125}, {519, 3812}, {536, 596}, {550, 4314}, {551, 960}, {582, 1471}, {758, 3636}, {936, 3243}, {946, 971}, {975, 3242}, {1100, 2174}, {1149, 2650}, {1387, 2771}, {1621, 3916}, {1770, 3058}, {2886, 3824}, {2891, 4886}, {2901, 4891}, {3086, 3475}, {3306, 4917}, {3488, 3600}, {3626, 3833}, {3632, 3698}, {3634, 3848}, {3635, 3754}, {3655, 4308}, {3876, 4430}, {3877, 4018}, {3894, 3962}, {3898, 4084}, {3968, 4701}, {4533, 4661}, {4668, 4731}

X(5045) = complement of X(34790)
X(5045) = X(140)-of-intouch-triangle
X(5045) = X(5) of inverse-in-incircle-triangle


X(5046) = INVERSE-IN-ORTHOCENTROIDAL-CIRCLE OF X(2475)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b4 + c4 - a4 + a2bc + ab2c + abc2 - 2b2c2

As a point on the Euler line, X(5046) has Shinagawa coefficients (abc$a$, - 4S2), and also (R, -2r).

X(5046) lies on these lines: {1, 5080}, {2, 3}, {8, 80}, {10, 3583}, {11, 2975}, {12, 1621}, {35, 3814}, {36, 3825}, {65, 5057}, {78, 3586}, {79, 5883}, {100, 1329}, {115, 5985}, {145, 497}, {153, 944}, {191, 3467}, {210, 5178}, {312, 5016}, {324, 1896}, {341, 5014}, {355, 3877}, {388, 1388}, {519, 4857}, {535, 5563}, {551, 5270}, {908, 950}, {938, 5905}, {952, 5330}, {960, 5086}, {962, 5554}, {1043, 5741}, {1058, 3623}, {1125, 3585}, {1210, 3218}, {1478, 3616}, {1724, 5127}, {1749, 3648}, {1837, 3869}, {1842, 3101}, {1877, 4296}, {1994, 3193}, {2551, 3434}, {2646, 5087}, {2886, 5260}, {3057, 5176}, {3419, 3876}, {3421, 3621}, {3614, 6690}, {3701, 5015}, {3816, 5253}, {3822, 5259}, {3868, 5722}, {3890, 5252}, {3897, 5886}, {3924, 3944}, {4294, 5552}, {4297, 4881}, {4313, 5748}, {4514, 4696}, {4666, 5290}, {4678, 5082}, {4679, 5794}, {4723, 5100}, {5180, 5903}, {5250, 5587}, {5283, 5475}, {5303, 5433}, {5318, 5367}, {5321, 5362}, {5422, 5706}, {5445, 6702}, {5731, 6256}

X(5046) = complement of X(37256)

X(5047) = INVERSE-IN-ORTHOCENTROIDAL-CIRCLE OF X(4197)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(a3 - ab2 - ac2 - 3abc - 3b2c - 3bc2)

As a point on the Euler line, X(5047) has Shinagawa coefficients (3abc$a$ + 2S2, -2S2).

X(5047) lies on these lines: {1, 748}, {2, 3}, {8, 344}, {9, 3868}, {10, 1621}, {35, 3634}, {81, 1724}, {100, 1698}, {373, 970}, {908, 1125}, {942, 3219}, {956, 3622}, {958, 3304}, {968, 1722}, {993, 3624}, {1320, 3890}, {3074, 3562}, {3214, 3750}, {3216, 4653}, {3295, 3617}, {3336, 3647}, {3583, 3841}, {3683, 3812}, {3697, 3935}, {3701, 3757}, {3740, 4420}, {3748, 4662}, {3889, 4666}, {3915, 4279}

X(5047) = anticomplement of X(17529)


X(5048) = INVERSE-IN-INCIRCLE OF X(3057)

Barycentrics   a(b + c - a)(3b2 + 3c2 - 2a2 + ab + ac - 6bc) : :
X(5048) = (R - 3r)*X(1) + r*X(3)

Let I be the incenter of a triangle ABC, let NA be the nine-point circle of the triangle IBC, and define NB and NC cyclically. Let RA be the reflection of NA in the line AI, and define RB and RC cyclically. Then X(5048) is the radical center of the circles RA, RB, RC. See Antreas Hatzipolakis and Angel Montesdeoca, Hyacinthos #22502, July 7, 2014. For another construction see Antreas Hatzipolakis and Peter Moses, Hyacinthos #28076.

X(5048) lies on these lines: {1, 3}, {8, 1392}, {11, 519}, {33, 1878}, {78, 3893}, {145, 1837}, {210, 3872}, {495, 4870}, {497, 3241}, {513, 4162}, {515, 1317}, {535, 3058}, {950, 3635}, {960, 4861}, {1318, 1320}, {1387, 1737}, {1391, 1870}, {1478, 3656}, {1836, 3476}, {2170, 2348}, {2269, 3723}, {3021, 3328}, {3318, 3319}, {3486, 3623}, {3655, 4302}, {3683, 3877}, {3693, 4919}, {3711, 4915}

X(5048) = reflection of X(1319) in X(1)
X(5048) = inverse-in-incircle of X(3057)
X(5048) = X(36) of Mandart-incircle triangle
X(5048) = homothetic center of intangents triangle and reflection of extangents triangle in X(36)


X(5049) = INVERSE-IN-INCIRCLE OF X(3245)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(a2b + a2c + 10abc - b3 - b2c - bc2 - c3)

Let A′ be the midpoint of X(1) and A-intouch point. Define B′, C′ cyclically. The centroid of A′B′C′ is X(5049). (Randy Hutson, February 16, 2015)

X(5049) lies on these lines: {1, 3}, {2, 3921}, {10, 3848}, {72, 3622}, {101, 1100}, {374, 1449}, {392, 3873}, {496, 3817}, {518, 551}, {519, 3742}, {956, 4666}, {960, 3636}, {962, 3296}, {1125, 3740}, {1387, 2801}, {3241, 3753}, {3243, 3940}, {3244, 3812}, {3555, 3616}, {3621, 4002}, {3633, 3698}, {3828, 4711}, {3885, 4004}, {3890, 4018}, {4677, 4731}

X(5049) = X(2)-of-incircle-circles-triangle


X(5050) = INVERSE-IN-1st-LEMOINE-CIRCLE OF X(2080)

Trilinears        a + R cos A cot ω : b + R cos B cot ω : c + R cos C cot ω
Trilinears        2 sin A + cos A cot ω : 2 cos B + cos B cot ω : 2 cos C + cos C cot ω
Trilinears        cos A + 2 sin A tan ω : cos B + 2 sin B tan ω : cos C + 2 sin C tan ω
Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(3a4 + b4 + c4 - 4a2b2 - 4a2c2 - 6b2c2)
X(5050) = X(3) + 2X(6)

Let A′B′C′ be the reflection of ABC in X(6). Let AB = BC∩A′C′ and define BC and CA cyclically. Let AC = BC∩A′B′, and define BA and CB cyclically. The six points AB, BC, CA, AC, BA, CB lie on the 2nd Lemoine circle. Let A″ be the point of intersection of the tangents to the 2nd Lemoine circle at BA and CA, and define B″, C″ cyclically. The centroid of triangle A″B″C″ is X(5050). X(5050) and X(5085) trisect the segment X(3)X(6). Also, X(5050) is the exsimilicenter of the circle with center X(371) and pass-through point X(1151) and the circle with center X(372) and pass-through point X(1152). (Randy Hutson, January 29, 2015)

Continuing, the triangles AABAC, BBCBA, CCACB are pairwise similar and and each inversely similar to ABC. Let SA be the similitude center of BBCBA and CCACB, and define SB and SC cyclically. Then the triangle SASBSC is perspective to ABC at X(6) and homothetic to the circumsymmedial triangle at X(6). Moreover, X(5050) = X(3)-of-SASBSC. (Randy Hutson, October 13, 2015)

X(5050): Let T be a triangle inscribed in the circumcircle and circumscribing the orthic inconic. As T varies, its centroid traces a circle centered at X(5050) with segment X(2)X(14912) as diameter. (Randy Hutson, August 29, 2018)

X(5050) lies on these lines: {2, 3167}, {3, 6}, {5, 3618}, {51, 3796}, {69, 140}, {141, 3526}, {184, 373}, {193, 631}, {381, 597}, {549, 1992}, {611, 999}, {613, 2330}, {632, 3619}, {895, 1511}, {1176, 3527}, {1352, 1656}, {1385, 3751}, {1386, 1482}, {1495, 3066}, {1598, 1974}, {1843, 3517}, {3525, 3620}, {3818, 3851}

X(5050) = reflection of X(5085) in X(182)
X(5050) = radical center of the Lucas(4 tan ω) circles
X(5050) = center of inverse-in-1st-Lemoine-circle-of-circumcircle
X(5050) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,6,1351), (371,372,5013), (1687,1688,5034)


X(5051) = INVERSE-IN-ORTHOCENTROIDAL-CIRCLE OF X(964)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b + c)(a3 + b3 + c3 + a2b + a2c + ab2 + ac2 + abc)

As a point on the Euler line, X(5051) has Shinagawa coefficients (2(E + F)2 + 2$bc$(E + F) + abc$a$, -2S2).

X(5051) lies on these lines: {1, 3454}, {2, 3}, {8, 1211}, {10, 321}, {12, 1284}, {45, 1213}, {75, 1228}, {81, 1330}, {115, 1281}, {225, 1441}, {846, 1698}, {984, 4812}, {1046, 4683}, {1193, 3847}, {1230, 4385}, {1962, 3178}, {2298, 4645}, {2901, 3969}, {3017, 3578}, {3214, 4085}, {3695, 3995}, {3704, 4854}


X(5052) = INVERSE-IN-MOSES-CIRCLE OF X(2021)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(3a2b2 + 3a2c2 + 2b2c2 - b4 - c4)

X(5052) lies on these lines: {2, 3787}, {3, 6}, {51, 1196}, {69, 2548}, {76, 193}, {141, 1506}, {251, 1994}, {263, 3117}, {373, 3231}, {538, 1992}, {611, 2241}, {613, 2242}, {726, 4856}, {732, 3629}, {1015, 1469}, {1194, 3060}, {1353, 2782}, {1500, 3056}, {1572, 3751}, {1843, 2211}, {1974, 3202}

X(5052) = reflection of X(39) in X(6)
X(5052) = inverse-in-1st-Brocard-circle of X(5034)
X(5052) = bicentric sum of PU(191)
X(5052) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,6,5034), (371,372,5171)


X(5053) = INVERSE-IN-1st-BROCARD-CIRCLE OF X(4266)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(a3 - ab2 - ac2 + 3abc - b2c - bc2)

X(5053) lies on these lines: {1, 2267}, {2, 1412}, {3, 6}, {9, 604}, {36, 909}, {44, 101}, {48, 1732}, {59, 672}, {241, 1461}, {527, 1429}, {602, 947}, {661, 3737}, {1174, 2364}, {1449, 1697}, {1474, 4222}, {1630, 1723}, {1724, 2360}, {1731, 2182}, {1766, 3554}, {2223, 3939}, {3684, 4700}


X(5054) = INVERSE-IN-ORTHOCENTROIDAL-CIRCLE OF X(547)

Barycentrics    5a4 + 2b4 + 2c4 - 7a2b2 - 7a2c2 - 4b2c2 : :
X(5054) = 4*X(381) - X(382)

As a point on the Euler line, X(5054) has Shinagawa coefficients (7, -3).

Let T be a triangle inscribed in the circumcircle and circumscribing the Steiner inellipse. As T varies, its centroid traces a circle centered at X(5054) with segment X(2)X(3524) as diameter. (Randy Hutson, August 29, 2018)

X(5054) lies on these lines: {2, 3}, {10, 3655}, {46, 4870}, {55, 3582}, {56, 3584}, {182, 599}, {355, 3828}, {499, 3058}, {519, 3653}, {538, 1153}, {551, 1482}, {568, 3917}, {597, 1351}, {1125, 3656}, {1384, 3815}, {1385, 3679}, {2549, 3054}, {3017, 4255}, {3295, 4995}, {3579, 3624}

X(5054) = complement of X(3545)
X(5054) = anticomplement of X(15699)
X(5054) = circumcircle-inverse of X(37967)
X(5054) = trisector nearest X(2) of segment X(2)X(3)
X(5054) = centroid of X(3)PU(116)
X(5054) = centroid of X(3)PU(117)
X(5054) = centroid of X(3)PU(118
) X(5054) = centroid of X(3)PU(119)


X(5055) = INVERSE-IN-ORTHOCENTROIDAL-CIRCLE OF X(549)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a4 + 4b4 + 4c4 - 5a2b2 - 5a2c2 - 8b2c2
X(5055) = 4 X(2) - X(3) = 5 X(3) + 4 X(4)

As a point on the Euler line, X(5055) has Shinagawa coefficients (5, 3).

X(5055) lies on these lines: {2, 3}, {10, 3656}, {355, 551}, {498, 3058}, {499, 3614}, {515, 3653}, {517, 4731}, {539, 3167}, {597, 1352}, {599, 1351}, {946, 3654}, {999, 3582}, {1125, 3655}, {1159, 1737}, {1479, 4995}, {1482, 3679}, {2549, 3055}, {3295, 3584}

X(5055) = homothetic center of Johnson triangle and mid-triangle of Euler and anti-Euler triangles
X(5055) = inverse-in-circle-O(PU(5)) of X(20)
X(5055) = homothetic center of X(140)-altimedial and X(3)-anti-altimedial triangles
X(5055) = {X(2),X(3)}-harmonic conjugate of X(15694)
X(5055) = {X(2043),X(2044)}-harmonic conjugate of X(546)
X(5055) = trisector nearest X(5) of segment X(2)X(5)
X(5055) = trisector nearest X(2) of segment X(2)X(381)
X(5055) = homothetic center of Ehrmann side-triangle and submedial triangle
X(5055) = X(3839)-of-Ehrmann-side-triangle
X(5055) = X(3839)-of-submedial-triangle


X(5056) = INVERSE-IN-ORTHOCENTROIDAL-CIRCLE OF X(3523)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a4 + 5b4 + 5c4 - 6a2b2 - 6a2c2 - 10b2c2

As a point on the Euler line, X(5056) has Shinagawa coefficients (3, 2).

X(5056) lies on these lines: {2, 3}, {233, 393}, {355, 3622}, {371, 1132}, {372, 1131}, {388, 3614}, {390, 498}, {485, 3591}, {486, 3590}, {499, 3600}, {637, 3595}, {638, 3593}, {962, 1698}, {1482, 4678}, {1699, 3634}, {3311, 3316}, {3312, 3317}


X(5057) = INVERSE-IN-POLAR-CIRCLE OF X(1824)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b3 + c3 - a3 + abc - b2c - bc2

X(5057) lies on these lines: {1, 535}, {2, 1155}, {4, 8}, {7, 3660}, {10, 3245}, {11, 1776}, {21, 36}, {30, 4511}, {31, 3944}, {46, 4193}, {63, 1699}, {100, 516}, {114, 1281}, {149, 518}, {190, 3006}, {214, 4316}, {226, 1005}, {238, 3120}, {239, 4442}, {243, 3326}, {320, 350}, {388, 3890}, {404, 1770}, {411, 2077}, {484, 1698}, {497, 3873}, {524, 4956}, {527, 1156}, {528, 3935}, {758, 3583}, {901, 1311}, {946, 2975}, {960, 2475}, {1319, 3485}, {1330, 3702}, {1478, 3877}, {1479, 3868}, {1839, 2287}, {2325, 4071}, {2478, 4295}, {2886, 3219}, {2895, 3706}, {3058, 3957}, {3306, 4312}, {3336, 3825}, {3416, 4671}, {3486, 3623}, {3582, 4973}, {3585, 3878}, {3648, 3916}, {3685, 3936}, {3717, 4756}, {3741, 4683}, {3847, 4418}, {3874, 4857}, {3883, 4054}, {3920, 4415}, {4062, 4693}, {4358, 4645}, {4432, 4892}, {4654, 4666}, {4661, 4863}, {4713, 4799}

X(5057) = anticomplement of X(1155)
X(5057) = intersection of antiorthic axes of 1st and 2nd Ehrmann circumscribing triangles
X(5057) = intersection of antiorthic axes of anticevian triangles of PU(4)


X(5058) = INVERSE-IN-1st-BROCARD-CIRCLE OF X(1505)

Trilinears    a2(aR - bc) : :    César Lozada (9/07/2013)
Trilinears    cos A cos ω + 2 sin A sin ω : :
Trilinears    2 sin A sin ω - sin(A - ω) : :
Trilinears    cos A + 2 sin A tan ω : :
Trilinears    2 sin A + cos A cot ω : :

Barycentrics    a2(a2 - [(b + c - a)(c + a - b)(a + b - c)(a + b + c)]1/2) : :

X(5058) lies on these lines: {3, 6}, {115, 3071}, {172, 3299}, {251, 588}, {492, 3788}, {590, 1506}, {615, 642}, {1015, 2067}, {1124, 2242}, {1335, 2241}, {1500, 2066}, {1588, 3767}, {1914, 3301}, {2548, 3068}

X(5058) = {X(6),X(32)}-harmonic conjugate of X(5062)
X(5058) = perspector of symmedial triangle and Lucas Brocard triangle
X(5058) = radical center of Lucas(4 tan ω) circles
X(5058) = inverse-in-circle-{X(371),X(372),PU(1),PU(39)} of X(9738)
X(5058) = {X(371),X(372)}-harmonic conjugate of X(9738)


X(5059) = INVERSE-IN-ORTHOCENTROIDAL-CIRCLE OF X(3854)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 5b4 + 5c4 - 11a4 + 6a2b2 + 6a2c2 - 10b2c2

As a point on the Euler line, X(5059) has Shinagawa coefficients (3, -8).

Let J be the conic {{X(13),X(14),X(15),X(16),X(20)}}. Let U be the line tangent to J at X(15), and let V be the line tangent to J at X(16). Then X(5059) = U∩V. (Randy Hutson, February 16, 2015)

X(5059) lies on these lines: {2, 3}, {40, 4678}, {145, 516}, {323, 1498}, {515, 3621}, {962, 3623}, {1131, 1151}, {1132, 1152}, {3085, 4324}, {3086, 4316}, {3622, 4297}, {4299, 4857}

X(5059) = anticomplement of X(3146)
X(5059) = pole of Brocard axis wrt conic {{X(13),X(14),X(15),X(16),X(20)}}
X(5059) = polar conjugate of isogonal conjugate of X(33636)


X(5060) = INVERSE-IN-CIRCUMCIRCLE OF X(284)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(a + b)(a + c)(a3 + b3 + c3 - 2a2b - 2a2c + abc)

X(5060) lies on these lines: {3, 6}, {19, 1247}, {21, 3496}, {36, 163}, {102, 2715}, {110, 1055}, {112, 2708}, {162, 2202}, {691, 2291}, {759, 2702}, {1951, 2249}, {3735, 4653}


X(5061) = INVERSE-IN-CIRCUMCIRCLE OF X(1402)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(a + b - c)(a - b + c)(a3 + abc - b2c - bc2)

X(5061) lies on these lines: {1, 3}, {2, 1397}, {12, 1408}, {59, 4600}, {81, 181}, {98, 2720}, {108, 2699}, {109, 1284}, {604, 750}, {741, 2222}, {899, 1404}, {1428, 3911}


X(5062) = INVERSE-IN-1st-BROCARD-CIRCLE OF X(1504)

Trilinears    a2(aR + bc) : :    César Lozada (9/07/2013)
Trilinears    2 sin A sin ω + sin(A - ω) : :
Trilinears    cos A - (2 + cot ω) sin A : :
Barycentrics    a2(a2 + [(b + c - a)(c + a - b)(a + b - c)(a + b + c)]1/2)

X(5062) lies on these lines: {3, 6}, {115, 3070}, {172, 3301}, {251, 589}, {491, 3788}, {590, 641}, {615, 1506}, {1124, 2241}, {1335, 2242}, {1587, 3767}, {1914, 3299}, {2548, 3069}

X(5062) = {X(6),X(32)}-harmonic conjugate of X(5058)
X(5062) = perspector of symmedial triangle and Lucas(-1) Brocard triangle
X(5062) = radical center of Lucas(-4 - 2 cot ω) circles
X(5062) = inverse-in-circle-{X(371),X(372),PU(1),PU(39)} of X(9739)
X(5062) = {X(371),X(372)}-harmonic conjugate of X(9739)


X(5063) = INVERSE-IN-1st-BROCARD-CIRCLE OF X(3003)

Barycentrics    a4(a4 + b4 + c4 - 2a2b2 -2a2c2 + 4b2c2) : :

Let A′B′C′ be the Trinh triangle. Let A″ be the barycentric product B′*C′, and define B″ and C″ cyclically. The lines AA″, BB″, CC″ concur in X(5063). (Randy Hutson, October 13, 2015)

X(5063) lies on these lines: {2, 2986}, {3, 6}, {53, 1885}, {160, 1974}, {184, 1576}, {231, 3767}, {468, 3815}, {1968, 1990}, {2393, 3148}, {2549, 3018}, {3087, 3542}

X(5063) = isogonal conjugate of X(34289)
X(5063) = crosssum of X(6) and X(6644)
X(5063) = crossdifference of every pair of points on line X(523)X(11799)
X(5063) = Schoute-circle-inverse of X(37470)
X(5063) = {X(15),X(16)}-harmonic conjugate of X(37470)


X(5064) = INVERSE-IN-ORTHOCENTROIDAL-CIRCLE OF X(428)

Trilinears    3 sec A + csc A tan ω : :
Trilinears    csc A + 3 sec A cot ω : :
Barycentrics   (a2 - b2 + c2)(a2 + b2 - c2)(a2 + 2b2 + 2c2) : :
Barycentrics    (sec A)[2 sin(A + ω) + sin(A - ω)] : :
Barycentrics    3 tan A + tan ω : :
Barycentrics    3 tan A cot ω + 1 : :

As a point on the Euler line, X(5064) has Shinagawa coefficients (F, 3E + 3F).

Let W be the orthocentroidal circle, L the line tangent to W at the P(4)-Ceva conjugate of U(4) and M the line tangent to W at the U(4)-Ceva conjugate of P(4). Then X(5064) = L∩M. (Randy Hutson, February 16, 2015)

X(5064) lies on these lines: {2, 3}, {51, 1853}, {115, 1184}, {394, 3818}, {524, 3867}, {553, 1892}, {599, 1843}, {1498, 3574}, {1829, 3679}, {1876, 4654}

X(5064) = pole wrt orthocentroidal circle of line X(428)X(523)
X(5064) = {X(2),X(4)}-harmonic conjugate of X(428)
X(5064) = homothetic center of orthic triangle and reflection of tangential triangle in X(2)


X(5065) = INVERSE-IN-1st-BROCARD-CIRCLE OF X(800)

Barycentrics    a^4 (a^4 + b^4 + c^4 - 2 a^2 b^2 - 2 a^2 c^2 + 6 b^2 c^2) : :

X(5065) lies on these lines: {2, 801}, {3, 6}, {393, 2549}, {1249, 1968}, {1950, 2082}, {1951, 2285}, {2241, 3554}, {2242, 3553}, {2548, 3087}, {3618, 4558}

X(5065) = isogonal conjugate of X(37874)
X(5065) = crosspoint of X(2) and X(14457)
X(5065) = crosssum of X(i) and X(j) for these {i,j}: {2, 11433}, {6, 17928}, {1146, 2517}
X(5065) = inverse-in-circle-{X(371),X(372),PU(1),PU(39)} of X(9729)
X(5065) = {X(371),X(372)}-harmonic conjugate of X(9729)


X(5066) = INVERSE-IN-ORTHOCENTROIDAL-CIRCLE OF X(3534)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 7b4 + 7c4 - 2a4 - 5a2b2 - 5a2c2 - 14b2c2
X(5066) = 7 X(2) - 3 X(3) = X(2) - 3 X(5) = X(5) + X(381) = X(2) + X(3) + 2 X(4) = 2 X(5) - X(547) = X(5) - 2 X(11737)

As a point on the Euler line, X(5066) has Shinagawa coefficients (5, 9).

X(5066) lies on these lines: {2, 3}, {517, 3956}, {597, 3818}, {946, 4669}, {952, 3817}, {1699, 3654}, {3583, 4995}, {3584, 3614}, {3656, 4677}

X(5066) = reflection of X(i) in X(j) for these (i,j): (5,11737), (547,5)
X(5066) = complement of X(8703)
X(5066) = {X(2),X(3)}-harmonic conjugate of X(15713)
X(5066) = {X(2),X(4)}-harmonic conjugate of X(3534)
X(5066) = {X(2),X(5)}-harmonic conjugate of X(10109)
X(5066) = midpoint of X(5) and X(381)


X(5067) = INVERSE-IN-ORTHOCENTROIDAL-CIRCLE OF X(3525)

Trilinears       4 cos A + 5 cos B cos C : :
Trilinears       5 sec A + 4 sec B sec C : :
Barycentrics   3a4 + 5b4 + 5c4 - 8a2b2 - 8a2c2 - 10b2c2 : :
Barycentrics    cot B cot C + 4 : :

As a point on the Euler line, X(5067) has Shinagawa coefficients (4, 1).

X(5067) lies on these lines: {2, 3}, {6, 3316}, {373, 3567}, {498, 1058}, {499, 1056}, {944, 3624}, {3614, 4293}, {3634, 4301}

X(5067) = {X(3316),X(3317)}-harmonic conjugate of X(6)


X(5068) = INVERSE-IN-ORTHOCENTROIDAL-CIRCLE OF X(3522)

Barycentrics    7b4 + 7c4 - a4 - 6a2b2 - 6a2c2 - 14b2c2 : :
Trilinears    4 cos B cos C + 3 sin B sin C : :

As a point on the Euler line, X(5068) has Shinagawa coefficients (3, 4).

X(5068) lies on these lines: {2, 3}, {8, 3817}, {355, 3623}, {497, 3614}, {946, 3617}, {1131, 3069}, {1132, 3068}, {3085, 4857}

X(5068) = {X(3544),X(3545)}-harmonic conjugate of X(5)


X(5069) = INVERSE-IN-1st-BROCARD-CIRCLE OF X(2220)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(ab2 + ac2 - abc + b3 + b2c + bc2 + c3)

X(5069) lies on these lines: {2, 3770}, {3, 6}, {37, 2275}, {42, 3941}, {44, 2277}, {749, 1100}, {980, 3589}, {3056, 4735}, {3061, 4016}


X(5070) = INVERSE-IN-ORTHOCENTROIDAL-CIRCLE OF X(632)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 3a4 + 4b4 + 4c4 - 7a2b2 - 7a2c2 - 8b2c2
Barycentrics    cot B cot C + 7 : :

As a point on the Euler line, X(5070) has Shinagawa coefficients (7, 1).

X(5070) lies on these lines: {2, 3}, {17, 3411}, {18, 3412}, {373, 1216}, {1351, 3763}, {1482, 1698}, {2548, 3054}, {3055, 3767}

X(5070) = homothetic center of X(140)-altimedial and X(2)-anti-altimedial triangles


X(5071) = INVERSE-IN-ORTHOCENTROIDAL-CIRCLE OF X(3524)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a4 + 7b4 + 7c4 - 8a2b2 - 8a2c2 - 14b2c2
X(5071) = 7 X(2) - 2 X(3)

As a point on the Euler line, X(5071) has Shinagawa coefficients (4, 3).

X(5071) lies on these lines: {2, 3}, {388, 3582}, {497, 3584}, {542, 3618}, {1587, 3317}, {1588, 3316}, {3086, 3614}, {3817, 3828}

X(5071) = centroid of cross triangle of Euler and anti-Euler triangles
X(5071) = {X(2),X(3)}-harmonic conjugate of X(15709)
X(5071) = {X(3090),X(3545)}-harmonic conjugate of X(2)


X(5072) = INVERSE-IN-ORTHOCENTROIDAL-CIRCLE OF X(548)

Trilinears    5 cos A + 12 cos B cos C : :
Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 6b4 + 6c4 - a4 - 5a2b2 - 5a2c2 - 12b2c2

As a point on the Euler line, X(5072) has Shinagawa coefficients (5, 7).

X(5072) lies on these lines: {2, 3}, {355, 3635}, {946, 4691}, {1351, 3630}, {1482, 3625}, {3295, 3614}

X(5072) = {X(3090),X(3091)}-harmonic conjugate of X(546)


X(5073) = INVERSE-IN-ORTHOCENTROIDAL-CIRCLE OF X(3858)

Barycentrics    4b4 + 4c4 - 7a4 + 3a2b2 + 3a2c2 - 8b2c2
X(5073) = 3*X(381) - 5*X(382)

As a point on the Euler line, X(5073) has Shinagawa coefficients (3, -11).

Let OA be the circle centered at A with radius 2*sqrt(b2 + c2), and define OB and OC cyclically. Then X(5073) is the radical center of OA, OB, OC. (Randy Hutson, February 16, 2015)

X(5073) lies on these lines: {2, 3}, {516, 4701}, {999, 4857}, {2996, 3793}, {3357, 3581}, {3426, 3519}

X(5073) = circumcircle-inverse of X(37968)
X(5073) = {X(381),X(382)}-harmonic conjugate of X(3627)


X(5074) = INVERSE-IN-CIRCUMCIRCLE OF X(1631)

Barycentrics    a3b + a3c - 2a2bc - b4 + b3c + bc3 - c4 : :

X(5074) lies on these lines: {2, 5011}, {3, 142}, {101, 4872}, {116, 517}, {226, 1323}, {304, 4153}, {514, 661}

X(5074) = isotomic conjugate of X(37213)
X(5074) = complement of X(5011)


X(5075) = INVERSE-IN-PARRY-CIRCLE OF X(663)

Barycentrics    a2(b - c)(a3 + b3 + c3 - 2a2b - 2a2c + abc) : :

X(5075) = center of this circle: V(X(846)) = {{15,16,846,1054,1283,5197}}; see the preamble to X(6137).

X(5075) lies on these lines: {109, 110}, {111, 2291}, {187, 237}, {659, 1769}, {846, 2786}, {4414, 4750}

X(5075) = isogonal conjugate of X(35154)
X(5075) = crossdifference of every pair of points on line X(2)X(9317)
X(5075) = inverse-in-Parry-isodynamic-circle of X(1055); see X(2)


X(5076) = INVERSE-IN-ORTHOCENTROIDAL-CIRCLE OF X(3861)

Barycentrics    6b4 + 6c4 - 7a4 + a2b2 + a2c2 - 12b2c2 : :
X(5076) = 3*X(381) + 2*X(382)

As a point on the Euler line, X(5076) has Shinagawa coefficients (1, -13).

X(5076) lies on these lines: {2, 3}, {355, 4746}, {517, 4816}, {3303, 3585}, {3304, 3583}

X(5076) = {X(381),X(382)}-harmonic conjugate of X(1657)


X(5077) = INVERSE-IN-ORTHOCENTROIDAL-CIRCLE OF X(3363)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 4b4 + 4c4 - 5a4 + 5a2b2 + 5a2c2 - 4b2c2

As a point on the Euler line, X(5077) has Shinagawa coefficients (2(E + F)2 + 3S2, -9S2).

X(5077) lies on these lines: {2, 3}, {6, 3849}, {183, 671}, {524, 2549}, {543, 599}

X(5077) = Artzt-to-anti-Artzt similarity image of X(3)


X(5078) = INVERSE-IN-CIRCUMCIRCLE OF X(3666)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(b4 + c4 - a4 - 3a2bc + ab2c + abc2)

X(5078) lies on these lines: {1, 3}, {22, 3052}, {197, 4383}, {595, 2915}, {1979, 2076}


X(5079) = INVERSE-IN-ORTHOCENTROIDAL-CIRCLE OF X(3530)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a4 + 6b4 + 6c4 - 7a2b2 - 7a2c2 - 12b2c2

As a point on the Euler line, X(5079) has Shinagawa coefficients (7, 5).

X(5079) lies on these lines: {2, 3}, {355, 3636}, {999, 3614}, {1351, 3631}, {1482, 3626}

X(5079) = complement of X(10299)
X(5079) = homothetic center of X(5)-altimedial and X(20)-anti-altimedial triangles
X(5079) = {X(2),X(4)}-harmonic conjugate of X(3530)
X(5079) = {X(2),X(5)}-harmonic conjugate of X(3851)


X(5080) = INVERSE-IN-POLAR-CIRCLE OF X(1829)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b4 + c4 - a4 - a2bc + ab2c + abc2 - 2b2c2

X(5080) lies on these lines: {2, 36}, {4, 8}, {5, 2975}, {10, 191}, {11, 529}, {12, 21}, {20, 2077}, {30, 100}, {56, 4193}, {79, 3754}, {80, 758}, {119, 4996}, {145, 1479}, {149, 519}, {153, 515}, {316, 668}, {377, 1155}, {381, 956}, {388, 1319}, {404, 1329}, {452, 2078}, {495, 1621}, {497, 3241}, {498, 4189}, {513, 2517}, {666, 671}, {946, 4861}, {958, 2476}, {1168, 4080}, {1330, 2392}, {1698, 4652}, {1699, 3872}, {1737, 3218}, {1793, 2222}, {1837, 3868}, {1877, 4318}, {3244, 4857}, {3245, 3617}, {3586, 3870}, {3614, 4999}, {4188, 4299}

X(5080) = isogonal conjugate of X(34442)
X(5080) = isotomic conjugate of isogonal conjugate of X(20989)
X(5080) = polar conjugate of isogonal conjugate of X(22123)
X(5080) = anticomplement of X(36)
X(5080) = inverse-in-anticomplementary-circle of X(8)


X(5081) = INVERSE-IN-FUHRMANN-CIRCLE OF X(318)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b + c - a)(a2 + b2 - c2)(a2 - b2 + c2)(b2 + c2 - a2 - bc)

X(5081) lies on these lines: {4, 8}, {10, 275}, {25, 3705}, {27, 3687}, {29, 270}, {30, 2968}, {33, 3872}, {34, 78}, {36, 4242}, {69, 273}, {75, 317}, {102, 515}, {162, 447}, {186, 4996}, {200, 4680}, {225, 4101}, {239, 297}, {242, 1884}, {264, 319}, {280, 3146}, {281, 391}, {320, 340}, {458, 3661}, {518, 1875}, {519, 1785}, {521, 1948}, {758, 1845}, {765, 1861}, {860, 1870}, {1043, 3559}, {1325, 2766}, {1841, 3965}, {1852, 3704}, {1876, 4645}, {1990, 4969}, {2202, 3684}, {2322, 3686}, {2345, 3087}, {4853, 4894}

X(5081) = anticomplement of isogonal conjugate of X(36121)


X(5082) = INVERSE-IN-FUHRMANN-CIRCLE OF X(3421)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b4 + c4 - a4 + 4a2bc - 4ab2c - 4abc2 - 2b2c2

X(5082) lies on these lines: {1, 142}, {2, 496}, {4, 8}, {7, 3555}, {10, 497}, {20, 956}, {40, 4847}, {65, 4863}, {69, 2891}, {100, 631}, {145, 377}, {149, 1145}, {200, 946}, {376, 2975}, {388, 519}, {390, 405}, {515, 4853}, {518, 4295}, {528, 958}, {938, 3753}, {944, 3872}, {966, 3294}, {1000, 3885}, {1210, 1706}, {1376, 3086}, {1478, 3632}, {1479, 2551}, {1699, 4882}, {2475, 3621}, {2886, 3085}, {3296, 3889}, {3303, 3925}, {3485, 3811}, {3487, 3870}, {3583, 4668}, {3585, 4677}, {3983, 4679}, {4421, 4999}


X(5083) = INVERSE-IN-INCIRCLE OF X(109)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(a + b - c)(a - b + c)(b3 + c3 + a2b + a2c - 2ab2 - 2ac2)

X(5083) is the center of the rectangular hyperbola, H, that is the locus of perspectors of the pedal triangle of X(1) (the intouch triangle) and A′B′C′, where AA′/AX(1) = BB′/BX(1) = CC′/CX(1). Also, H is the Jerabek hyperbola of the intouch triangle, and H passes through X(1), X(7), X(65), X(145), X(224), X(1071), X(1317), X(1537), X(3174), X(3649), X(5586), and the vertices of the intouch triangle. (Randy Hutson, February 16, 2015)

X(5083) lies on these lines: {1, 104}, {7, 149}, {11, 118}, {56, 214}, {57, 100}, {65, 1317}, {73, 3953}, {80, 388}, {119, 1210}, {153, 938}, {244, 4551}, {518, 3035}, {528, 553}, {651, 1421}, {758, 1319}, {942, 952}, {950, 2829}, {1071, 1537}, {1145, 3555}, {1320, 3340}, {1387, 2771}, {1388, 3878}, {1420, 3868}, {1457, 4694}, {1465, 3999}, {1466, 2932}, {1787, 3333}, {1862, 1876}, {2078, 3218}, {2099, 3892}, {2835, 3937}, {3036, 3812}, {3256, 3957}, {3738, 4458}

X(5083) = X(125)-of-intouch-triangle
X(5083) = midpoint of X(i) and X(j) for these {i,j}: {65,1317}, {1071, 1537}


X(5084) = INVERSE-IN-ORTHOCENTROIDAL-CIRCLE OF X(443)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b4 + c4 - a4 + 4a2bc + 4ab2c + 4abc2 - 2b2c2

As a point on the Euler line, X(5084) has Shinagawa coefficients (abc$a$, -S2).

X(5084) lies on these lines: {1, 2551}, {2, 3}, {8, 392}, {9, 1210}, {10, 497}, {12, 4423}, {65, 4679}, {72, 938}, {78, 3488}, {145, 3940}, {226, 1467}, {329, 942}, {387, 4383}, {388, 1125}, {908, 3487}, {936, 950}, {958, 3086}, {962, 3753}, {966, 4266}, {997, 3486}, {1001, 1329}, {1056, 3436}, {1376, 4294}, {1478, 3624}, {1479, 1698}, {2078, 3814}, {2899, 4385}, {3295, 3820}, {3670, 4419}, {3812, 4295}, {3983, 4863}


X(5085) = INVERSE-IN-1st-BROCARD-CIRCLE OF X(1350)

Trilinears        a + 4R cos A cot ω : b + 4R cos B cot ω : c + 4R cos C cot ω
Trilinears        sin A + 2 cos A cot ω : cos B + 2 cos B cot ω : cos C + 2 cos C cot ω
Trilinears        2 cos A + sin A tan ω : 2 cos B + sin B tan ω : 2 cos C + sin C tan ω
Trilinears        2 cos A cos ω + sin A sin ω : 2 cos B cos ω + sin B sin ω : 2 cos C cos ω + sin C sin ω Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(b4 + c4 - 3a4 + 2a2b2 + 2a2c2 + 6b2c2)
X(5085) = 2X(3) + X(6)

X(5085) and X(5050) trisect the segment X(3)X(6). Also, X(5085) is the exsimilicenter of the circle with center X(1151) and pass-through point X(371) and the circle with center X(1152) and pass-through point X(372). (Randy Hutson, January 29, 2015)

X(5085) lies on these lines: {2, 154}, {3, 6}, {4, 3589}, {20, 3618}, {23, 3066}, {25, 373}, {26, 2916}, {35, 613}, {36, 611}, {40, 1386}, {55, 1428}, {56, 2330}, {64, 1176}, {69, 3523}, {140, 1352}, {141, 631}, {206, 1498}, {376, 597}, {518, 3576}, {524, 3524}, {549, 599}, {1177, 2935}, {1385, 3242}, {1407, 3955}, {1511, 2930}, {1593, 1974}, {1656, 3818}, {1843, 3515}, {3167, 3819}, {4220, 4383}

X(5085) = reflection of X(5050) in X(182)
X(5085) = radical center of the Lucas(tan ω) circles
X(5085) = centroid of the triangle X(4)X(6)X(20)
X(5085) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,6,1350), (1687,1688,5039)


X(5086) = INVERSE-IN-FUHRMANN-CIRCLE OF X(3869)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b4 + c4 - a4 + a3b + a3c - a2bc - ab3 - ac3 - 2b2c2

X(5086) lies on these lines: {1, 2476}, {2, 1837}, {4, 8}, {5, 4511}, {10, 21}, {65, 2475}, {79, 4084}, {145, 3485}, {149, 3057}, {153, 2894}, {224, 4197}, {388, 3873}, {404, 1737}, {411, 515}, {497, 3890}, {758, 3585}, {950, 1621}, {952, 4861}, {997, 4193}, {1441, 2893}, {1478, 3868}, {1479, 3877}, {1698, 4855}, {1788, 4190}, {1826, 2287}, {3583, 3878}, {3621, 4863}, {3884, 4857}, {4325, 4973}


X(5087) = INVERSE-IN-NINE-POINT-CIRCLE OF X(2886)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2b + a2c + ab2 + ac2 - 4abc - 2b3 + 2b2c + 2bc2 - 2c3

X(5087) lies on these lines: {2, 1155}, {5, 10}, {11, 518}, {36, 405}, {65, 4193}, {120, 3259}, {145, 1837}, {149, 3689}, {226, 3660}, {381, 997}, {388, 1319}, {429, 1878}, {513, 3716}, {516, 1538}, {535, 1125}, {942, 3825}, {1001, 2078}, {1376, 1699}, {1647, 3999}, {1698, 3245}, {2077, 3149}, {3006, 4009}, {3011, 3246}, {3705, 3967}, {3752, 3944}, {3812, 4187}, {3829, 4847}, {4442, 4706}

X(5087) = complement of X(1155)


X(5088) = INVERSE-IN-INCIRCLE OF X(3664)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a4 - a2b2 - a2c2 + a2bc - b3c - bc3 + 2b2c2

X(5088) lies on these lines: {1, 7}, {3, 85}, {4, 348}, {28, 242}, {30, 1565}, {36, 1111}, {46, 3212}, {56, 3673}, {75, 956}, {104, 927}, {150, 515}, {169, 3177}, {187, 4403}, {239, 514}, {273, 1804}, {304, 1975}, {411, 1446}, {517, 664}, {675, 1308}, {910, 3732}, {934, 2723}, {942, 1434}, {1366, 3328}, {2369, 2736}, {2646, 4059}, {3665, 4911}


X(5089) = INVERSE-IN-STEVANOVIC-CIRCLE OF X(468)

Trilinears       b + c - a sec A : :
Trilinears       (b2 + c2 - ab - ac)/(b2 + c2 - a2) : :
Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(a2 + b2 - c2)(a2 - b2 + c2)(b2 + c2 - ab - ac)

X(5089) lies on these lines: {1, 607}, {2, 92}, {9, 608}, {19, 25}, {28, 1390}, {34, 1212}, {111, 2766}, {112, 2074}, {225, 1855}, {230, 231}, {427, 1826}, {428, 1839}, {614, 1108}, {653, 1447}, {672, 1876}, {976, 1973}, {1172, 2346}, {1334, 1902}, {1729, 1771}, {1783, 1870}, {1829, 2333}, {1861, 3693}, {2299, 3745}, {2322, 3757}, {2340, 2356}

X(5089) = isogonal conjugate of X(1814)
X(5089) = PU(4)-harmonic conjugate of X(650)
X(5089) = pole wrt polar circle of trilinear polar of X(2481) (the line X(2)X(650))
X(5089) = X(48)-isoconjugate (polar conjugate) of X(2481)


X(5090) = INVERSE-IN-FUHRMANN-CIRCLE OF X(1829)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (a2 + b2 - c2)(a2 - b2 + c2)(a3 + b3 + c3 + b2c + bc2)

X(5090) lies on these lines: {1, 427}, {4, 8}, {10, 25}, {19, 594}, {27, 3661}, {33, 429}, {34, 1883}, {40, 3575}, {65, 66}, {80, 1039}, {239, 469}, {388, 1876}, {428, 3679}, {468, 1698}, {515, 1593}, {607, 1826}, {944, 3088}, {952, 1595}, {1385, 3541}, {1843, 3416}, {1861, 1891}, {2204, 4426}, {3516, 4297}


X(5091) = INVERSE-IN-CIRCUMCIRCLE OF X(2223)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(a4 - a3b - a3c + a2bc + b3c + bc3 - 2b2c2)

X(5091) is the point of intersection, other than X(3), of the Brocard circle and the line X(1)X(3). (Randy Hutson, February 16, 2015)

X(5091) lies on the Brocard circle and these lines: {1, 3}, {2, 1083}, {6, 513}, {7, 59}, {81, 3110}, {516, 1428}, {651, 4014}, {692, 1086}, {760, 3218}, {840, 1002}, {1023, 4413}, {1026, 1376}, {1290, 2711}, {1397, 3474}, {1404, 3000}, {1572, 2087}, {1618, 2175}, {1633, 3271}, {2330, 3663}, {2720, 2724}, {3735, 4414}, {4440, 4579}

X(5091) = orthogonal projection of X(6) on line X(1)X(3)
X(5091) = X(100)-of-1st-Brocard-triangle
X(5091) = 1st-Brocard-isogonal conjugate of X(2787)
X(5091) = 1st-Brocard-isotomic conjugate of X(24290)


X(5092) = INVERSE-IN-1st-BROCARD-CIRCLE OF X(3098)

Trilinears       sin A + 3 cos A cot ω : :
Trilinears       3 cos A + sin A tan ω : :
Trilinears       2 sin(A - 2ω) - sin(A + 2ω) - sin A : :
Barycentrics   a2(b4 + c4 - 2a4 + a2b2 + a2c2 + 4b2c2) : :
X(5092) = 3X(3) + X(6) = 2X(3) + X(575)

X(5092) is the centroid of the quadrilateral {{X(3),X(4),X(6),X(20)}}. (Randy Hutson, Febrary 16, 2015)

In the plane of a triangle ABC, let
O = X(3) = circumcenter
K = X(6) = symmedian point
AbAc = line through K parallel to BC, and define BcBa and CaCb cyclically
U = circumcircle of A, Ab, Ac
V = circumcircle of B, C, Cb, Bc
{A1, A2} = U∩V, and define {B1, B2} and {C1, C2} cyclically.

The six points A1, A2, B2, B2, C2, C3 lie on a circle, here named the Dao-symmedial circle, with center X(5092). See Dao-symmedial circle, in which X(5092) is labeled as M. (Dao Thanh Oai, February 11, 2017)

Let u be the radius of the Dao-symmedial circle. Then

u2 = R2/2 + |OK|2/16
u2 = 3R2(3 - (S/Sω)2) /16
u2 = 3R2(3 - tan2ω) /16
(César Lozada, February 13, 2017)

X(5092) lies on these lines: {2, 1495}, {3, 6}, {23, 373}, {30, 3589}, {35, 1428}, {36, 2330}, {69, 3431}, {74, 827}, {140, 1503}, {141, 542}, {184, 3819}, {186, 1843}, {206, 4550}, {323, 3917}, {376, 3618}, {378, 1974}, {631, 1352}, {1386, 3579}, {2070, 2916}, {3523, 3620}, {3530, 3564}, {3934, 4048}

X(5092) = midpoint of X(3) and X(182)
X(5092) = reflection of X(575) in X(182)
X(5092) = {X(3),X(6)}-harmonic conjugate of X(3098)
X(5092) = intersection of Brocard axes of ABC and X(2)-Brocard triangle
X(5092) = {X(15),X(16)}-harmonic conjugate of X(39)
X(5092) = X(575)-Gibert-Moses centroid; see the preamble just before X(21153)


X(5093) = INVERSE-IN-2nd-LEMOINE-CIRCLE OF X(187)

Trilinears       2a - R cos A cot ω : :
Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(3a4 + 5b4 + 5c4 - 8a2b2 - 8a2c2 - 6b2c2)

X(5093) lies on these lines: {3, 6}, {4, 1353}, {5, 193}, {25, 1994}, {30, 5032}, {49, 1974}, {51, 3167}, {69, 1656}, {143, 3517}, {155, 3527}, {373, 394}, {381, 1992}, {399, 895}, {518, 4930}, {1352, 3629}, {1482, 3751}, {1503, 3830}, {1993, 5020}, {3066, 3292}, {3526, 3618}, {3620, 3628}

X(5093) = isogonal conjugate of isotomic conjugate of X(34803)
X(5093) = centroid of polar triangle of 2nd Lemoine circle
X(5093) = center of inverse-in-2nd-Lemoine-circle-of-circumcircle
X(5093) = {X(371),X(372)}-harmonic conjugate of X(5023)
X(5093) = pole of Lemoine axis wrt 2nd Lemoine circle


X(5094) = INVERSE-IN-ORTHOCENTROIDAL-CIRCLE OF X(468)

Trilinears       a2 sec A + 4bc : :
Trilinears       sec A + 3 csc A tan ω : :
Trilinears       3 csc A + sec A cot ω : :
Barycentrics   (2b2 + 2c2 - a2)(a2 + b2 - c2)(a2 - b2 + c2) : :

As a point on the Euler line, X(5094) has Shinagawa coefficients (3F, E + F).

Let LA be the polar of X(3) wrt the A-power circle, and define LB and LC cyclically. Let A′ = LB∩LC, B′ = LC∩LA, C′ = LA∩BC. The triangle A′B′C′ is homothetic to ABC, and the center of homothety is X(5094). (Randy Hutson, February 16, 2015)

X(5094) lies on these lines:
{2, 3}, {6, 67}, {12, 1398}, {53, 3055}, {126, 136}, {183, 340}, {184, 1853}, {232, 566}, {264, 2970}, {281, 2969}, {1235, 3266}, {1351, 3580}, {1506, 2207}, {1698, 1829}, {1843, 3763}, {1892, 3911}, {1990, 3815}, {2453, 3258}, {2548, 3172}

X(5094) = complement of X(7493)
X(5094) = circumcircle-inverse of X(37969)
X(5094) = intersection of tangents to orthocentroidal circle at PU(4)
X(5094) = pole of orthic axis wrt orthocentroidal circle
X(5094) = pole wrt polar circle of trilinear polar of X(598) (the line X(351)X(523))
X(5094) = X(48)-isoconjugate (polar conjugate) of X(598)
X(5094) = harmonic center of polar circle and {circumcircle, nine-point circle}-inverter
X(5094) = homothetic center of orthic triangle and X(2)-Ehrmann triangle; see X(25)
X(5094) = Euler line intercept, other than X(381), of circle {X(381),PU(4)}
X(5094) = homothetic center of the AOA and AAOA triangles


X(5095) = INVERSE-IN-POLAR-CIRCLE OF X(671)

Barycentrics    (b2 + c2 - 2a2)2(a2 + b2 - c2)(a2 - b2 + c2) : :

X(5095) lies on the orthic inconic and these lines: {4, 542}, {6, 67}, {25, 2930}, {110, 193}, {113, 3564}, {114, 2407}, {184, 1177}, {185, 1205}, {468, 524}, {511, 1986}, {868, 3163}, {1112, 1843}, {1829, 2836}, {1839, 2969}, {1858, 3270}, {1899, 2892}, {2452, 2794}

X(5095) = reflection of X(125) in X(6)
X(5095) = isogonal conjugate of X(15398)
X(5095) = complement of X(32244)
X(5095) = anticomplement of X(32257)
X(5095) = orthic-isogonal conjugate of X(468)
X(5095) = orthic-syngonal conjugate of X(6)
X(5095) = X(1156)-of-orthic-triangle if ABC is acute
X(5095) = crossdifference of every pair of points on the line tangent to the MacBeath circumconic at X(895)


X(5096) = INVERSE-IN-1st-BROCARD-CIRCLE OF X(4265)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(b4 + c4 - a4 - a2bc - ab2c - abc2 + 2 b2c2)

X(5096) lies on these lines: {3, 6}, {21, 3589}, {22, 4383}, {35, 1386}, {36, 518}, {44, 3220}, {56, 976}, {69, 4188}, {141, 404}, {474, 3763}, {656, 3733}, {674, 1428}, {1155, 3827}, {2915, 2916}, {3618, 4189}


X(5097) = INVERSE-IN-2nd-LEMOINE-CIRCLE OF X(2076)

Barycentrics   a2(2a4 + 3b4 + 3c4 - 5a2b2 - 5a2c2 - 4b2c2) : :

X(5097) lies on these lines: {3, 6}, {5, 3629}, {51, 110}, {323, 373}, {524, 547}, {542, 1353}, {1352, 1992}, {1503, 3853}, {3533, 3618}, {3543, 5032}, {3564, 3850}, {3628, 3631}, {3818, 3832}

X(5097) = midpoint of X(6) and X(576)
X(5097) = reflection of X(575) in X(6)
X(5097) = {X(371),X(372)}-harmonic conjugate of X(5206)


X(5098) = INVERSE-IN-PARRY-CIRCLE OF X(665)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(b - c)(b4 + c4 - ab3 - ac3 + 2a2b2 + ab2c - abc2)

X(5098) lies on these lines: {110, 919}, {111, 840}, {187, 237}, {244, 661}, {513, 3290}, {518, 650}, {523, 3726}, {672, 3709}, {1638, 4776}, {1914, 2605}, {3509, 3737}, {3700, 4358}, {3797, 4467}


X(5099) = INVERSE-IN-ORTHOCENTROIDAL-CIRCLE OF X(2453)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b2 - c2)2(b2 + c2 - 2a2)(b4 + c4 - a4 - b2c2)

Let ABC be a triangle with orthic triangle DEF, and let L be a line in the plane of ABC. Let A′ be the reflection of A in L, and define B′ and C′ cyclically. The circumcircles of DB′C′, EC′A′, FA′C′ concur.    Antreas Hatzipolakis, Anolpolis #816, September 2013.

If L is the Euler line of ABC, then the circumcircles concur in X(5099).      Seiichi Kirikami, September 25, 2013.

X(5099) is the center of hyperbola H = {{A,B,C,X(4),X(23)}}. H is the isogonal conjugate of line X(3)X(67) and the isotomic conjugate of line X(67)X(69). Also, H passes through X(316), X(842), X(1383). Moreover, H intersects the circumcircle at X(842) and is tangent to line X(4)X(67) at X(4). (Randy Hutson, January 29, 2015)

As a line L varies through the set of all lines that pass through X(2492), the locus of the trilinear pole of L is a circumconic, and its center is X(5099). (Randy Hutson, January 29, 2014)

Let A′B′C′ be the orthic triangle. Let La be the Fermat axis of triangle AB′C′, and define Lb and Lc cyclically. Let A″ = Lb∩Lc, and define B″ and C″ cyclically. The lines A′A″, B′B″, C′C″ concur in X(5099), which is X(3)-of-A″B″C″. (Randy Hutson, July 31 2018)

X(5099) lies on the nine-point circle, the 2nd Steiner circle, the cevian circle of X(23), and these lines: {2, 691}, {4, 842}, {23, 316}, {30, 114}, {113, 511}, {115, 523}, {125, 512}, {126, 625}, {132, 403}, {187, 468}, {381, 2453}, {690, 2682}, {868, 1649}

X(5099) = midpoint of X(i) and X(j) for these {i,j}: {4,842}, {23,316}
X(5099) = complement of X(691)
X(5099) = crosssum of circumcircle intercepts of line X(3)X(67)
X(5099) = perspector of the circumconic centered at X(2492)
X(5099) = X(2)-Ceva conjugate of X(2492)
X(5099) = inverse-in-polar-circle of X(935)
X(5099) = inverse-in-{circumcircle, nine-point circle}-inverter of X(2770)
X(5099) = reflection of X(115) in Euler line
X(5099) = Λ(X(115), X(125)) with respect to the orthic triangle
X(5099) = orthopole of line X(3)X(67)
X(5099) = Kirikami-six-circles image of X(23)


X(5100) = INVERSE-IN-FUHRMANN-CIRCLE OF X(4737)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b4 + c4 - a4 + 3a2bc - 2ab2c - 2abc2 + b3c + bc3

X(5100) lies on these lines: {1, 3836}, {4, 8}, {10, 4514}, {149, 3701}, {319, 1269}, {341, 1479}, {3006, 3871}, {3496, 4119}, {3555, 4645}, {3625, 4792}, {3632, 4680}, {3679, 4894}, {3992, 4857}


X(5101) = INVERSE-IN-FUHRMANN-CIRCLE OF X(1828)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (a2 + b2 - c2)(a2 - b2 + c2)(a2 + b2 + c2 - ab - ac)

X(5101) lies on these lines: {1, 1883}, {4, 8}, {10, 4186}, {11, 33}, {19, 428}, {25, 1376}, {429, 1717}, {1709, 1726}, {1753, 3575}, {1830, 1836}, {1837, 1853}, {1864, 1899}, {1891, 4214}


X(5102) = INVERSE-IN-2nd-LEMOINE-CIRCLE OF X(2030)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(3a4 + 7b4 + 7c4 - 10a2b2 - 10a2c2 - 6b2c2)

X(5102) lies on these lines: {3, 6}, {4, 3629}, {154, 3060}, {193, 3832}, {323, 3066}, {524, 3545}, {547, 599}, {1352, 3850}, {1503, 1992}, {3090, 3631}, {3533, 3589}, {3564, 3845}

X(5102) = centroid of X(4)X(6)X(193)


X(5103) = INVERSE-IN-NINE-POINT-CIRCLE OF X(3934)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b6 + c6 - a4b2 - a4c2 + a2b4 + a2c4 - 2a2b2c2

X(5103) lies on these lines: {2, 2076}, {4, 4048}, {5, 141}, {6, 5025}, {83, 316}, {115, 732}, {325, 698}, {597, 1692}, {1503, 2456}, {1570, 3629}


X(5104) = INVERSE-IN-CIRCUMCIRCLE OF X(574)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = 3 cos(A + ω) tan ω - cos ω sin A + 3 sinω cos A
Trilinears       g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = 3 cos(A + ω) tan ω - sin(A - ω) + 2 cos A sin ω
Trilinears       h(A,B,C) : h(B,C,A) : h(C,A,B), where h(A,B,C) = 6 cos A - (3 tan ω + cot ω) sin A
Barycentrics   k(a,b,c) : k(b,c,a) : k(c,a,b), where k(a,b,c) = a2(2b4 + 2c4 - a4 - 2a2b2 - 2a2c2 + b2c2)

X(5104) lies on these lines: {3, 6}, {22, 2056}, {23, 352}, {99, 524}, {111, 694}, {141, 316}, {599, 3734}, {625, 3763}, {1915, 2979}, {1971, 2781}

X(5104) = reflection of X(6) in X(187)
X(5104) = crossdifference of every pair of points on line X(523)X(597)
X(5104) = {X(23),X(352)}-harmonic conjugate of X(2502)
X(5104) = reflection of X(6) in the Lemoine axis


X(5105) = INVERSE-IN-1st-BROCARD-CIRCLE OF X(4264)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(b3 + c3 + a2b + a2c + 2ab2 + 2ac2 + abc + 2b2c + 2bc2)

X(5105) lies on these lines: {1, 2321}, {3, 6}, {9, 1193}, {37, 995}, {42, 1449}, {43, 3686}, {966, 3216}, {1201, 3247}, {2276, 2300}, {3214, 4034}


X(5106) = INVERSE-IN-PARRY-CIRCLE OF X(3231)

Barycentrics    a2(a4b2 + a4c2 - 2a2b4 - 2a2c4 + b4c2 + b2c4)

X(5106) lies on these lines: {2, 99}, {6, 694}, {32, 110}, {39, 373}, {187, 237}, {1384, 1613}, {1976, 5033}, {2021, 3291}, {3051, 5008}

X(5106) = inverse-in-Parry-isodynamic-circle of X(669); see X(2)


X(5107) = INVERSE-IN-MOSES-CIRCLE OF X(574)

Barycentrics   a2(2a4 + 5b4 + 5c4 - 5a2b2 - 5a2c2 - 2b2c2) : :

X(5107) lies on these lines: {3, 6}, {69, 625}, {111, 323}, {115, 524}, {193, 316}, {352, 3291}, {843, 3565}, {1992, 2549}, {2502, 3292}

X(5107) = reflection of X(187) in X(6)
X(5107) = inverse-in-Ehrmann-circle of X(574)
X(5107) = {X(33517), X(33518)}-harmonic conjugate of X(13449)


X(5108) = INVERSE-IN-CIRCUMCIRCLE OF X(669)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a6 - 2a4b2 - 2a4c2 + 5a2b2c2 - b4c2 - b2c4

Let U denote the Brocard circle. X(5108) is the intersection, other than X(6), of line X(2)X(6) and U. Also, X(5108) is the intersection, other than X(3), of U and the circle with segment X(2)X(3) as diameter, and X(5108) is the intersection, other than X(2), of line X(2)X(6) and the circle with segment X(2)X(3) as diameter. Also, X(5108) is the intersection, other than X(1316), of U and the circle {{X(2), X(110), X(1316)}}, which is the Parry circle of the 1st Brocard triangle. Let V denote the circle {{X(2), X(110), X(2770), X(5463), X(5464)}}. Then X(5108) = inverse-in-V of X(3). (Randy Hutson, January 29, 2015)

X(5108) lies on the Brocard circle and these lines: {2, 6}, {3, 669}, {99, 2502}, {110, 5026}, {126, 542}, {805, 2770}, {1078, 2142}, {1316, 3734}, {3124, 4563}

X(5108) = anticomplement of X(32525)
X(5108) = X(111)-of-1st-Brocard-triangle
X(5108) = X(111)-of-X(2)-Brocard-triangle
X(5108) = 1st-Brocard-isogonal conjugate of X(543)
X(5108) = intersection, other than X(2), of the Hutson-Parry circles of the inner and outer Vecten triangles
X(5108) = orthogonal projection of X(3) on line X(2)X(6)
X(5108) = intersection of lines X(2)X(6) of antipedal triangles of PU(1)


X(5109) = INVERSE-IN-1st-BROCARD-CIRCLE OF X(4290)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(b3 + c3 + a2b + a2c + 2ab2 + 2ac2 + 2b2c + 2bc2)

X(5109) lies on these lines: {1, 3943}, {3, 6}, {37, 1201}, {42, 678}, {44, 1193}, {45, 995}, {1100, 2295}, {1404, 2594}, {3293, 4969}


X(5110) = INVERSE-IN-1st-BROCARD-CIRCLE OF X(2305)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(b3 + c3 - a3 + 2ab2 + 2ac2 + abc + 2b2c + 2bc2)

X(5110) lies on these lines: {3, 6}, {21, 992}, {35, 2300}, {48, 2276}, {55, 1964}, {141, 332}, {171, 1100}, {2268, 2277}


X(5111) = INVERSE-IN-2nd-LEMOINE-CIRCLE OF X(182)

Barycentrics    a2(a4 + 2b4 + 2c4 - 2a2b2 - 2a2c2 - b2c2) : :

(5111) lies on these lines: {3, 6}, {316, 3629}, {323, 3124}, {385, 2023}, {694, 2987}, {1915, 3060}, {1993, 2056}

X(5111) = radical trace of 2nd Lemoine circle and Ehrmann circle


X(5112) = INVERSE-IN-POLAR-CIRCLE OF X(458)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b4 + c4 - a2b2 - a2c2)(b4 + c4 - 3a4 - 2b2c2)

As a point on the Euler line, X(5112) has Shinagawa coefficients (3(E + F)F + S2, -(E + F)2 - 3S2).

X(5112) lies on these lines: {2, 3}, {373, 4045}, {523, 3569}, {754, 3292}, {1495, 2794}, {1555, 2777}, {2782, 3580}

X(5112) = nine-point-circle-inverse of X(37988)


X(5113) = INVERSE-IN-PARRY-CIRCLE OF X(3005)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(b2 - c2)(b4 + c4 - a4 - a2b2 - a2c2 + b2c2)

X(5113) lies on these lines: {110, 827}, {111, 755}, {187, 237}, {620, 690}, {826, 4142}, {888, 2492}, {2485, 3221}

X(5113) = crossdifference of PU(147)
X(5113) = isogonal conjugate of isotomic conjugate of X(9479)
X(5113) = X(2)-Ceva conjugate of X(39079)
X(5113) = perspector of hyperbola {{A,B,C,X(6),X(1031),X(2076),X(34214),X(35511)}}


X(5114) = INVERSE-IN-1st-BROCARD-CIRCLE OF X(4274)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(a3 - a2b - a2c - 2ab2 - 2ac2 + 2b2c + 2bc2)

X(5114) lies on these lines: {3, 6}, {42, 1397}, {44, 993}, {213, 2267}, {2175, 2309}, {2268, 2300}, {2276, 2323}


X(5115) = INVERSE-IN-1st-BROCARD-CIRCLE OF X(4272)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(a3 + 2a2b + 2a2c + ab2 + ac2 + 4abc + b2c + bc2)

X(5115) lies on these lines: {2, 757}, {3, 6}, {31, 1100}, {37, 1468}, {172, 3204}, {560, 2308}, {1107, 2214}


X(5116) = INVERSE-IN-1st-BROCARD-CIRCLE OF X(2076)

Trilinears       2 cos A + sin A csc 2ω : 2 cos B + sin B csc 2ω : 2 cos C + sin C csc 2ω
Trilinears       sin A + 2 cos A sin 2ω : sin B + 2 cos B sin 2ω : sin C + 2 cos C sin 2ω
Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(b4 + c4 - a4 + a2b2 + a2c2 + 3b2c2)

X(5116) lies on these lines: {2, 4048}, {3, 6}, {384, 3589}, {732, 1078}, {2056, 3819}, {2211, 3520}, {3552, 3618}

X(5116) = radical center of the Lucas(csc 2ω) circles
X(5116) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (3,6,2076), (1340,1341,32)


X(5117) = INVERSE-IN-ORTHOCENTROIDAL-CIRCLE OF X(419)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (a2 + b2 - c2)(a2 - b2 + c2)(b2 + c2 - bc)(b2 + c2 + bc)

As a point on the Euler line, X(5117) has Shinagawa coefficients (2(E + F)F, (E + F)2 - S2).

X(5117) lies on these lines: {2, 3}, {141, 3186}, {275, 3406}, {2052, 3399}, {2887, 3061}, {3096, 3819}


X(5118) = INVERSE-IN-BROCARD-CIRCLE OF X(3111)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(a2 - b2)(a2 - c2)(a2b2 +a2c2 + 2b2c2)

X(5118) lies on these lines: {3, 6}, {99, 110}, {512, 2421}, {691, 805}, {1316, 3734}


X(5119) = INVERSE-IN-BEVAN-CIRCLE OF X(3245)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b3 + c3 - a3 - a2b - a2c + ab2 + ac2 + 4abc - b2c - bc2)

X(5119) = (R - r)X(1) + 2r*X(3)
X(5119) = r(r + 4R)*X(9) - R(2r - R)X(80)
X(5119) = 2rR*X(8) + (R2 - 2rR - r2)*X(90)

Let A′B′C′ be the orthic triangle of ABC. Let LA be the antiorthic axis of AB′C′, and define LB and LC cyclically. Let A″ = LB∩LC, and define B″ and C″ cyclically. Then A″B″C″ is inversely similar to ABC, with similitude center X(9), and X(5119) = A″B″C″-to-ABC similarity image of X(1). (Randy Hutson, December 4, 2014)

For a construction of X(5119) see Peter Moses, Euclid 962

X(5119) lies on these lines: {1, 3}, {8, 90}, {9, 80}, {10, 1479}, {63, 519}, {71, 1723}, {72, 2900}, {78, 3878}, {100, 997}, {145, 4305}, {169, 1334}, {190, 4737}, {191, 2136}, {376, 1000}, {388, 1770}, {392, 1376}, {404, 3890}, {495, 1836}, {497, 1737}, {498, 946}, {515, 1709}, {516, 1478}, {549, 1387}, {551, 3306}, {674, 3751}, {748, 4695}, {758, 3870}, {846, 855}, {920, 3486}, {944, 1158}, {950, 1728}, {956, 3880}, {962, 3085}, {993, 2802}, {1001, 3753}, {1056, 3474}, {1058, 1788}, {1150, 3902}, {1253, 1718}, {1317, 3655}, {1449, 4268}, {1532, 1699}, {1571, 2275}, {1572, 2276}, {1698, 1706}, {1702, 3301}, {1703, 3299}, {1708, 3488}, {1717, 1773}, {1722, 3987}, {1742, 2807}, {1745, 2943}, {1763, 3465}, {1766, 2269}, {1824, 4186}, {2082, 3730}, {2270, 3731}, {2975, 3885}, {3058, 3654}, {3158, 3899}, {3208, 3496}, {3218, 3241}, {3243, 3894}, {3656, 4995}, {3689, 3940}, {3729, 4692}, {3811, 3869}, {3820, 4679}, {3915, 4642}, {3929, 4677}, {4067, 4917}, {4189, 4861}, {4384, 4714}

X(5119) = reflection of X(1) in X(55)
X(5119) = {X(1),X(40)}-harmonic conjugate of X(46)
X(5119) = X(22)-of-reflection-triangle-of X(1)
X(5119) = {X(1),X(3)}-harmonic conjugate of X(37618)


X(5120) = INVERSE-IN-1st-BROCARD-CIRCLE OF X(4254)

Trilinears    a - s cos A : :
Barycentrics    a2(b3 + c3 - a3 - a2b - a2c + ab2 + ac2 - 4abc + b2c + bc2) : :

X(5120) lies on these lines: {2, 1014}, {3, 6}, {9, 56}, {36, 198}, {37, 999}, {44, 2178}, {46, 2262}, {48, 218}, {55, 1449}, {219, 604}, {268, 1741}, {391, 404}, {474, 966}, {517, 3554}, {602, 1622}, {859, 1778}, {956, 2345}, {1055, 3217}, {1100, 3295}, {1108, 1766}, {1172, 1593}, {1260, 2352}, {1376, 3686}, {1385, 3553}, {1402, 4047}, {1420, 2324}, {1436, 2270}, {1444, 3618}, {1445, 1804}, {1475, 2268}, {1486, 4497}, {1604, 2183}, {1723, 2182}, {1728, 1903}, {1732, 2261}, {2256, 3730}, {2257, 3428}, {2260, 2267}, {2343, 3451}, {3247, 3304}

X(5120) = {X(3),X(6)}-harmonic conjugate of X(4254)


X(5121) = INVERSE-IN-SPIEKER-RADICAL-CIRCLE OF X(43)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2b + a2c + 2ab2 + 2ac2 - 6abc + b2c + bc2 - b3 - c3

X(5121) lies on these lines: {1, 2}, {11, 1738}, {88, 5057}, {105, 2743}, {109, 238}, {244, 908}, {516, 1054}, {518, 3756}, {982, 3452}, {988, 5084}, {1086, 5087}, {1279, 3035}, {1362, 3660}, {2254, 3667}, {3752, 3816}

X(5121) = complement of X(5205)
X(5121) = inverse-in-{circumcircle, nine-point circle}-inverter of X(1)
X(5121) = radical trace of incircle and excircles-radical circle


X(5122) = INVERSE-IN-CIRCUMCIRCLE OF X(3295)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b3 + c3 - 4a3 - a2b - a2c + 4ab2 + 4ac2 - 2abc - b2c - bc2)

X(5122) lies on these lines: {1, 3}, {7, 3524}, {28, 1878}, {30, 3911}, {72, 4188}, {140, 4292}, {186, 1876}, {226, 549}, {404, 3219}, {474, 3305}, {513, 4401}, {518, 4973}, {535, 3828}, {548, 950}, {550, 1210}, {582, 603}, {910, 5030}, {938, 3528}, {1439, 3431}, {3476, 3654}, {3530, 3982}, {3534, 3586}, {3752, 4257}, {3897, 4004}, {3928, 3940}, {4742, 4781}


X(5123) = INVERSE-IN-SPIEKER-CIRCLE OF X(960)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b + c - a)(2b3 + 2c3 - a2b - a2c + ab2 + ac2 - 2b2c - 2bc2)

X(5123) lies on these lines: {2, 1319}, {5, 10}, {8, 1392}, {9, 484}, {11, 3880}, {12, 3812}, {36, 474}, {377, 1155}, {495, 3742}, {513, 3823}, {515, 3035}, {518, 1737}, {519, 1387}, {529, 3911}, {535, 3828}, {1012, 1376}, {1878, 1883}, {2476, 3698}, {3057, 4193}, {3586, 4421}, {3634, 4999}, {3753, 3838}, {3992, 4858}, {4711, 4847}

X(5123) = complement of X(1319)


X(5124) = INVERSE-IN-1st-BROCARD-CIRCLE OF X(1030)

Trilinears    a - 2 (a + b + c) cos A : :
Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(b3 + c3 - a3 - a2b - a2c + ab2 + ac2 - abc + b2c + bc2)

X(5124) lies on these lines: {2, 1029}, {3, 6}, {35, 1100}, {36, 37}, {45, 1696}, {55, 4497}, {56, 2171}, {141, 1444}, {165, 3554}, {198, 2265}, {404, 1213}, {594, 2975}, {672, 2174}, {966, 4188}, {992, 4225}, {1006, 1901}, {1078, 3770}, {1172, 3520}, {1449, 5010}, {2238, 4210}, {3252, 3446}, {3815, 4220}

X(5124) = circle-{{X(371),X(372),PU(1),PU(39)}}-inverse of X(37509)
X(5124) = {X(371),X(372)}-harmonic conjugate of X(37509)


X(5125) = INVERSE-IN-ORTHOCENTROIDAL-CIRCLE OF X(29)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (a2 + b2 - c2)(a2 - b2 + c2)(b3 + c3 - a2b - a2c - abc)

As a point on the Euler line, X(5125) has Shinagawa coefficients ($a$F, -$aSA$ - abc).

X(5125) lies on these lines: {2, 3}, {6, 2907}, {8, 278}, {10, 92}, {19, 4429}, {34, 78}, {46, 1748}, {75, 225}, {158, 1737}, {162, 1724}, {208, 1445}, {243, 1837}, {608, 4645}, {653, 1118}, {960, 1888}, {1068, 1897}, {1096, 1722}, {1210, 1785}, {1848, 1869}, {1859, 3812}, {1871, 3753}

X(5125) = complement of X(7538)
X(5125) = anticomplement of X(7515)
X(5125) = pole wrt polar circle of trilinear polar of X(1751) (the line X(523)X(663))
X(5125) = X(48)-isoconjugate (polar conjugate) of X(1751)


X(5126) = INVERSE-IN-CIRCUMCIRCLE OF X(999)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(4a3 + b3 + c3 - a2b - a2c - 4ab2 - 4ac2 + 6abc - b2c - bc2)

X(5126) lies on these lines: {1, 3}, {5, 4311}, {44, 101}, {104, 971}, {106, 1279}, {214, 518}, {495, 4315}, {496, 4297}, {513, 1960}, {516, 1387}, {535, 1125}, {631, 4308}, {934, 953}, {952, 3911}, {1055, 2246}, {1483, 4848}, {1538, 2829}, {1878, 4222}, {3474, 3656}, {3634, 4999}, {3935, 4881}

X(5126) = midpoint of X(38013) and X(38014)
X(5126) = X(23)-of-incircle-circles-triangle


X(5127) = INVERSE-IN-CIRCUMCIRCLE OF X(501)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(a + b)(a + c)(a3 + b3 + c3 - a2b - a2c - ab2 - ac2 - abc + b2c + bc2)

X(5127) lies on these lines: {1, 21}, {3, 501}, {5, 580}, {10, 1098}, {35, 60}, {36, 110}, {44, 2341}, {71, 2150}, {162, 1785}, {163, 672}, {229, 3336}, {249, 1101}, {409, 3754}, {484, 1325}, {517, 759}, {519, 643}, {656, 3737}, {1323, 1414}, {1437, 4278}, {2194, 4276}, {3286, 3446}

X(5127) = isogonal conjugate of X(5620)
X(5127) = Conway-circle-inverse of X(35637)


X(5128) = INVERSE-IN-BEVAN-CIRCLE OF X(1319)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(3b3 + 3c3 - 3a3 - 3a2b - 3a2c + 3ab2 + 3ac2 + 2abc - 3b2c - 3bc2)

X(5128) lies on these lines: {1, 3}, {8, 3928}, {10, 3474}, {12, 4312}, {20, 4848}, {44, 2270}, {63, 1706}, {80, 4333}, {227, 1419}, {516, 1788}, {728, 3509}, {962, 3911}, {1044, 4551}, {1698, 1836}, {3000, 3214}, {3085, 4654}, {3158, 3868}, {3218, 3621}, {3243, 3871}, {3812, 4512}, {4430, 4917}


X(5129) = INVERSE-IN-ORTHOCENTROIDAL-CIRCLE OF X(4208)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b4 + c4 - 3a4 + 2a2b2 + 2a2c2 + 8a2bc + 8ab2c + 8abc2 - 2b2c2

As a point on the Euler line, X(5129) has Shinagawa coefficients (2abc$a$ + S2, -2S2).

X(5129) lies on these lines: {2, 3}, {8, 3305}, {9, 938}, {10, 390}, {144, 942}, {145, 392}, {388, 4423}, {519, 4866}, {908, 3616}, {936, 4313}, {1001, 2551}, {1125, 3600}, {1330, 4869}, {1698, 4294}, {1788, 3683}, {2899, 3757}, {3189, 3740}, {3241, 3984}, {3485, 4679}, {3624, 4293}

X(5129) = anticomplement of X(17582)


X(5130) = INVERSE-IN-FUHRMANN-CIRCLE OF X(1824)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (a2 + b2 - c2)(a2 - b2 + c2)(a3 + b3 + c3 + 2abc + b2c + bc2)

X(5130) lies on these lines: {1, 429}, {4, 8}, {6, 1826}, {10, 4185}, {12, 34}, {25, 958}, {29, 2203}, {33, 1904}, {65, 1899}, {388, 1426}, {407, 1211}, {431, 2886}, {469, 1999}, {996, 4186}, {1861, 4214}, {1869, 1889}, {2333, 3691}, {2355, 4198}, {2975, 4231}


X(5131) = INVERSE-IN-CIRCUMCIRCLE OF X(3746)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b3 + c3 - 3a3 - a2b - a2c + 3ab2 + 3ac2 - abc - b2c - bc2)

X(5131) lies on these lines: {1, 3}, {10, 4325}, {21, 3833}, {79, 140}, {100, 4973}, {191, 404}, {516, 3582}, {1054, 1325}, {1210, 4324}, {1698, 4652}, {1737, 4316}, {1749, 1768}, {1770, 3817}, {3530, 3649}, {3583, 3911}, {3624, 4338}, {3740, 3916}, {3814, 4197}, {3901, 4855}


X(5132) = INVERSE-IN-1st-BROCARD-CIRCLE OF X(3286)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(a3b + a3c - ab3 - ac3 - 2ab2c - 2abc2 - b3c - bc3)

X(5132) lies on these lines: {2, 11}, {3, 6}, {35, 238}, {36, 4649}, {81, 4210}, {86, 404}, {228, 3666}, {940, 4191}, {984, 4557}, {1009, 3589}, {1011, 4383}, {1193, 1918}, {1386, 2223}, {1818, 2269}, {2209, 2274}, {2703, 2711}, {3923, 4436}, {4245, 4653}


X(5133) = INVERSE-IN-NINE-POINT-CIRCLE OF X(23)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b6 + c6 - a4b2 - a4c2 - 2a2b2c2 - b4c2 - b2c4

As a point on the Euler line, X(5133) has Shinagawa coefficients (E + 2F, 2E + 2F).

X(5133) lies on these lines: {2, 3}, {12, 3920}, {51, 3580}, {114, 137}, {115, 1194}, {141, 2979}, {184, 3818}, {230, 1627}, {311, 325}, {316, 1799}, {343, 3060}, {1176, 3589}, {1352, 1993}, {1503, 5012}, {1989, 3108}, {1994, 3410}, {4074, 5031}

X(5133) = inverse-in-orthocentroidal-circle of X(22)
X(5133) = homothetic center of polar triangle of nine-point circle and orthoanticevian triangle of X(2)


X(5134) = INVERSE-IN-POLAR-CIRCLE OF X(1839)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b4 + c4 - a4 - a3b - a3c + a2b2 + a2c2 + a2bc - 2b2c2

X(5134) lies on these lines: {4, 9}, {11, 5030}, {30, 101}, {190, 316}, {220, 382}, {514, 4024}, {672, 3583}, {995, 2549}, {1055, 4316}, {1334, 3585}, {1475, 4857}, {1479, 4253}, {1657, 3207}, {2372, 2702}, {2475, 3294}, {4262, 4302}


X(5135) = INVERSE-IN-BROCARD-CIRCLE OF X(4259)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(a4 - a2b2 - a2c2 - a2bc - ab2c - abc2 - 2b2c2)

X(5135) lies on these lines: {1, 692}, {2, 2194}, {3, 6}, {35, 674}, {60, 404}, {65, 82}, {81, 5012}, {184, 940}, {377, 3618}, {442, 3589}, {518, 2330}, {673, 1492}, {1001, 2175}, {1974, 4185}, {3612, 3751}


X(5136) = INVERSE-IN-ORTHOCENTROIDAL-CIRCLE OF X(860)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (a2 + b2 - c2)(a2 - b2 + c2)(a3 - ab2 - ac2 - b2c - bc2)

As a point on the Euler line, X(5136) has Shinagawa coefficients ($a$F, $aSA$).

X(5136) lies on these lines: {2, 3}, {6, 281}, {10, 212}, {33, 997}, {47, 1724}, {92, 1870}, {225, 1125}, {264, 811}, {318, 4511}, {392, 1824}, {1068, 3616}, {1395, 1877}, {1825, 3878}, {1826, 2267}


X(5137) = INVERSE-IN-CIRCUMCIRCLE OF X(2352)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(a5 - a3b2 - a3c2 + a3bc + b4c + bc4 - b3c2 - b2c3)

X(5137) lies on these lines: {1, 3}, {11, 1428}, {184, 3772}, {513, 1430}, {692, 3011}, {917, 2720}, {1284, 2361}, {1397, 1836}, {1404, 2635}, {1408, 4292}, {1548, 2829}, {3025, 3320}, {3782, 3955}

X(5137) = crossdifference of every pair of points on the line X(72)X(650)


X(5138) = INVERSE-IN-1st-BROCARD-CIRCLE OF X(4260)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(a4 - a2b2 - a2c2 - 2a2bc - 2ab2c - 2abc2 - 2b2c2)

X(5138) lies on these lines: {1, 2175}, {3, 6}, {28, 1974}, {35, 3779}, {57, 985}, {69, 261}, {81, 184}, {206, 942}, {443, 3618}, {518, 993}, {611, 2810}, {940, 2194}, {2330, 3601}


X(5139) = INVERSE-IN-POLAR-CIRCLE OF X(99)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b2 - c2)2(b2 + c2 - 3a2)(a2 + b2 - c2)(a2 - b2 + c2)

X(5139) is the center of the hyperbola {A,B,C,X(4),X(25)}, which meets the circumcircle at X(3573) (and A,B,C) and tangents to the line X(4)X(69) at X(4) and tangent to the line X(6)(25) at X(25). Moreover, X(5139) is the perspector of the circumconic centered at X(2489). (Randy Hutson, November 22, 2014)

X(5139) lies on the nine-point circle and these lines: {2, 2374}, {4, 99}, {25, 1560}, {113, 1596}, {115, 2971}, {120, 429}, {122, 868}, {123, 3140}, {126, 427}, {127, 3143}, {131, 381}, {132, 235}

X(5139) = midpoint of X(4) and X(3563)
X(5139) = complement of X(3565)
X(5139) = X(2)-Ceva conjugate of X(2489)
X(5139) = crosssum of circumcircle intercepts of line X(3)X(69)
X(5139) = orthopole of line X(3)X(69)
X(5139) = Kirikami-six-circles image of X(25)


X(5140) = INVERSE-IN-POLAR-CIRCLE OF X(69)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(a2 + b2 - c2)(a2 - b2 + c2)(a2b2 + a2c2 + b4 - 4b2c2 + c4)

X(5140) lies on these lines: {4, 69}, {25, 187}, {115, 2386}, {133, 2679}, {232, 2971}, {427, 625}, {428, 3849}, {460, 512}, {1598, 2080}, {1692, 2207}, {1974, 2030}, {2021, 3199}


X(5141) = INVERSE-IN-ORTHOCENTROIDAL-CIRCLE OF X(4189)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 2b4 + 2c4 - 2a2b2 - 2a2c2 - a2bc - ab2c - abc2 - 4b2c2

As a point on the Euler line, X(5141) has Shinagawa coefficients (abc$a$ + 4S2, 4S2).

X(5141) lies on these lines: {2, 3}, {8, 4867}, {10, 3899}, {11, 3622}, {12, 145}, {149, 3085}, {495, 3623}, {1125, 2320}, {2886, 3614}, {3245, 3814}, {3616, 3822}, {3624, 4881}

X(5141) = complement of X(17548)


X(5142) = INVERSE-IN-ORTHOCENTROIDAL-CIRCLE OF X(28)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (a2 + b2 - c2)(a2 - b2 + c2)(ab2 + ac2 + abc + b3 + b2c + bc2 + c3)

As a point on the Euler line, X(5142) has Shinagawa coefficients ($a$F, $a$(E + F) + abc).

X(5142) lies on these lines: {2, 3}, {6, 2906}, {10, 1848}, {12, 278}, {19, 1698}, {34, 975}, {264, 1969}, {281, 1329}, {1125, 1891}, {1172, 1714}, {1228, 1235}, {1826, 1838}

X(5142) = nine-point-circle-inverse of X(37989)


X(5143) = INVERSE-IN-CIRCUMCIRCLE OF X(171)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(a3b + a3c - a2bc - ab3 - ac3 + ab2c + abc2 - b2c2)

X(5143) lies on these lines: {1, 3}, {31, 5012}, {43, 3185}, {98, 2222}, {100, 740}, {109, 2699}, {172, 1908}, {513, 3510}, {741, 901}, {1756, 4551}, {4225, 4642}, {4276, 4868}


X(5144) = INVERSE-IN-CIRCUMCIRCLE OF X(1001)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(2a4 - 2ab3 - 2ac3 + ab2c + abc2 - b3c - bc3 + 2b2c2)

X(5144) lies on these lines: {1, 1055}, {3, 142}, {36, 105}, {56, 1323}, {100, 2725}, {187, 1279}, {238, 5030}, {514, 659}, {910, 2809}, {3361, 5018}, {4251, 4649}, {4471, 4667}

X(5144) = X(187)-of-2nd-circumperp triangle


X(5145) = INVERSE-IN-1st-BROCARD-CIRCLE OF X(4279)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(a2b2 + a2c2 + ab3 + ac3 + ab2c + abc2 + b3c + bc3 + b2c2)

X(5145) lies on these lines: {1, 87}, {3, 6}, {10, 1740}, {35, 2209}, {42, 3097}, {76, 86}, {81, 4203}, {238, 993}, {869, 1757}, {984, 1964}, {1911, 3864}, {3051, 4476}


X(5146) = INVERSE-IN-POLAR-CIRCLE OF X(72)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (a2 + b2 - c2)(a2 - b2 + c2)(a3 + b3 + c3 - abc - b2c - bc2)

X(5146) lies on these lines: {4, 8}, {19, 484}, {28, 36}, {133, 3259}, {225, 2078}, {242, 860}, {278, 1319}, {1168, 1877}, {1869, 3245}, {1870, 1884}, {2077, 4219}


X(5147) = INVERSE-IN-PARRY-CIRCLE OF X(3747)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(b + c)(a4 - a2b2 - a2c2 - ab3 - ac3 + ab2c + abc2 + b2c2)

X(5147) lies on these lines: {2, 4154}, {31, 110}, {42, 2054}, {100, 4094}, {111, 2177}, {187, 237}, {662, 3571}, {1402, 2107}, {1911, 4117}, {1962, 3722}, {1976, 2187}


X(5148) = INVERSE-IN-INCIRCLE OF X(3056)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(b + c - a)(b4 + c4 + a2b2 + a2c2 - 4a2bc + 2b3c + 2bc3 - 4b2c2)

X(5148) lies on these lines: {1, 256}, {11, 625}, {55, 187}, {316, 497}, {512, 4162}, {538, 3023}, {1500, 2021}, {1914, 2031}, {2030, 2330}, {2080, 3295}, {3058, 3849}

X(5148) = X(187)-of-Mandart-incircle triangle
X(5148) = homothetic center of the intangents triangle and the reflection of the extangents triangle in X(187)


X(5149) = INVERSE-IN-1st-BROCARD-CIRCLE OF X(4048)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a8 - a4b2c2 - a2b4c2 - a2b2c4 + b6c2 + b2c6

Let A′B′C′ be the 1st Brocard triangle. The radical center of the circumcircles of AB′C′, BC′A′, CA′B′ is X(5149). Let A″ be the A′B′C′-isogonal-conjugate of A, and define B″ and C″ cyclically; the lines A′A″, B′B″, C′C″ concur in X(5149). (Randy Hutson, November 22, 2014)

X(5149) lies on these lines: {2, 4159}, {3, 114}, {39, 83}, {76, 4027}, {98, 3934}, {182, 2782}, {538, 1692}, {736, 1691}, {754, 2076}, {1003, 2482}, {1569, 1975}

X(5149) = X(1691)-of-1st-Brocard triangle
X(5149) = 1st-Brocard-triangle-isogonal-conjugate of X(76)
X(5149) = center of the perspeconic of these triangles: 1st Brocard and 6th anti-Brocard


X(5150) = INVERSE-IN-1st-BROCARD-CIRCLE OF X(3923)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(a5 - a3b2 - a3c2 + a3bc - 2ab2c2 + b3c2 + b2c3)

X(5150) lies on these lines: {1, 4579}, {9, 48}, {31, 43}, {182, 2783}, {184, 4011}, {386, 987}, {528, 597}, {692, 4432}, {726, 1428}, {2787, 4164}, {3840, 3955}

X(5150) = X(36)-of-1st-Brocard trangle
X(5150) = inverse of X(32115) in the 1st Lemoine circle


X(5151) = INVERSE-IN-POLAR-CIRCLE OF X(1320)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b + c - 2a)(a2 + b2 - c2)(a2 - b2 + c2)(ab + ac + b2 + c2 - 4bc)

X(5151) lies on these lines: {4, 145}, {11, 1883}, {25, 2932}, {100, 2899}, {900, 1846}, {1145, 4723}, {1317, 1877}, {1811, 1997}, {1828, 2802}, {1878, 3880}

X(5151) = polar conjugate of isogonal conjugate of X(20972)
X(5151) = polar conjugate of isotomic conjugate of X(16594)


X(5152) = INVERSE-IN-CIRCUMCIRCLE OF X(76)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a8 - a6b2 - a6c2 + a4b4 + a4c4 - a2b6 - a2c6 + b4c4

X(5152) lies on these lines: {2, 4159}, {3, 76}, {32, 1916}, {39, 4027}, {83, 2023}, {115, 384}, {148, 3552}, {316, 2794}, {671, 1003}, {2854, 4590}

X(5152) = complement of X(32528)


X(5153) = INVERSE-IN-1st-BROCARD-CIRCLE OF X(4275)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(b3 + c3 + a2b + a2c + 2ab2 + 2ac2 + 2abc + 2b2c + 2bc2)

X(5153) lies on these lines: {1, 594}, {3, 6}, {37, 992}, {42, 1100}, {604, 2594}, {1009, 1386}, {1201, 3723}, {1213, 3216}, {2260, 3588}, {2309, 4749}


X(5154) = INVERSE-IN-ORTHOCENTROIDAL-CIRCLE OF X(4275)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 2b4 + 2c4 - 2a2b2 - 2a2c2 + a2bc + ab2c + abc2 - 4b2c2

As a point on the Euler line, X(5154) has Shinagawa coefficients (abc$a$ - 4S2, -4S2).

X(5154) lies on these lines: {2, 3}, {8, 3814}, {11, 145}, {12, 3622}, {496, 3623}, {519, 1392}, {1329, 3617}, {3614, 3816}, {3616, 3825}

X(5154) = complement of X(37307)
X(5154) = anticomplement of X(17566)


X(5155) = INVERSE-IN-FUHRMANN-CIRCLE OF X(1900)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (a2 + b2 - c2)(a2 - b2 + c2)(a3 + b3 + c3 + 4abc + b2c + bc2)

X(5155) lies on these lines: {1, 1904}, {4, 8}, {10, 4214}, {25, 993}, {34, 429}, {608, 1826}, {1875, 1892}, {1891, 4186}, {3897, 4194}


X(5156) = INVERSE-IN-1st-BROCARD-CIRCLE OF X(3736)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(a3b + a3c + a2b2 + a2c2 + 2a2bc + ab2c + abc2 + b2c2)

X(5156) lies on these lines: {1, 1918}, {2, 31}, {3, 6}, {36, 2274}, {593, 5012}, {595, 1001}, {1010, 1724}, {1468, 2209}, {1740, 2228}


X(5157) = INVERSE-IN-1st-BROCARD-CIRCLE OF X(3313)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(a6 - a2b4 - a2c4 - a2b2c2 - 2b4c2 - 2b2c4)

X(5157) lies on these lines: {2, 66}, {3, 6}, {69, 5012}, {110, 3619}, {141, 184}, {159, 3796}, {427, 1974}, {1370, 3618}, {3575, 3867}


X(5158) = INVERSE-IN-1st-BROCARD-CIRCLE OF X(3284)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(b2 + c2 - a2)(2b4 + 2c4 - a4 - a2b2 - a2c2 - 4b2c2)

Let SaSbSc be the Ehrmann side-triangle. Let A′ be the barycentric product Sb*Sc, and define B′ and C′ cyclically. The lines AA′, BB′, CC′ concur in X(5158). (Randy Hutson, June 27, 2018)

X(5158) lies on these lines: {2, 648}, {3, 6}, {5, 1990}, {53, 546}, {232, 1995}, {233, 1249}, {393, 3091}, {441, 597}, {3087, 3146}

X(5158) = isogonal conjugate of isotomic conjugate of X(37638)
X(5158) = isotomic conjugate of polar conjugate of X(34417)
X(5158) = X(92)-isoconjugate of X(3431)

X(5159) = INVERSE-IN-NINE-POINT-CIRCLE OF X(1368)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b2 + c2 - a2)(3b4 + 3c4 - 2a4 + a2b2 + a2c2 - 6b2c2)

As a point on the Euler line, X(5159) has Shinagawa coefficients (E - 5F, -E - F).

X(5159) = (inverse-in-de-Longchamps-circle of X(22)) = (radical trace of nine-point circle and de-Longchamps circle) = (radical trace of polar circle and de-Longchamps circle) = (reflection of X(23) in de Longchamps line)    (Randy Hutson, August-September, 2013)

X(5159) lies on these lines: {2, 3}, {125, 3292}, {216, 3055}, {230, 3284}, {339, 3266}, {523, 4885}, {577, 3054}, {1007, 2452}

X(5159) = midpoint of X(468) and X(858)
X(5159) = complement of X(468)
X(5159) = inverse-in-{circumcircle, nine-point circle}-inverter of X(20)
X(5159) = inverse-in-complement-of-polar-circle of X(2)


X(5160) = INVERSE-IN-INCIRCLE OF X(3058)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b + c - a)(2b4 + 2c4 - 2a4 + 2a2bc - b3c - bc3 - 2b2c2)

X(5160) lies on these lines: {1, 30}, {11, 858}, {12, 4354}, {23, 55}, {33, 468}, {403, 3614}, {511, 3024}, {523, 4724}

X(5160) = X(23)-of-Mandart-incircle triangle
X(5160) = homothetic center of intangents triangle and reflection of extangents triangle in X(23)


X(5161) = INVERSE-IN-CIRCUMCIRCLE OF X(31)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(a4 + a3b + a3c + a2bc - ab2c - abc2 - b3c - bc3)

X(5161) lies on these lines: {3, 31}, {81, 849}, {560, 4414}, {649, 834}, {896, 2210}, {902, 1818}, {2206, 3666}, {3218, 5009}

X(5161) = isogonal conjugate of X(37842)
X(5161) = crossdifference of every pair of points on line X(10)X(6590)


X(5162) = INVERSE-IN-CIRCUMCIRCLE OF X(3094)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(b6 + c6 - a6 - a2b4 - a2c4 - a2b2c2 + b4c2 + b2c4)

X(5162) s the point of intersection of the Lemoine axes of the circumcevian triangles of the 1st and 2nd Brocard points. (Randy Hutson, November 22, 2014)

X(5162) lies on these lines: {3, 6}, {99, 736}, {315, 3552}, {316, 384}, {737, 805}, {754, 2482}, {1003, 3849}, {2387, 3455}

X(5162) = reflection of X(32) in X(187)


X(5163) = INVERSE-IN-PARRY-CIRCLE OF X(3230)

Barycentrics   a2(a3b + a3c - 2a2bc - 2ab3 - 2ac3 + ab2c + abc2 + b3c + bc3) : :

X(5163) lies on these lines: {6, 3121}, {37, 100}, {110, 739}, {187, 237}, {574, 4414}, {1977, 2300}, {2092, 3030}

X(5163) = isogonal conjugate of X(35155)
X(5163) = crossdifference of every pair of points on line X(2)X(2787)
X(5163) = inverse-in-Parry-isodynamic-circle of X(667); see X(2)


X(5164) = INVERSE-IN-CIRCUMCIRCLE OF X(1030)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(b + c)(b4 + c4 - a3b - a3c - a2b2 - a2c2 + ab3 + ac3)

X(5164) lies on these lines: {3, 6}, {115, 517}, {502, 594}, {512, 661}, {730, 3029}, {1500, 2653}, {3124, 3230}

X(5164) = crossdfference of every pair of points on the line X(81)X(523)


X(5165) = INVERSE-IN-1st-BROCARD-CIRCLE OF X(4273)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(b3 + c3 - 2a2b - 2a2c - ab2 - ac2 - 3abc - b2c - bc2)

X(5165) lies on these lines: {2, 44}, {3, 6}, {37, 3868}, {45, 3927}, {603, 1405}, {1201, 2260}, {2308, 3764}


X(5166) = INVERSE-IN-2nd-LEMOINE-CIRCLE OF X(1992)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(a6 + b6 + c6 - 3a4b2 - 3a4c2 - 3a2b4 - 3a2c4 + 9a2b2c2)

X(5166) lies on these lines: {2, 6}, {111, 2393}, {112, 843}, {729, 2696}, {895, 3291}, {1499, 3049}


X(5167) = INVERSE-IN-POLAR-CIRCLE OF X(264)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(a4b4 + a4c4 - a2b6 - a2c6 + b6c2 + b2c6 - 2b4c4)

X(5167) lies on these lines: {4, 69}, {113, 2679}, {115, 2387}, {187, 237}, {206, 1691}, {217, 1692}

X(5167) = anticomplement of X(35060)


X(5168) = INVERSE-IN-PARRY-CIRCLE OF X(902)

Barycentrics   a2(b3 + c3 - 2a3 + a2b + a2c + ab2 + ac2 - 2b2c - 2bc2) : :

X(5168) lies on these lines: {6, 2054}, {42, 101}, {58, 106}, {187, 237}, {1015, 2308}, {1017, 3124}

X(5168) = isogonal conjugate of X(35153)
X(5168) = crossdifference of every pair of points on line X(2)X(2786)
X(5168) = inverse-in-Parry-isodynamic-circle of X(649); see X(2)


X(5169) = INVERSE-IN-ORTHOCENTROIDAL-CIRCLE OF X(23)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b6 + c6 - a4b2 - a4c2 - a2b2c2 - b4c2 - b2c4

As a point on the Euler line, X(5169) has Shinagawa coefficients (E + 4F, 4E + 4F).

X(5169) lies on these lines: {2, 3}, {6, 3448}, {94, 262}, {110, 3818}, {323, 1352}, {1993, 3410}

X(5169) = complement of X(7492)
X(5169) = anticomplement of X(7495)
X(5169) = harmonic center of nine-point circle and {circumcircle, nine-point circle}-inverter


X(5170) = INVERSE-IN-CIRCUMCIRCLE OF X(3285)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(a + b)(a + c)(2a3 + b3 + c3 - 2a2b - 2a2c + 2abc - b2c - bc2)

X(5170) lies on these lines: {3, 6}, {31, 512}, {163, 1015}, {249, 593}, {691, 2384}, {953, 2715}


X(5171) = INVERSE-IN-CIRCUMCIRCLE OF X(2456)

Barycentrics    a2(a6 - 4a4b2 - 4a4c2 + 3a2b4 + 3a2c4 + 2b4c2 + 2b2c4) : :
Barycentrics    (sin A)[cos(A - arccot(p))] : : , where p = sin(2ω)/(2 + cos(2ω))
X(5171) = X(3) + ((cot ω)/p)X(6) = 3 X[3576] - X[6210] = X[6] + 2 X[39] = X[1691] - 4 X[2024] = 4 X[39] - X[3094] = 2 X[6] + X[3094] = 2 X[182] + X[3095] = X[76] - 4 X[3589] = X[194] + 5 X[3618] = X[1916] + 2 X[5026] = 5 X[6] - 2 X[5052] = 5 X[39] + X[5052] = 5 X[3094] + 4 X[5052] = 4 X[2021] - X[5104] = 4 X[2025] - X[5111] = 5 X[3763] - 8 X[6683] = 2 X[597] + X[7757] = 2 X[141] - 5 X[7786] = 4 X[5092] - X[9821] = X[69] - 4 X[10007] = 2 X[5480] + X[11257] = X[1352] - 4 X[11272] = 4 X[2023] - X[11646] = 2 X[1386] + X[12782]

The function p = sin(2ω)/(2 + cos(2ω)) is the Tucker parameter for X(5171); see the preamble to X(13323.)

X(5171) = center of the circumcircle-inverse of the 1st Lemoine circle. (Randy Hutson, November 22, 2014)

Let H be the hyperbola of these five points: X(182), PU(1), PU(2). One vertex of H is X(182); the other is X(5171). (Randy Hutson, November 22, 2014)

X(5171) lies on these lines: {2,732}, {3,6}, {69,10007}, {76,3589}, {83,4048}, {141,7786}, {147,2023}, {194,3618}, {262,1503}, {373,1194}, {597,698}, {694,9155}, {1180,3981}, {1352,11272}, {1386,12782}, {1428,12837}, {1613,5650}, {1915,6800}, {1916,5026}, {2056,6090}, {2330,12836}, {2782,6034}, {3051,7998}, {3108,5012}, {3299,12840}, {3301,12841}, {3329,10334}, {3763,6683}, {5031,7777}, {5103,7790}, {5309,7697}, {5480,9607}, {5965,11261}, {6309,7819}, {7760,8177}, {7829,8149}, {7875,9865}, {10347,12216}

X(5171) = inverse-in-Brocard-circle of X(12212)
X(5171) = inverse-in-second-Brocard-circle of X(7772)
X(5171) = circumperp conjugate of X(35383)
X(5171) = {X(i),X(j)-harmonic conjugate of X(k) for these (i,j,k): (3,6,12212), (6,39,3094), (6,2076,5039), (6,5013,5017), (6,5024,5104), (6,5116,32), (39,2021,5024), (39,7772,3095), (182,7772,6), (371,372,12054), (574,5039,2076), (1670,1671,7772), (1689,1690,3098), (3106,3107,3095), (12055,12212,3)


X(5172) = INVERSE-IN-CIRCUMCIRCLE OF X(65)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(a + b - c)(a - b + c)(a3 + b3 + c3 - a2b - a2c - ab2 - ac2 - abc + b2c + bc2)

X(5172) lies on these lines: {1, 3}, {12, 21}, {58, 2594}, {59, 3286}, {73, 1399}, {74, 2720}, {108, 186}, {109, 1464}, {181, 4276}, {187, 1415}, {198, 1609}, {388, 4189}, {404, 2886}, {405, 3814}, {474, 3841}, {513, 1946}, {674, 1428}, {759, 859}, {902, 1457}, {906, 3002}, {1030, 1400}, {1055, 2272}, {1317, 4996}, {1333, 2197}, {1408, 4278}, {1437, 2477}, {1458, 3446}, {1469, 4265}, {1725, 1807}, {1727, 2771}, {2161, 2173}, {2932, 3911}, {3434, 4188}

X(5172) = {X(1),X(3)}-harmonic conjugate of X(37564)


X(5173) = INVERSE-IN-CIRCUMCIRCLE OF X(2078)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(a + b - c)(a - b + c)(a2b + a2c - 2ab2 - 2ac2 - 2abc + b3 - b2c - bc2 + c3)

X(5173) lies on these lines: {1, 3}, {7, 3434}, {42, 1465}, {72, 3485}, {81, 4318}, {105, 2982}, {222, 2263}, {226, 518}, {278, 1002}, {388, 3419}, {528, 553}, {672, 2171}, {910, 1630}, {971, 1836}, {1001, 1708}, {1071, 4295}, {1202, 2170}, {1360, 3024}, {1362, 1365}, {1445, 4666}, {1456, 2003}, {1468, 4332}, {1699, 1864}, {1838, 1887}, {2900, 3243}, {3600, 3889}, {3671, 3874}, {3742, 3911}, {3812, 4848}, {3869, 4323}, {3881, 4298}, {3892, 4315}


X(5174) = INVERSE-IN-FUHRMANN-CIRCLE OF X(92)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (a2 + b2 - c2)(a2 - b2 + c2)(a3 + b3 + c3 - a2b - a2c - ab2 - ac2 - abc)

X(5174) lies on these lines: {4, 8}, {10, 29}, {19, 3692}, {27, 306}, {28, 100}, {34, 3870}, {40, 1748}, {80, 1896}, {145, 278}, {162, 2907}, {225, 1897}, {240, 4642}, {270, 447}, {281, 3617}, {286, 319}, {317, 322}, {412, 515}, {427, 3757}, {518, 1888}, {519, 1838}, {528, 1852}, {653, 4848}, {958, 1013}, {1214, 3152}, {1441, 2475}, {1826, 2322}, {1844, 3754}, {1848, 4514}, {2349, 2816}, {2975, 4219}


X(5175) = INVERSE-IN-FUHRMANN-CIRCLE OF X(329)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 3b4 + 3c4 - 3a4 + 2a3b + 2a3c - 2ab3 - 2ac3 - 2ab2c - 2ac2 - 6b2c2

X(5175) lies on these lines: {2, 950}, {4, 8}, {7, 2475}, {9, 3617}, {10, 452}, {12, 3189}, {20, 4652}, {63, 3146}, {78, 3091}, {100, 405}, {145, 226}, {377, 938}, {442, 496}, {546, 3940}, {908, 3832}, {958, 1005}, {1490, 3872}, {1750, 4853}, {1837, 2550}, {2000, 4296}, {2094, 4292}, {2551, 3983}, {2886, 3486}, {3241, 3487}, {3476, 3813}, {3529, 3916}, {3627, 3927}, {4084, 4295}


X(5176) = INVERSE-IN-POLAR-CIRCLE OF X(1828)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b4 + c4 - a4 + a3b + a3c - 3a2bc - ab3 - ac3 + 2ab2c + 2abc2 - 2b2c2

X(5176) lies on these lines: {1, 3814}, {2, 1319}, {4, 8}, {5, 4861}, {10, 36}, {30, 1145}, {63, 484}, {80, 519}, {100, 515}, {145, 1837}, {149, 3880}, {498, 3897}, {513, 4397}, {529, 3036}, {758, 1109}, {901, 2370}, {952, 4511}, {1155, 3617}, {1479, 3885}, {2478, 3890}, {2802, 3583}, {2995, 3596}, {3035, 4881}, {3245, 3626}, {3586, 3895}

X(5176) = anticomplement of X(1319)
X(5176) = excircle-radical-circle-inverse of X(573)


X(5177) = INVERSE-IN-ORTHOCENTROIDAL-CIRCLE OF X(452)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 3b4 + 3c4 - a4 - 2a2b2 - 2a2c2 - 4a2bc - 4ab2c - 4abc2 - 6b2c2

As a point on the Euler line, X(5177) has Shinagawa coefficients (abc$a$ + S2, 2S2).

X(5177) lies on these lines: {2, 3}, {8, 226}, {10, 329}, {12, 480}, {72, 3617}, {145, 3419}, {200, 3947}, {225, 347}, {253, 318}, {388, 2886}, {950, 3616}, {954, 3871}, {966, 1901}, {1125, 3586}, {1655, 2996}, {1698, 1770}, {1864, 3812}, {2551, 3925}, {2893, 3945}, {3011, 4339}, {3085, 3822}, {3485, 3838}, {3488, 3622}, {3614, 4413}

X(5177) = complement of X(17576)
X(5177) = anticomplement of X(6857)


X(5178) = INVERSE-IN-FUHRMANN-CIRCLE OF X(3681)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b4 + c4 - a4 + a3b + a3c + a2bc - ab3 - ac3 - 2ab2c - 2abc2 - 2b2c2

X(5178) lies on these lines: {1, 3841}, {2, 3189}, {4, 8}, {5, 4420}, {10, 1621}, {12, 3935}, {80, 3626}, {145, 3475}, {149, 960}, {377, 3873}, {390, 1837}, {518, 2475}, {1043, 3006}, {1479, 3876}, {1483, 4861}, {1699, 3984}, {1834, 3920}, {2476, 3811}, {2975, 4297}, {3583, 3678}, {3647, 4330}, {4361, 4950}

X(5178) = anticomplement of X(37080)


X(5179) = INVERSE-IN-POLAR-CIRCLE OF X(19)

Barycentrics    a^3*b - a^2*b^2 + a*b^3 - b^4 + a^3*c - a*b^2*c - a^2*c^2 - a*b*c^2 + 2*b^2*c^2 + a*c^3 - c^4 : :
X(5179) = X[5011] - 4 X[5199], X[5134] + 4 X[5199], X[5134] + 2 X[8074]

Let U be the radical circle of the excircles. Then X(5179) is the U-inverse of X(573). (Randy Hutson, November 22, 2014)

X(5179) lies on these lines: {1, 8776}, {2, 5088}, {4, 9}, {5, 1212}, {6, 5722}, {8, 21073}, {12, 16601}, {20, 27541}, {21, 27068}, {30, 910}, {37, 495}, {41, 10572}, {44, 12019}, {72, 22018}, {76, 7112}, {80, 294}, {85, 17671}, {92, 21062}, {101, 515}, {116, 9436}, {119, 1566}, {142, 27471}, {150, 10025}, {218, 1837}, {220, 355}, {225, 25087}, {346, 21074}, {379, 17729}, {514, 661}, {517, 1146}, {519, 4919}, {527, 10708}, {579, 24005}, {644, 5176}, {672, 1737}, {942, 21049}, {946, 24045}, {948, 1323}, {950, 4251}, {952, 6603}, {997, 24247}, {1018, 6735}, {1055, 21578}, {1104, 5305}, {1210, 4253}, {1329, 25066}, {1334, 10039}, {1370, 15487}, {1446, 17758}, {1479, 2082}, {1738, 16611}, {1856, 7070}, {2170, 30384}, {2182, 7359}, {2325, 21066}, {3061, 21616}, {3177, 17181}, {3207, 18481}, {3208, 10915}, {3294, 24987}, {3436, 17742}, {3560, 32561}, {3583, 5540}, {3661, 5195}, {3686, 21065}, {3691, 21029}, {3693, 17757}, {3731, 5726}, {3732, 4872}, {3752, 15048}, {3767, 16968}, {3814, 24036}, {3911, 5030}, {3991, 12607}, {4193, 26690}, {4223, 5144}, {4262, 4304}, {4431, 27492}, {4875, 24390}, {5046, 26793}, {5254, 16583}, {5283, 19754}, {5285, 36010}, {5530, 25092}, {5532, 20683}, {5546, 7424}, {5690, 21872}, {5720, 18328}, {5886, 34522}, {6506, 6882}, {6656, 25994}, {6684, 24047}, {6734, 16552}, {6913, 15288}, {7187, 33837}, {7377, 30854}, {7687, 18327}, {9581, 16572}, {10712, 31160}, {10916, 21384}, {11681, 25082}, {12047, 17451}, {13161, 16600}, {13407, 21808}, {14873, 16589}, {15612, 20623}, {16549, 24982}, {17170, 30694}, {17353, 24279}, {17753, 26531}, {17866, 25002}, {18750, 21621}, {20235, 20236}, {20367, 26001}, {21070, 21078}, {23649, 28096}, {26563, 33839}, {27250, 27254}, {28133, 35270}, {28827, 36698}, {29594, 31142}, {29962, 29967}, {30031, 30063}, {32706, 35182}, {35068, 35122}

X(5179) = midpoint of X(i) and X(j) for these {i,j}: {150, 10025}, {1146, 17747}, {3732, 4872}, {5011, 5134}
X(5179) = reflection of X(i) in X(j) for these {i,j}: {5011, 8074}, {8074, 5199}, {9436, 116}
X(5179) = reflection of X(5011) in the Gergonne line
X(5179) = isotomic conjugate of X(37214)
X(5179) = complement of X(5088)
X(5179) = Spieker-radical-circle-inverse of X(573)
X(5179) = polar-circle-inverse of X(19)
X(5179) = circumcircle-of anticomplementary-triangle-inverse of X(11677)
X(5179) = X(i)-Ceva conjugate of X(j) for these (i,j): {1981, 2811}, {8777, 1}
X(5179) = crosssum of X(6) and X(26884)
X(5179) = crossdifference of every pair of points on line {31, 1459}
X(5179) = barycentric product X(i)*X(j) for these {i,j}: {10, 14956}, {8777, 20623}
X(5179) = barycentric quotient X(14956)/X(86)
X(5179) = intersection of Gergonne lines of 1st and 2nd Ehrmann circumscribing triangles
X(5179) = intersection of Gergonne lines of anticevian triangles of PU(4)
X(5179) = X(i)-complementary conjugate of X(j) for these (i,j): {213, 35075}, {296, 34822}, {1937, 2886}, {1945, 142}, {1949, 17073}, {1952, 17046}, {2249, 3739}, {35145, 21240}
X(5179) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {4, 6554, 169}, {85, 17671, 34847}, {672, 21044, 1737}, {5046, 26793, 33950}, {5254, 16583, 23537}, {8804, 20262, 573}


X(5180) = INVERSE-IN-POLAR-CIRCLE OF X(1900)

Barycentrics    f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b4 + c4 - a4 - 2a3b - 2a3c + 3a2bc + 2ab3 + 2ac3 - ab2c - abc2 - 2b2c2

X(5180) lies on these lines: {2, 484}, {4, 8}, {7, 1319}, {36, 3616}, {79, 3884}, {149, 758}, {320, 4742}, {513, 4801}, {516, 4511}, {529, 1320}, {535, 3241}, {1537, 4996}, {1727, 3218}, {1836, 3877}, {2475, 3878}, {2975, 3648}, {3245, 3814}, {4084, 4857}, {4301, 4861}


X(5181) = INVERSE-IN-CIRCUMCIRCLE OF X(2936)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b2 + c2 - 2a2)(b6 + c6 - a4b2 - a4c2 + 2a2b2c2 - b4c2 - b2c4)

X(5181) lies on the bicevian conic of X(2) and X(110) and on these lines: {2, 895}, {3, 67}, {20, 1632}, {69, 110}, {113, 511}, {125, 126}, {468, 524}, {684, 1649}, {858, 2393}, {960, 2836}, {1176, 3047}, {1205, 3917}, {1350, 2777}, {1352, 4550}, {1511, 3564}, {2781, 2883}, {3448, 3620}

X(5181) = reflection of X(6) in X(5972)
X(5181) = complement of X(895)
X(5181) = antipode of X(6) in the bicevian conic of X(2) and X(110)


X(5182) = INVERSE-IN-1st-LEMOINE-CIRCLE OF X(110)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 3a6 - 2a4b2 - 2a4c2 + a2b4 + a2c4 + 3a2b2c2 + b4c2 + b2c4

X(5182) lies on these lines: {2, 98}, {6, 99}, {30, 2456}, {32, 1992}, {69, 620}, {83, 597}, {115, 3618}, {249, 524}, {384, 575}, {385, 2030}, {538, 1692}, {543, 5034}, {576, 3552}, {599, 1078}, {754, 2458}, {5032, 5039}

X(5182) = X(2)-of-6th-anti-Brocard-triangle
X(5182) = inverse-in-Thomson-Gibert-Moses-hyperbola of X(35279)
X(5182) = {X(2),X(110)}-harmonic conjugate of X(35279)


X(5183) = INVERSE-IN-BEVAN-CIRCLE OF X(1697)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(3b3 + 3c3 - 2a3 - 3a2b - 3a2c + 2ab2 + 2ac2 + 4abc - 3b2c - 3bc2)

X(5183) lies on these lines: {1, 3}, {9, 4731}, {19, 1878}, {44, 4695}, {405, 3922}, {513, 4041}, {535, 4669}, {758, 3689}, {1478, 3654}, {1706, 3983}, {2308, 4642}, {2348, 5011}, {3218, 3880}, {3650, 4691}, {3683, 3753}, {3814, 3828}

X(5183) = inverse-in-circumcircle of X(5217)


X(5184) = INVERSE-IN-BEVAN-CIRCLE OF X(3751)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b4 + c4 - a4 - 2a3b - 2a3c + ab3 + ac3 + ab2c + abc2 - b2c2)

X(5184) lies on these lines: {1, 187}, {10, 316}, {40, 511}, {238, 5011}, {291, 484}, {512, 659}, {517, 2080}, {625, 1698}, {761, 2702}, {986, 1326}, {1386, 1691}, {1572, 2021}, {2076, 3242}, {3679, 3849}, {4649, 4868}


X(5185) = INVERSE-IN-POLAR-CIRCLE OF X(150)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(a2 + b2 - c2)(a2 - b2 + c2)(a2b2 + a2c2 - 2ab3 - 2ac3 + b4 + c4)

X(5185) lies on these lines: {4, 150}, {25, 101}, {33, 181}, {34, 1362}, {103, 1593}, {116, 427}, {118, 235}, {428, 544}, {1112, 2774}, {1827, 1845}, {1829, 2809}, {1830, 2821}, {1843, 2810}, {1862, 3887}


X(5186) = INVERSE-IN-POLAR-CIRCLE OF X(148)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (a2 + b2 - c2)(a2 - b2 + c2)(a4b2 + a4c2 - 4a2b2c2 + b4c2 + b2c2)

X(5186) lies on these lines: {4, 147}, {25, 99}, {33, 3023}, {34, 3027}, {98, 1593}, {114, 235}, {115, 427}, {428, 543}, {468, 620}, {690, 1112}, {1569, 3199}, {1862, 2787}, {1885, 2794}, {1974, 5026}


X(5187) = INVERSE-IN-ORTHOCENTROIDAL-CIRCLE OF X(4190)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 3b4 + 3c4 - a4 - 2a2b2 - 2a2c2 + 2a2bc + 2ab2c + 2abc2 - 6b2c2

As a point on the Euler line, X(5187) has Shinagawa coefficients (abc$a$ - 2S2, -4S2).

X(5187) lies on these lines: {2, 3}, {11, 3436}, {145, 1837}, {960, 3617}, {1001, 3614}, {1320, 3621}, {1329, 3434}, {1478, 3825}, {1479, 3814}, {1728, 3218}, {2899, 3006}, {3476, 3622}, {3947, 4666}


X(5188) = INVERSE-IN-MOSES-CIRCLE OF X(2025)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(b6 + c6 - 3a4b2 - 3a4c2 + 2a2b4 + 2a2c4 + 3b4c2 + 3b4c2)

Let T1 be the antipedal triangle of the 1st Brocard point, and let T2 be the antipedal triangles of 2nd Brocard point (these points comprising the bicentric pair PU(1)). Then X(5188) is the point in which the Brocard axis meets the line of the circumcenters of T1 and T2. Also, X(5188) is the radical trace of the circumcircles of T1 and T2, as well as the insimilicenter of those circles and the midpoint of their centers. (Randy Hutson, November 22, 2014)

X(5188) lies on these lines: {3, 6}, {4, 3934}, {20, 76}, {194, 3522}, {237, 3917}, {262, 631}, {376, 538}, {550, 2782}, {626, 1513}, {730, 4297}, {827, 1297}, {1092, 3202}, {3117, 3787}

X(5188) = reflection of X(39) in X(3)
X(5188) = inverse-in-2nd-Brocard-crcle of X1350)
X(5188) = (39)-of-circumcevian triangle of X(511)
X(5188) = Brocard-circle-inverse of X(37479)
X(5188) = {X(3),X(6)}-harmonic conjugate of X(37479)
X(5188) = {X(371),X(372)}-harmonic-conjugate of X(5039).


X(5189) = INVERSE-IN-POLAR-CIRCLE OF X(428)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b6 + c6 - a6 - a4b2 - a4c2 + a2b4 + a2c4 + a2b2c2 - b4c2 - b2c4

As a point on the Euler line, X(5189) has Shinagawa coefficients (3E, -8E - 8F).

X(5189) lies on these lines: {2, 3}, {98, 1291}, {149, 4442}, {316, 3266}, {323, 1503}, {511, 3448}, {523, 2528}, {842, 930}, {933, 2697}, {2393, 2892}, {2453, 3314}, {2979, 3410}

X(5189) = isogonal conjugate of X(34437)
X(5189) = anticomplement of X(23)
X(5189) = inverse-in-anticomplementary-circle of X(2)
X(5189) = inverse-in-deLongchamps-circle of X(22)
X(5189) = inverse-in-{circumcircle, nine-point circle}-inverter of X(140)
X(5189) = reflection of X(23) in the deLongchamps line
X(5189) = isotomic conjugate of isogonal conjugate of X(19596)
X(5189) = polar conjugate of isogonal conjugate of X(22121)
X(5189) = antigonal conjugate of X(38946)
X(5189) = nine-point-circle-inverse of X(37990)


X(5190) = INVERSE-IN-POLAR-CIRCLE OF X(101)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b + c - a)(b - c)2(a2 + b2 - c2)(a2 - b2 + c2)(b3 + c3 - a2b - a2c - abc)

X(5190) is the center of the hyperbola {A,B,C,X(4),X(27)}, which meets the circumcircle at X(917) and is tangent to the line X(4)X(9) at X(4), and tangent to the line X(27)X(86) at X(27). (Randy Hutson, November 22, 2014)

X(5190) lies on the nine-point circle and these lines: {2, 1305}, {4, 101}, {19, 117}, {113, 1839}, {116, 2973}, {119, 1826}, {120, 1855}, {121, 281}, {122, 3138}, {125, 1146}, {132, 1842}, {1560, 1860}

X(5190) = midpoint of X(4) and X(917)
X(5190) = complement of X(1305)
X(5190) = X(2)-Ceva conjugate of X(7649)
X(5190) = crosssum of circumcircle intercepts of line X(3)X(48)
X(5190) = orthopole of line X(3)X(48)
X(5190) = Kirikami-six-circles image of X(92)


X(5191) = INVERSE-IN-PARRY-CIRCLE OF X(1495)

Barycentrics   a2(b6 + c6 - 2a6 + 2a4b2 + 2a4c2 - a2b4 - a2c4 - b4c2 - b2c4) : :
Barycentrics    a^2 (2 a^6 - 2 a^4 (b^2 + c^2) + a^2 (b^4 + c^4) - (b^2 - c^2)^2 (b^2 + c^2)) : :

X(5191) lies on these lines: {3, 74}, {6, 157}, {23, 2080}, {25, 111}, {32, 3124}, {51, 5008}, {98, 1316}, {184, 574}, {187, 237}, {868, 2794}, {2782, 4226}, {3098, 3506}

X(5191) = isogonal conjugate of X(5641)
X(5191) = pole of the line X(23)X(110) with respect to the Parry circle
X(5191) = inverse-in-Parry-isodynamic-circle of X(647); see X(2)


X(5192) = INVERSE-IN-ORTHOCENTROIDAL-CIRCLE OF X(4202)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a4 + a3b + a3c + a2b2 + a2c2 + ab3 + ac3 + b3c + bc3 + 2b2c2

As a point on the Euler line, X(5192) has Shinagawa coefficients (2(E + F)2 + 2$bc$(E + F) - abc$a$, 2S2).

X(5192) lies on these lines: {1, 996}, {2, 3}, {8, 1191}, {10, 748}, {31, 3831}, {614, 4968}, {1089, 3891}, {1150, 1724}, {1220, 2899}, {1468, 3840}, {1479, 4972}, {2292, 4011}


X(5193) = INVERSE-IN-CIRCUMCIRCLE OF X(1420)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(a + b - c)(a - b + c)(a3 + b3 + c3 - a2b - a2c - ab2 - ac2 + 5abc - 2b2c - 2bc2)

X(5193) lies on these lines: {1, 3}, {104, 1519}, {106, 1457}, {108, 1877}, {109, 1149}, {388, 3814}, {995, 2003}, {1398, 1878}, {1404, 2316}, {1421, 1455}, {1428, 2810}, {2975, 3452}


X(5194) = INVERSE-IN-INCIRCLE OF X(1469)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(a + b - c)(a - b + c)(a2b2 + a2c2 + 4a2bc + b4 - 2b3c - 4b2c2 - 2bc3 + c4)

X(5194) lies on these lines: {1, 256}, {12, 625}, {56, 187}, {172, 2031}, {316, 388}, {512, 3669}, {538, 3027}, {999, 2080}, {1015, 2021}, {1357, 1429}, {1428, 2030}


X(5195) = INVERSE-IN-INCIRCLE OF X(4021)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b4 + c4 - a4 - a3b - a3c + 3a2bc + ab3 + ac3 - ab2c - abc2 - b3c - bc3

X(5195) lies on these lines: {1, 7}, {2, 5011}, {30, 664}, {72, 319}, {74, 927}, {150, 517}, {514, 4024}, {534, 1944}, {1479, 3212}, {3057, 4911}

X(5195) = anticomplement of X(5011)


X(5196) = INVERSE-IN-CIRCUMCIRCLE OF X(4184)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (a + b)(a + c)(b4 + c4 - a4 - a3b - a3c + a2b2 + a2c2 + a2bc - 2b2c2)

As a point on the Euler line, X(5196) has Shinagawa coefficients (E + 4F + 2$bc$, -4E - 4F - 6$bc$).

X(5196) lies on these lines: {2, 3}, {60, 1770}, {99, 3006}, {103, 476}, {110, 516}, {523, 4467}, {593, 3914}, {675, 691}, {759, 4316}, {1326, 3120}


X(5197) = INVERSE-IN-1st-BROCARD-CIRCLE OF X(1054)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(a4 - a2b2 - a2c2 - a2bc - ab2c - abc2 - b3c - bc3 + b2c2)

X(5197) lies on these lines: {31, 36}, {43, 3955}, {57, 985}, {81, 1325}, {110, 4414}, {182, 1054}, {986, 1437}, {991, 1283}, {1326, 1790}, {2194, 4650}


X(5198) = INVERSE-IN-ORTHOCENTROIDAL-CIRCLE OF X(1907)

Trilinears       3 sec A - cos A : 3 sec B - cos B : 3 sec C - cos C
Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(a2 + b2 - c2)(a2 - b2 + c2)(a4 + b4 + c4 - 2a2b2 - 2a2c2 - 10b2c2)

As a point on the Euler line, X(5198) has Shinagawa coefficients (F, -3E - F).

X(5198) lies on these lines: {2, 3}, {33, 3303}, {34, 3304}, {51, 1498}, {53, 1033}, {159, 3574}, {1173, 3527}, {1753, 2355}, {2207, 5007}


X(5199) = INVERSE-IN-SPIEKER-CIRCLE OF X(9)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b + c - a)(3b3 + 3c3 - 2a3 + a2b + a2c - 2ab2 - 2ac2 + 4abc - 3b2c - 3bc2)

X(5199) lies on these lines: {2, 1323}, {4, 9}, {121, 1566}, {220, 3626}, {514, 4521}, {519, 1146}, {1212, 3634}, {2297, 5018}


X(5200) = INVERSE-IN-ORTHOCENTROIDAL-CIRCLE OF X(3127)

Barycentrics   (S + a2)/SA : (S + b2)/SB : (S + c2)/SC
Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (a2 + b2 - c2)(a2 - b2 + c2)(2a2 +[(b + c - a)(c + a - b)(a + b - c)(a + b + c)]1/2)

As a point on the Euler line, X(5200) has Shinagawa coefficients (F, -E - F - S).

X(5200) lies on these lines: {2, 3}, {6, 1162}, {51, 1588}, {154, 3070}, {184, 1587}, {615, 1165}, {1164, 3087}

X(5200) = pole wrt polar circle of trilinear polar of X(5490)
X(5200) = X(48)-isoconjugate (polar conjugate) of X(5490)


X(5201) = INVERSE-IN-CIRCUMCIRCLE OF X(3111)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(a4b2 + a4c2 - a2b4 - a2c4 + 2a2b2c2 - b4c2 - b2c4)

X(5201) lies on these lines: {3, 6}, {23, 385}, {160, 193}, {183, 1995}, {237, 524}, {340, 4230}, {2930, 3511}


X(5202) = INVERSE-IN-PARRY-CIRCLE OF X(3724)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(b + c)(a5 - a3b2 - a3c2 + ab2c2 - b4c + b3c2 + b2c3 - bc4)

X(5202) lies on these lines: {1, 60}, {31, 4128}, {187, 237}, {213, 3124}, {692, 2643}, {1400, 2054}


X(5203) = INVERSE-IN-POLAR-CIRCLE OF X(193)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (a2 + b2 - c2)(a2 - b2 + c2)(a2 + b2 - 3c2)(a2 - 3b2 + c2)(2a2 - b2 - c2)

X(5203) lies on these lines: {4, 193}, {30, 3565}, {126, 468}, {2501, 3566}

X(5203) = antigonal image of X(468)


X(5204) = INVERSE-IN-CIRCUMCIRCLE OF X(5048)

Trilinears    a[s(b + c - a) - (a - b + c)(a + b - c)] : :
Barycentrics    a2(3b2 + 3c2 - 3a2 - 2bc)
X(5204) = R*X(1) - 3r*X(3) = X(5204) = (2r - R)*X(11) + r*X(20)

X(5204) lies on these lines: {1, 3}, {2, 3614}, {5, 4299}, {11, 20}, {12, 631}, {21, 4423}, {30, 499}, {33, 3516}, {34, 3515}, {41, 5022}, {44, 198}, {45, 1696}, {100, 3621}, {140, 1478}, {145, 4421}, {172, 5013}, {212, 1106}, {215, 1092}, {218, 5030}, {220, 1055}, {376, 3086}, {377, 4999}, {382, 4316}, {388, 3523}, {404, 958}, {474, 993}, {495, 3530}, {496, 548}, {497, 3522}, {498, 549}, {518, 4855}, {550, 1479}, {602, 1399}, {603, 2361}, {611, 5092}, {613, 3098}, {672, 3207}, {859, 4278}, {896, 1473}, {899, 4191}, {936, 3715}, {956, 3626}, {960, 4652}, {997, 3916}, {1001, 4189}, {1125, 1836}, {1152, 2067}, {1193, 4252}, {1201, 3052}, {1259, 4996}, {1350, 1428}, {1376, 2975}, {1436, 2173}, {1443, 1804}, {1450, 4300}, {1468, 4255}, {1469, 5085}, {1475, 4258}, {1656, 3585}, {1657, 3583}, {1837, 3911}, {1914, 5023}, {2071, 5160}, {2275, 3053}, {2886, 4190}, {3035, 3436}, {3085, 3524}, {3240, 4210}, {3286, 4225}, {3474, 3616}, {3526, 4325}, {3528, 4294}, {3534, 3582}, {3622, 4428}, {3624, 3824}, {3869, 4881}, {3928, 3962}, {5087, 5121}

X(5204) = isogonal conjugate of X(7319)
X(5204) = polar conjugate of isotomic conjugate of X(23140)
X(5204) = {X(55),X(56}-harmonic conjugate of X(3304)
X(5204) = {X(3),X(56)}-harmonic conjugate of X(55)


X(5205) = INVERSE-IN-SPIEKER-CIRCLE OF X(3687)

Barycentrics    a3 - a2b - a2c + 3abc - b2c - bc2 : :

X(5205) lies on these lines: {1, 2}, {20, 2899}, {36, 3992}, {56, 341}, {75, 4413}, {100, 2726}, {125, 3936}, {171, 4672}, {190, 1155}, {238, 4434}, {295, 660}, {312, 1376}, {319, 4023}, {333, 3740}, {404, 3701}, {474, 4385}, {496, 5100}, {497, 1997}, {518, 3699}, {645, 2651}, {649, 3239}, {675, 2748}, {726, 1054}, {750, 894}, {851, 3948}, {908, 4645}, {999, 4737}, {1156, 4607}, {1265, 1788}, {1311, 2743}, {1447, 3263}, {3035, 3932}, {3218, 3952}, {3452, 4388}, {3550, 4011}, {3717, 3911}, {3769, 4383}, {3816, 4514}, {3975, 4447}, {4187, 5015}, {4997, 5087}

X(5205) = complement of X(5211)
X(5205) = anticomplement of X(5121)
X(5205) = inverse-in-{circumcircle, nine-point circle}-inverter of X(10)
X(5205) = crossdifference of PU(92)
X(5205) = crossdifference of every pair of points on line X(649)X(1201)
X(5205) = X(2)-Ceva conjugate of X(39059)
X(5205) = perspector of conic {{A,B,C,PU(59)}}


X(5206) = INVERSE-IN-CIRCUMCIRCLE OF X(5111)

Trilinears    2 sin(A + ω) - 3 sin(A - ω) : :
Trilinears    5 cos A - sin A cot ω : :
Trilinears    sin A - 5 cos A tan ω : :
Barycentrics    a2(2b2 + 2c2 - 3a2) : :

Let H be the ellipse of these five points: X(574), PU(1), PU(2). One vertex of H is X(574); the other is X(5206). (Randy Hutson, November 22, 2014)

X(5206) lies on these lines: {3, 6}, {20, 115}, {22, 3291}, {35, 2242}, {36, 2241}, {172, 5010}, {186, 1968}, {230, 550}, {315, 620}, {376, 3767}, {439, 3785}, {546, 3054}, {631, 1506}, {1003, 3934}, {1078, 3552}, {1658, 2493}, {1971, 3357}, {2079, 2937}, {2482, 3926}, {2548, 3523}, {2549, 3522}, {3199, 3515}, {3530, 3815}, {3787, 3796}, {5087, 5121}

X(5206) = isogonal conjugate of polar conjugate of X(37453)
X(5206) = {X(371),X(372)}-harmonic conjugate of X(5097)
X(5206) = radical center of Lucas(-2/5 cot ω) circles


X(5207) = INVERSE-IN-ANTICOMPLEMENTARY-CIRCLE OF X(315)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b6 + c6 - a6 - a2b2c2

X(5207) lies on these lines: {2, 1501}, {4, 69}, {6, 5025}, {141, 384}, {147, 325}, {148, 698}, {187, 3619}, {193, 5111}, {334, 1966}, {512, 3267}, {625, 1692}, {626, 2458}, {732, 1916}, {1570, 1992}, {1965, 4388}, {2080, 3785}, {3620, 5104}, {4576, 5189}, {5087, 5121}

X(5207) = anticomplement of X(1691)
X(5207) = crosspoint of X(147) and X(2896) with respect to the excentral triangle
X(5207) = crosspoint of X(147) and X(2896) with respect to the anticomplementary triangle


X(5208) = INVERSE-IN-CONWAY-CIRCLE OF X(2651)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(a + b)(a + c)(b3 + c3 - ab2 - ac2 - abc)

X(5208) lies on these lines: {1, 21}, {2, 3786}, {7, 310}, {27, 295}, {65, 1043}, {86, 354}, {228, 4225}, {284, 3509}, {333, 518}, {942, 1010}, {982, 3736}, {1412, 5083}, {3218, 4184}, {5087, 5121}


X(5209) = INVERSE-IN-CONWAY-CIRCLE OF X(314)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc(a + b)(a + c)(a3 + abc - b2c - bc2)

X(5209) lies on these lines: {1, 75}, {36, 99}, {80, 334}, {313, 757}, {670, 4495}, {730, 741}, {811, 1785}, {1019, 1577}, {1323, 4625}, {1509, 1909}, {1931, 3948}, {1963, 3963}, {4039, 4600}, {5087, 5121}


X(5210) = INVERSE-IN-CIRCUMCIRCLE OF X(5107)

Trilinears    5 sin(A + ω) - 7 sin(A - ω) : :
Trilinears    6 cos A - sin A cot ω : :
Trilinears    sin A - 6 cos A tan ω : :
Barycentrics   a2(5b2 + 5c2 - 7a2) : :

X(5210) lies on these lines: {3, 6}, {4, 3054}, {22, 111}, {115, 3534}, {154, 5191}, {230, 376}, {439, 3620}, {548, 3767}, {631, 3055}, {2548, 3530}, {3524, 3815}, {3630, 3926}, {3631, 3785}, {5087, 5121}

X(5210) = radical center of Lucas(-1/3 cot ω) circles
X(5210) = harmonic center of circumcircle and circle O(15,16)


X(5211) = INVERSE-IN-CONWAY-CIRCLE OF X(1999)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b3 + c3 - a3 - 2ab2 - 2ac2 + 3abc

X(5211) lies on these lines: {1, 2}, {110, 2726}, {244, 4645}, {320, 3999}, {497, 3210}, {675, 2705}, {982, 4388}, {1330, 3953}, {3315, 3936}, {3667, 4025}, {3752, 4514}, {4440, 5057}, {5087, 5121}

X(5211) = anticomplement of X(5205)
X(5211) = isotomic conjugate of anticomplement of X(39059)


X(5212) = INVERSE-IN-SPIEKER-RADICAL-CIRCLE OF X(2)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b3 + c3 - 5a2b - 5a2c + 6abc + b2c + bc2

X(5212) lies on these lines: {1, 2}, {518, 3030}, {661, 3667}, {908, 4442}, {1155, 4831}, {1266, 4706}, {1738, 4892}, {3684, 4700}, {3879, 4413}, {4023, 4357}, {4656, 4734}, {5087, 5121}

X(5212) = complement of X(38473)


X(5213) = INVERSE-IN-SPIEKER-RADICAL-CIRCLE OF X(115)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b + c)2(a2 - ab + ac - b2)(a2 + ab - ac - c2)

Let (N) be the nine-point circle of a triangle ABC. Let (IA) be the A-excircle of ABC, and define (IB) and (IC) cyclically. Let A′ be the midpoint of side BC, and define B′ and C′ cyclically. Let (KA) be the circle, other than (N), that passes through B′ and C′ and touches (IA), and define (KB) and (KC) cyclically. Let (K) be the circle externally tangent to (KA), (KB), (KC), and let (L) be the circle externally tangent to (IA), (IB), (IC). Then X(5213) = (K)∩(L). (Tran Quang Hung, July 16, 2014)

If you have The Geometer's Sketchpad, you can view X(5213).

X(5213) lies on the Apollonius circle and these lines: {10, 115}, {181, 1356}, {214, 1015}, {386, 741}, {573, 759}, {1018, 3124}, {1575, 5164}, {2238, 5011}, {5087, 5121}

X(5213) = complement of X(38477)
X(5213) = similitude center of Apollonius triangle and polar triangle of excircles radical circle


X(5214) = INVERSE-IN-CONWAY-CIRCLE OF X(3109)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (a + b)(a + c)(b - c)(a2 + 2b2 + 2c2 - ab - ac + 4bc)

X(5214) lies on these lines: {1, 523}, {513, 4960}, {522, 1019}, {3733, 4777}, {4151, 4581}, {4802, 4833}, {4840, 4926}, {5087, 5121}

X(5213) = pole of the Euler line with respect to the Conway circle


X(5215) = INVERSE-IN-VAN-LAMOEN-CIRCLE OF X(598)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 10a4 + 4b4 + 4c4 - 7a2b2 - 7a2c2 - 4b2c2

X(5215) = centroid of {X(13), X(14), X(15), X(16), X(5463), X(5464)} (Randy Hutson, November 22, 2014)

X(5215) lies on these lines: {2, 187}, {230, 2482}, {511, 5054}, {524, 1692}, {597, 5107}, {599, 2030}, {5087, 5121}


X(5216) = INVERSE-IN-CONWAY-CIRCLE OF X(3110)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(a + b)(a + c)(b - c)(2b2 + 2c2 + 3bc)

X(5216) lies on these lines: {1, 512}, {513, 4960}, {834, 3737}, {1734, 4481}, {2978, 4040}, {3733, 4834}, {5087, 5121}

X(5216) = pole of the Brocard axis with respect to the Conway circle


X(5217) = INTERSECTION OF LINES X(1)X(3) AND X(12)X(20)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(3b2 + 3c2 - 3a2 + 2bc)
X(5217) = R*X(1) + 3r*X(3)
X(5217) = (2r + R)*X(12) + r*X(20)

Let A″B″C″ be as at X(12512). Then A″B″C″ is homothetic to the intouch triangle at X(5217). (Randy Hutson, January 17, 2020)

X(5217) lies on these lines: {1, 3}, {4, 3614}, {5, 4302}, {8, 4421}, {11, 631}, {12, 20}, {21, 1376}, {30, 498}, {31, 4255}, {33, 3515}, {34, 3516}, {42, 4252}, {45, 198}, {73, 3532}, {78, 4640}, {100, 958}, {140, 1479}, {172, 5023}, {186, 5160}, {191, 3940}, {212, 1399}, {218, 4262}, {376, 3085}, {382, 4324}, {388, 3522}, {404, 1001}, {405, 3634}, {474, 4423}, {480, 1259}, {495, 548}, {496, 3530}, {497, 3523}, {499, 549}, {518, 4652}, {550, 1478}, {601, 2361}, {603, 1253}, {611, 3098}, {613, 5092}, {672, 4258}, {899, 1011}, {902, 1191}, {936, 3683}, {956, 3625}, {960, 4855}, {991, 2594}, {993, 3626}, {1092, 2477}, {1152, 2066}, {1193, 3052}, {1334, 2272}, {1350, 2330}, {1468, 2334}, {1500, 5206}, {1621, 4188}, {1656, 3583}, {1657, 3585}, {1788, 4313}, {1837, 4304}, {1898, 5044}, {1914, 5013}, {2276, 3053}, {2280, 5022}, {2478, 3035}, {2975, 3621}, {3056, 5085}, {3058, 3086}, {3240, 4184}, {3434, 4999}, {3474, 3649}, {3526, 4330}, {3528, 4293}, {3534, 3584}, {3616, 4428}, {3811, 3916}, {3890, 4881}, {3911, 4314}, {3929, 4005}

X(5217) = inverse-in-circumcircle of X(5183)
X(5217) = {X(3),X(55)}-harmonic conjugate of X(56)


X(5218) = INTERSECTION OF LINES X(2)X(11) AND X(4)X(35)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b + c - a)(b2 + c2 - 3a2 - 2bc)

X(5218) = 9r*X(2) - 2(2r - R)*X(11)
X(5218) = 2(2r + R)*X(12) + r*X(20)

X(5218) lies on these lines: {1, 631}, {2, 11}, {3, 388}, {4, 35}, {5, 4294}, {7, 1155}, {8, 2320}, {9, 1776}, {10, 3486}, {12, 20}, {21, 2551}, {36, 1056}, {40, 3485}, {46, 3487}, {56, 3523}, {57, 3475}, {69, 2330}, {140, 3086}, {165, 226}, {171, 212}, {197, 4224}, {243, 281}, {329, 4640}, {344, 5205}, {345, 3790}, {346, 3712}, {355, 4305}, {376, 1478}, {391, 4023}, {452, 1329}, {496, 3526}, {499, 1058}, {549, 999}, {601, 3074}, {612, 1040}, {650, 885}, {750, 1253}, {899, 2293}, {944, 3612}, {950, 1698}, {966, 2268}, {991, 4551}, {993, 3421}, {1125, 1697}, {1479, 3090}, {1737, 3488}, {1742, 2635}, {1837, 4313}, {1858, 3876}, {1864, 3740}, {2066, 3069}, {2098, 3622}, {2999, 4989}, {3011, 4000}, {3056, 3618}, {3057, 3616}, {3158, 4847}, {3161, 4009}, {3296, 3337}, {3436, 4189}, {3452, 4512}, {3476, 3576}, {3528, 4299}, {3529, 3585}, {3545, 3583}, {3579, 4295}, {3600, 5204}, {3614, 3832}, {3634, 4314}, {3671, 5128}, {3855, 4330}, {3913, 4999}, {4309, 5067}, {4402, 4706}, {4414, 4419}


X(5219) = INTERSECTION OF LINES X(1)X(5) AND X(2)X(7)

Barycentrics    (2b + 2c - a)/(b + c - a) : :

X(5219) lies on these lines: {1, 5}, {2, 7}, {4, 3601}, {10, 3340}, {34, 975}, {37, 1465}, {40, 498}, {55, 1538}, {56, 3624}, {65, 1698}, {78, 2476}, {85, 4554}, {109, 750}, {165, 1836}, {191, 1454}, {200, 2886}, {208, 451}, {210, 5173}, {278, 1826}, {319, 4417}, {381, 3586}, {388, 1125}, {442, 936}, {468, 1892}, {497, 3817}, {499, 3333}, {551, 3476}, {631, 4292}, {938, 5056}, {940, 2003}, {942, 1656}, {946, 1697}, {948, 1323}, {950, 3091}, {991, 2635}, {997, 3822}, {1000, 1512}, {1001, 2078}, {1155, 4312}, {1210, 3090}, {1376, 3256}, {1419, 4648}, {1441, 4358}, {1466, 3824}, {1478, 3576}, {1617, 4423}, {1788, 3634}, {1876, 5094}, {2099, 3679}, {2475, 4855}, {2999, 3553}, {3006, 4901}, {3158, 3434}, {3339, 3649}, {3488, 3545}, {3584, 5119}, {3585, 3612}, {3617, 4323}, {3832, 4313}, {4032, 4687}, {4054, 4659}, {4295, 5128}, {4671, 4873}, {5054, 5122}

X(5219) = isogonal conjugate of X(2364)
X(5219) = isotomic conjugate of X(30608)
X(5219) = {X(2),X(7)}-harmonic conjugate of X(3911)
X(5219) = {X(2),X(57)}-harmonic conjugate of X(31231)
X(5219) = endo-homothetic center of the AOA and AAOA triangles


X(5220) = INTERSECTION OF LINES X(1)X(6) AND X(7)X(12)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(2b2 + 2c2 - a2 - ab - ac + 2bc)
X(5220) = X(1) - 3*X(9)

X(5220) lies on these lines: {1, 6}, {2, 3715}, {3, 2801}, {7, 12}, {8, 190}, {10, 527}, {38, 4383}, {40, 4662}, {46, 3697}, {55, 1776}, {56, 3876}, {57, 3740}, {63, 210}, {65, 3951}, {69, 3932}, {78, 4005}, {100, 3711}, {142, 3634}, {144, 1654}, {183, 4518}, {191, 4436}, {200, 3929}, {319, 3790}, {321, 4042}, {329, 2886}, {344, 4966}, {354, 3305}, {355, 382}, {390, 3621}, {480, 1259}, {612, 4641}, {672, 3789}, {726, 4361}, {756, 940}, {758, 1159}, {971, 1158}, {993, 3940}, {997, 5126}, {1150, 3952}, {1621, 4661}, {1706, 4866}, {1890, 5130}, {2246, 4712}, {2646, 3984}, {3052, 3961}, {3218, 4413}, {3245, 3679}, {3286, 3786}, {3416, 3717}, {3625, 4133}, {3632, 4693}, {3683, 3870}, {3696, 3729}, {3773, 4445}, {3873, 4423}, {3883, 4899}, {3916, 4533}, {4078, 4851}, {4671, 4756}

X(5220) = X(67) of Fuhrman triangle
X(5220) = perspector of Fuhrmann and outer Johnson triangles


X(5221) = INTERSECTION OF LINES X(1)X(3) AND X(7)X(12)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(2b + 2c + a)/(b + c - a)

X(5221) lies on these lines: {1, 3}, {2, 3649}, {6, 1406}, {7, 12}, {10, 553}, {11, 4295}, {34, 2355}, {44, 2285}, {45, 1400}, {63, 3812}, {72, 4413}, {79, 381}, {88, 959}, {89, 961}, {208, 1827}, {221, 1393}, {226, 3634}, {227, 1418}, {244, 1191}, {386, 1464}, {388, 3617}, {405, 3647}, {474, 758}, {936, 3962}, {938, 3474}, {952, 4317}, {956, 3754}, {958, 3218}, {960, 3306}, {997, 4018}, {1046, 4383}, {1210, 1836}, {1254, 1407}, {1317, 4308}, {1376, 3868}, {1399, 1451}, {1417, 4792}, {1434, 3212}, {1452, 1876}, {1469, 3214}, {1475, 2272}, {1698, 3715}, {1722, 4641}, {1835, 4185}, {1837, 4292}, {2334, 4646}, {2594, 4306}, {2650, 4255}, {3125, 5021}, {3600, 3621}, {3624, 4870}, {3626, 4031}, {3671, 3911}, {3740, 3951}, {3873, 3913}, {3901, 3940}, {3924, 4252}, {3947, 3982}

X(5221) = {X(1),X(5708)}-harmonic conjugate of X(4860)
X(5221) = {X(13388),X(13389)}-harmonic conjugate of X(37595)


X(5222) = INTERSECTION OF LINES X(1)X(2) AND X(6)X(7)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 3a2 + (b - c)2

X(5222) lies on these lines: {1, 2}, {6, 7}, {9, 3672}, {20, 1453}, {27, 3194}, {41, 1429}, {44, 4419}, {57, 279}, {69, 3759}, {75, 3618}, {81, 277}, {142, 1449}, {144, 1743}, {192, 3161}, {193, 3662}, {218, 329}, {220, 4383}, {223, 4350}, {241, 2275}, {273, 1249}, {278, 607}, {319, 3619}, {320, 1992}, {344, 4360}, {346, 3875}, {347, 1445}, {390, 3755}, {391, 4357}, {527, 4346}, {594, 4371}, {597, 4363}, {599, 4969}, {857, 1834}, {966, 4657}, {1100, 4648}, {1104, 4313}, {1203, 4295}, {1212, 3666}, {1266, 4454}, {1386, 2550}, {1423, 2347}, {1442, 3554}, {1468, 4209}, {1738, 4307}, {2345, 3589}, {3664, 4859}, {3729, 4452}, {3731, 4021}, {3739, 4798}, {3751, 4310}, {3879, 4869}, {4460, 4852}, {4470, 4688}

X(5222) = complement of X(29616)
X(5222) = anticomplement of X(17284)
X(5222) = {X(1),X(2)}-harmonic conjugate of X(5308)


X(5223) = INTERSECTION OF LINES X(1)X(6) AND X(7)X(10)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(3b2 + 3c2 - a2 - 2ab - 2ac + 2bc)
X(5223) = X(1) - 2*X(9)

X(5223) lies on these lines: {1, 6}, {3, 480}, {7, 10}, {8, 144}, {38, 2999}, {40, 971}, {55, 3929}, {56, 4005}, {57, 210}, {63, 100}, {69, 3717}, {142, 1698}, {190, 3886}, {191, 3174}, {329, 1699}, {344, 4684}, {354, 3715}, {390, 519}, {443, 4355}, {474, 4533}, {517, 4915}, {527, 1478}, {528, 4677}, {537, 673}, {668, 3403}, {936, 1445}, {991, 2340}, {997, 4134}, {1155, 3711}, {1156, 2802}, {1376, 3928}, {1706, 4662}, {1707, 3961}, {1738, 4862}, {2184, 2947}, {2809, 4752}, {2810, 3781}, {2975, 3984}, {3008, 4310}, {3158, 4640}, {3219, 3870}, {3305, 3873}, {3333, 5044}, {3340, 3962}, {3416, 4901}, {3576, 3940}, {3677, 4383}, {3696, 4659}, {3755, 4419}, {3869, 4853}, {3925, 4654}, {4420, 4652}, {4430, 4666}

X(5223) = reflection of X(1) in X(9)
X(5223) = outer-Garcia-to-ABC similarity image of X(7)


X(5224) = INTERSECTION OF LINES X(2)X(6) AND X(7)X(12)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b2 + c2 + bc + ca + ab

X(5224) lies on these lines: {1, 319}, {2, 6}, {3, 3437}, {7, 12}, {8, 4026}, {9, 1760}, {10, 75}, {37, 3661}, {38, 4446}, {85, 307}, {142, 4751}, {190, 2345}, {192, 594}, {239, 4657}, {261, 1078}, {274, 4283}, {286, 5125}, {320, 1698}, {326, 936}, {334, 1218}, {404, 1444}, {405, 2893}, {638, 2047}, {894, 4643}, {1086, 4699}, {1100, 4690}, {1125, 3879}, {1278, 4665}, {1330, 2049}, {1975, 4201}, {2321, 4664}, {3305, 4872}, {3616, 4966}, {3617, 3672}, {3625, 4464}, {3626, 4021}, {3634, 3664}, {3644, 4431}, {3662, 3739}, {3679, 3875}, {3686, 3759}, {3728, 4443}, {3758, 4416}, {3779, 3789}, {3786, 4259}, {3912, 4687}, {3943, 4704}, {4441, 4972}, {4472, 4741}

X(5224) = complement of X(17379)
X(5224) = anticomplement of X(17398)
X(5224) = {X(2),X(6)}-harmonic conjugate of X(17381)
X(5224) = {X(2),X(69)}-harmonic conjugate of X(86)
X(5224) = {X(2),X(141)}-harmonic conjugate of X(17234)


X(5225) = INTERSECTION OF LINES X(1)X(4) AND X(11)X(20)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 3b4 + 3c4 - 3a4 + 4a2bc - 6b2c2

X(5225) lies on these lines: {1, 4}, {5, 4294}, {8, 3967}, {11, 20}, {12, 390}, {30, 3086}, {35, 3090}, {36, 3529}, {55, 3091}, {56, 3146}, {100, 5187}, {149, 3436}, {376, 499}, {381, 3085}, {382, 496}, {452, 2886}, {495, 3843}, {498, 3545}, {516, 1788}, {546, 3295}, {631, 4302}, {908, 3189}, {938, 1836}, {960, 5175}, {962, 1837}, {999, 3627}, {1001, 5177}, {1210, 3474}, {1452, 2961}, {1898, 3868}, {2478, 2550}, {2551, 3434}, {3058, 3839}, {3153, 5160}, {3421, 3625}, {3525, 5010}, {3528, 4324}, {3601, 3817}, {3616, 3838}, {3626, 5082}, {3634, 5084}, {3855, 4309}, {3925, 5129}, {3974, 5015}, {4208, 4423}, {4330, 5067}


X(5226) = INTERSECTION OF LINES X(2)X(7) AND X(8)X(12)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (3b + 3c - a)/(b + c - a)

X(5226) lies on these lines: {1, 3091}, {2, 7}, {4, 4313}, {5, 938}, {8, 12}, {11, 3475}, {56, 5047}, {65, 3740}, {78, 5177}, {223, 1442}, {278, 469}, {312, 1441}, {381, 3488}, {388, 1319}, {390, 1699}, {479, 1996}, {484, 498}, {495, 1532}, {497, 3748}, {612, 4318}, {631, 5122}, {651, 940}, {857, 948}, {936, 4208}, {942, 3090}, {950, 3832}, {962, 3085}, {975, 4296}, {1000, 3656}, {1125, 3600}, {1210, 5056}, {1456, 4682}, {1698, 3671}, {1788, 3649}, {2550, 3838}, {2900, 5175}, {3146, 3601}, {3241, 4870}, {3339, 3634}, {3340, 3617}, {3523, 4292}, {3543, 4304}, {3585, 4305}, {3586, 3839}, {3624, 4298}, {3681, 5173}


X(5227) = INTERSECTION OF LINES X(1)X(6) AND X(8)X(19)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b2 + c2 - a2)(a2 + b2 + c2 + 2bc)

Let H be the homothety that maps the 2nd extouch triangle onto the excentral triangle; then X(5227) = H(X(6)). (Randy Hutson, November 22, 2014)

X(5227) lies on these lines: {1, 6}, {3, 3694}, {8, 19}, {40, 1503}, {48, 78}, {57, 141}, {63, 69}, {84, 1350}, {144, 4329}, {159, 197}, {169, 3686}, {193, 3219}, {198, 3965}, {210, 965}, {281, 3421}, {284, 3811}, {319, 1760}, {329, 1848}, {388, 2285}, {515, 1766}, {524, 3929}, {599, 3928}, {612, 2303}, {988, 4261}, {1038, 2286}, {1474, 2287}, {1781, 3679}, {1792, 4288}, {1826, 3436}, {1839, 3434}, {1953, 3872}, {2171, 4390}, {2182, 3713}, {2268, 3930}, {3169, 3496}, {3218, 3620}, {3305, 3618}, {3306, 3619}, {3927, 4047}, {3951, 3958}


X(5228) = INTERSECTION OF LINES X(1)X(3) AND X(6)X(7)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(a2 - ab - ac - 2bc)/(b + c - a)

X(5228) lies on these lines: {1, 3}, {2, 220}, {6, 7}, {9, 4328}, {37, 1445}, {63, 1212}, {75, 3713}, {77, 1100}, {81, 279}, {85, 239}, {142, 219}, {175, 3297}, {176, 3298}, {218, 226}, {222, 553}, {269, 1449}, {277, 2982}, {307, 4657}, {481, 1124}, {482, 1335}, {518, 4327}, {664, 4393}, {965, 3739}, {1001, 1471}, {1119, 1172}, {1231, 4359}, {1323, 4031}, {1373, 3301}, {1374, 3299}, {1376, 2340}, {1386, 2263}, {1427, 4350}, {1441, 4361}, {1616, 4323}, {2256, 4648}, {3668, 3946}, {3912, 4513}, {4334, 4649}

X(5228) = crossdifference of every pair of points on the line X(650)X(926)


X(5229) = INTERSECTION OF LINES X(1)X(4) AND X(12)X(20)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 3b4 + 3c4 - 3a4 - 4a2bc - 6b2c2

X(5229) lies on these lines: {1, 4}, {2, 3614}, {5, 4293}, {7, 1837}, {8, 1836}, {10, 3474}, {11, 3600}, {12, 20}, {30, 3085}, {35, 3529}, {36, 3090}, {55, 3146}, {56, 3091}, {144, 1654}, {355, 4295}, {376, 498}, {377, 1155}, {381, 3086}, {382, 495}, {443, 3634}, {496, 3843}, {499, 3545}, {518, 5175}, {546, 999}, {631, 4299}, {958, 5177}, {1420, 3817}, {1788, 4292}, {3295, 3627}, {3421, 3626}, {3434, 3621}, {3528, 4316}, {3601, 3947}, {3625, 5082}, {3855, 4317}, {4312, 4848}, {4325, 5067}


X(5230) = INTERSECTION OF LINES X(1)X(2) AND X(4)X(31)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a4 + b4 + c4 + 2a3b + 2a3c - 2b2c2

X(5230) lies on these lines: {1, 2}, {4, 31}, {6, 12}, {11, 1191}, {19, 208}, {40, 3914}, {55, 1834}, {58, 1478}, {65, 3772}, {171, 377}, {213, 3767}, {227, 1108}, {235, 3195}, {238, 2478}, {278, 1254}, {318, 4008}, {388, 1468}, {443, 750}, {497, 3915}, {595, 1479}, {748, 5084}, {902, 4294}, {959, 2006}, {1068, 1148}, {1104, 1837}, {1329, 4383}, {1460, 4185}, {1788, 4000}, {2650, 3487}, {3120, 4295}, {4257, 4299}, {4307, 5177}, {4339, 5175}


X(5231) = INTERSECTION OF LINES X(1)X(2) AND X(9)X(11)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b + c - a)(2b2 + 2c2 - a2 - ab - ac - 4bc)

X(5231) lies on these lines: {1, 2}, {9, 11}, {36, 1004}, {57, 2886}, {63, 1699}, {75, 4554}, {165, 3434}, {244, 4859}, {329, 3817}, {377, 3361}, {442, 3333}, {497, 4512}, {993, 1005}, {1260, 4423}, {1376, 2078}, {1697, 3813}, {1836, 3928}, {2550, 3911}, {3120, 4862}, {3158, 4863}, {3218, 4312}, {3419, 3576}, {3601, 4999}, {3677, 3772}, {3693, 4519}, {3829, 3929}, {3838, 4654}, {4297, 5175}, {4298, 5177}, {4855, 5178}


X(5232) = INTERSECTION OF LINES X(2)X(6) AND X(7)X(10)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 3b2 + 3c2 - a2 + 2ab + 2ac + 2bc

X(5232) lies on these lines: {2, 6}, {7, 10}, {8, 3672}, {37, 4748}, {75, 3617}, {77, 936}, {144, 2345}, {145, 319}, {279, 307}, {320, 3823}, {346, 3661}, {390, 3775}, {452, 2893}, {474, 1014}, {594, 4419}, {997, 1442}, {1122, 3983}, {1444, 4188}, {1698, 3664}, {3616, 3879}, {3621, 4360}, {3632, 4021}, {3663, 3679}, {3723, 4916}, {3946, 4034}, {4364, 4445}, {4389, 4452}, {4657, 4690}, {4708, 4851}


X(5233) = INTERSECTION OF LINES X(2)X(6) AND X(8)X(11)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b + c - a)(b2 + c2 + ab + ac - bc)

X(5233) lies on these lines: {2, 6}, {8, 11}, {9, 4070}, {43, 3847}, {75, 908}, {200, 4514}, {210, 3705}, {312, 2321}, {320, 3306}, {345, 3161}, {474, 1330}, {497, 3996}, {899, 4429}, {997, 998}, {1043, 2478}, {1054, 4655}, {1376, 4388}, {3210, 4415}, {3242, 5211}, {3416, 5205}, {3685, 4679}, {3696, 5087}, {3755, 5212}, {3790, 4009}, {3807, 4671}, {3911, 4416}, {4389, 4850}, {4413, 4645}, {4734, 4854}

X(5233) = complement of X(37684)


X(5234) = INTERSECTION OF LINES X(1)X(6) AND X(10)X(20)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b + c - a)(3a2 + b2 + c2 + 4ab + 4ac + 6bc)

X(5234) lies on these lines: {1, 6}, {2, 3361}, {8, 4314}, {10, 20}, {21, 200}, {55, 4882}, {63, 3339}, {65, 3929}, {142, 4355}, {144, 3671}, {191, 2093}, {210, 3601}, {443, 1478}, {452, 4847}, {936, 993}, {1697, 3683}, {1706, 4640}, {2646, 3715}, {2975, 3305}, {3158, 4662}, {3452, 3624}, {3576, 5044}, {3698, 5128}, {3812, 3928}, {3885, 4853}, {5123, 5131}


X(5235) = INTERSECTION OF LINES X(2)X(6) AND X(10)X(21)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (2b + 2c - a)/(b + c)

X(5235) lies on these lines: {2, 6}, {10, 21}, {27, 281}, {28, 5130}, {45, 4671}, {58, 750}, {63, 1781}, {88, 274}, {314, 4358}, {899, 3736}, {958, 4225}, {1014, 3911}, {1043, 3617}, {1155, 3846}, {1255, 1999}, {1376, 4184}, {2177, 3679}, {3218, 3739}, {3286, 4413}, {3624, 4658}, {3681, 5208}, {3712, 4733}, {3757, 4981}, {3977, 4967}, {4384, 4850}, {4396, 4708}

X(5235) = isotomic conjugate of X(30588)
X(5235) = complement of X(37635)
X(5235) = trilinear pole of line X(4693)X(4775) (the perspectrix of ABC and Gemini triangle 28)

X(5236) = INTERSECTION OF LINES X(1)X(4) AND X(7)X(19)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b2 + c2 - ab - ac)/[(b + c - a)(b2 + c2 - a2)]

X(5236) lies on these lines: {1, 4}, {2, 1435}, {7, 19}, {27, 1803}, {28, 4298}, {85, 92}, {108, 2725}, {142, 281}, {241, 5089}, {273, 1826}, {514, 3064}, {518, 1861}, {908, 4564}, {958, 1398}, {1430, 3011}, {1456, 1503}, {1783, 3008}, {1890, 1892}, {2331, 4000}, {3947, 5142}


X(5237) = INTERSECTION OF LINES X(3)X(6) AND X(14)X(20)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(5b2 + 5c2 - 5a2 - (12)1/2S)

X(5237) lies on these lines: {3, 6}, {13, 140}, {14, 20}, {17, 631}, {18, 30}, {35, 202}, {203, 5204}, {395, 550}, {396, 3530}, {397, 549}, {398, 548}, {530, 630}, {532, 628}, {616, 636}, {619, 634}, {627, 3642}, {1092, 3201}, {2306, 5131}

X(5237) = Schoutte-circle-inverse of X(34755)


X(5238) = INTERSECTION OF LINES X(3)X(6) AND X(13)X(20)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(5b2 + 5c2 - 5a2 + (12)1/2S)

X(5238) lies on these lines: {3, 6}, {13, 20}, {14, 140}, {17, 30}, {18, 631}, {35, 203}, {202, 5204}, {395, 3530}, {396, 550}, {397, 548}, {398, 549}, {531, 629}, {533, 627}, {617, 635}, {618, 633}, {628, 3643}, {1092, 3200}, {2307, 5010}

X(5238) = Schoutte circle inverse of X(34754)


X(5239) = INTERSECTION OF LINES X(1)X(6) AND X(10)X(17)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(b2 + c2 - a2 + 2bc - (12)1/2S)

X(5239) lies on these lines: {1, 6}, {2, 559}, {3, 1277}, {8, 1251}, {10, 17}, {16, 214}, {56, 1653}, {61, 3878}, {63, 1082}, {65, 1652}, {142, 3638}, {203, 758}, {471, 1833}, {517, 1276}, {527, 3639}, {2307, 3869}

X(5239) = complement of X(36928)


X(5240) = INTERSECTION OF LINES X(1)X(6) AND X(10)X(18)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b2 + c2 - a2 + 2bc + (12)1/2S)

X(5240) lies on these lines: {1, 6}, {2, 1082}, {3, 1276}, {10, 18}, {15, 214}, {21, 1251}, {36, 3179}, {56, 1652}, {62, 3878}, {63, 559}, {65, 1653}, {142, 3639}, {202, 758}, {470, 1832}, {517, 1277}, {527, 3638}

X(5240) = isogonal conjugate of X(33655)
X(5240) = complement of X(36929)


X(5241) = INTERSECTION OF LINES X(2)X(6) AND X(10)X(11)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b3 + c3 + a2 + ac2 + 6abc + b2c + bc2

X(5241) lies on these lines: {1, 4023}, {2, 6}, {10, 11}, {354, 4104}, {594, 4358}, {899, 4026}, {908, 3739}, {3216, 4205}, {3306, 4643}, {3775, 4871}, {3846, 5087}, {3847, 3925}, {4054, 4688}, {4239, 5096}, {4359, 4415}, {4364, 4850}, {4665, 4671}

X(5241) = complement of X(37633)


X(5242) = INTERSECTION OF LINES X(2)X(7) AND X(10)X(18)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2 - ab - ac - (12)1/2S)

X(5242) lies on these lines: {2, 7}, {10, 18}, {302, 3912}, {303, 4416}, {395, 1100}, {946, 1277}


X(5243) = INTERSECTION OF LINES X(2)X(7) AND X(10)X(17)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2 - ab - ac + (12)1/2S)

X(5243) lies on these lines: {2, 7}, {10, 17}, {302, 4416}, {303, 3912}, {396, 1100}, {946, 1276}


X(5244) = INTERSECTION OF LINES X(6)X(7) AND X(10)X(12)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b + c)(2a2 + b2 + c2 + ab + ac)/(b + c - a)

X(5244) lies on these lines: {6, 7}, {10, 12}, {57, 1759}, {241, 3674}, {1386, 1890}, {2295, 4415}


X(5245) = INTERSECTION OF LINES X(8)X(9) AND X(10)X(17)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b + c - a)(a2 + ab + ac + (12)1/2S)

X(5245) lies on these lines: {8, 9}, {10, 17}, {515, 1277}, {1652, 4848}


X(5246) = INTERSECTION OF LINES X(8)X(9) AND X(10)X(18)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b + c - a)(a2 + ab + ac - (12)1/2S)

X(5246) lies on these lines: {8, 9}, {10, 18}, {515, 1276}, {1653, 4848}


X(5247) = INTERSECTION OF LINES X(1)X(6) AND X(8)X(31)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(a3 + a2b + a2c + abc - b2c - bc2)

X(5247) lies on these lines: {1, 6}, {2, 1468}, {3, 43}, {4, 1957}, {8, 31}, {10, 58}, {21, 42}, {28, 291}, {32, 3684}, {35, 3293}, {36, 3216}, {40, 1707}, {46, 4650}, {56, 978}, {57, 1722}, {63, 986}, {65, 1046}, {71, 1778}, {100, 3214}, {109, 4848}, {145, 3915}, {162, 2907}, {172, 2238}, {191, 4424}, {212, 3486}, {227, 1758}, {239, 384}, {256, 1245}, {341, 3769}, {355, 3072}, {386, 993}, {388, 1451}, {404, 899}, {484, 3987}, {515, 580}, {517, 3073}, {519, 595}, {602, 944}, {603, 1788}, {614, 3976}, {651, 1042}, {744, 4647}, {748, 3616}, {846, 3931}, {896, 4642}, {902, 3871}, {938, 1496}, {959, 1405}, {961, 1400}, {976, 3681}, {988, 2999}, {1009, 3783}, {1043, 1918}, {1126, 4653}, {1183, 2347}, {1193, 2975}, {1253, 4313}, {1330, 2887}, {1376, 4252}, {1430, 5125}, {1445, 4320}, {1471, 3600}, {1478, 1714}, {1572, 4051}, {1610, 2183}, {1737, 3075}, {1738, 4292}, {1739, 3336}, {1777, 2093}, {1837, 1936}, {1891, 2299}, {1914, 3780}, {2239, 4201}, {2292, 3219}, {2650, 4722}, {3008, 4298}, {3052, 3913}, {3240, 4189}, {3436, 5230}, {3647, 4868}, {3686, 4264}, {3720, 5047}, {3868, 3924}, {4234, 4685}, {4355, 4859}, {4362, 4385}, {4640, 4646}, {4673, 4676}


X(5248) = INTERSECTION OF LINES X(1)X(21) AND X(2)X(35)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(a3 - ab2 - ac2 - 2abc - b2c - bc2)

X(5248) lies on these lines: {1, 21}, {2, 35}, {3, 142}, {4, 3822}, {8, 3746}, {9, 943}, {10, 55}, {32, 37}, {36, 3616}, {40, 1006}, {41, 3294}, {42, 1724}, {56, 551}, {72, 3683}, {86, 4278}, {100, 1698}, {101, 2304}, {140, 3816}, {165, 3833}, {198, 3986}, {200, 4015}, {214, 3612}, {238, 386}, {354, 3916}, {377, 4302}, {388, 535}, {392, 2646}, {404, 3624}, {411, 1699}, {452, 3085}, {474, 4423}, {496, 4999}, {498, 2478}, {515, 3560}, {519, 958}, {581, 3073}, {631, 2077}, {748, 3216}, {759, 931}, {936, 4326}, {942, 4640}, {956, 3244}, {976, 2210}, {978, 4256}, {997, 3601}, {999, 3636}, {1012, 4297}, {1013, 1838}, {1100, 4047}, {1104, 3931}, {1107, 2241}, {1214, 4347}, {1259, 4847}, {1376, 3634}, {1500, 4426}, {1617, 4298}, {1697, 2802}, {1706, 3968}, {1748, 1844}, {1777, 4303}, {1788, 3256}, {1792, 3886}, {2177, 3293}, {2293, 3682}, {2346, 5223}, {2476, 3583}, {2901, 4362}, {2922, 3145}, {3006, 4894}, {3149, 3817}, {3158, 3956}, {3246, 4719}, {3338, 4652}, {3428, 4301}, {3434, 4309}, {3454, 3771}, {3555, 3748}, {3579, 3812}, {3626, 3913}, {3670, 4414}, {3679, 3871}, {3689, 3697}, {3828, 4421}, {3924, 4424}, {4004, 5183}, {4197, 4330}, {5084, 5218}

X(5248) = excentral-to-2nd-circumperp similarity image of X(12514)


X(5249) = INTERSECTION OF LINES X(2)X(7) AND X(21)X(36)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b3 + c3 - a2b - a2c - 2abc - b2c - bc2

X(5249) lies on these lines: {1, 224}, {2, 7}, {5, 1071}, {8, 4208}, {10, 3681}, {11, 3742}, {12, 3812}, {20, 946}, {21, 36}, {27, 86}, {37, 3782}, {42, 1738}, {55, 1004}, {75, 306}, {77, 278}, {78, 443}, {81, 3664}, {85, 92}, {171, 3011}, {210, 3826}, {239, 2890}, {312, 1269}, {320, 333}, {321, 1930}, {354, 2886}, {379, 2140}, {442, 942}, {474, 1259}, {495, 3753}, {497, 4666}, {516, 1621}, {518, 3925}, {528, 3748}, {551, 4304}, {554, 5239}, {914, 1441}, {938, 5177}, {940, 3772}, {948, 4350}, {950, 2475}, {960, 3649}, {1001, 1836}, {1012, 1519}, {1056, 3872}, {1081, 5240}, {1086, 3666}, {1210, 2476}, {1211, 3739}, {1215, 3836}, {1659, 3084}, {1737, 3822}, {1838, 4303}, {1959, 3674}, {2550, 3475}, {2895, 3686}, {2975, 4298}, {2999, 4859}, {3075, 3561}, {3120, 3720}, {3187, 3879}, {3220, 4228}, {3601, 4190}, {3622, 4313}, {3671, 3869}, {3687, 3936}, {3706, 4966}, {3741, 5208}, {3757, 4645}, {3771, 3980}, {3814, 3833}, {3841, 3874}, {3847, 4892}, {3848, 5087}, {3873, 4847}, {3890, 4301}, {3897, 4311}, {3969, 4431}, {4312, 4512}

X(5249) = isogonal conjugate of X(2259)
X(5249) = complement of X(3219)


X(5250) = INTERSECTION OF LINES X(1)X(21) AND X(2)X(40)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b + c - a)(a2 + b2 + c2 + 2ab + 2ac)

In the plane of a triangle ABC, let
I = X(1) = incenter;
DEF = intouch triangle;
(O) = circumcircle;
A' = the point, other than A, where the circle {{A,I,D}} meets (O), and define B' and C' cyclically;
Oa = center of the circle {{B',E,F,C'}}, and define Ob and Oc cyclically;
Oaa = A-extraversion of Oa, and define Obb and Occ cyclically;
T = affine transfomation that maps ABC onto OaObOc;
TT = affine transformation that maps ABC onto OaaObbOcc.
Then X(4350) = finite fixed point of T, and X(5250) = finite fixed point of TT. (Angel Montesdeoca, December 29, 2023)

X(5250) lies on these lines: {1, 21}, {2, 40}, {3, 392}, {8, 9}, {10, 1479}, {19, 29}, {35, 997}, {46, 1125}, {55, 78}, {56, 4640}, {57, 3616}, {65, 1001}, {72, 3295}, {77, 221}, {100, 936}, {145, 3219}, {165, 404}, {169, 3294}, {200, 3871}, {210, 3913}, {220, 4520}, {333, 4673}, {377, 516}, {380, 2287}, {405, 517}, {443, 3587}, {474, 3579}, {484, 3624}, {518, 3303}, {551, 3338}, {614, 986}, {631, 3359}, {748, 1722}, {908, 3085}, {942, 4666}, {958, 3057}, {964, 1766}, {976, 3749}, {988, 1201}, {999, 3916}, {1005, 1490}, {1039, 2212}, {1158, 3576}, {1191, 3666}, {1220, 4676}, {1329, 4679}, {1698, 4193}, {1699, 2476}, {1708, 3340}, {1709, 4297}, {2255, 2256}, {2334, 4663}, {2944, 4203}, {3158, 4420}, {3218, 3333}, {3241, 3929}, {3555, 3927}, {3586, 5086}, {3601, 4511}, {3652, 3655}, {3678, 4917}, {3679, 5178}, {3704, 3966}, {3714, 4387}, {3715, 4662}, {3729, 4968}, {3742, 5221}, {3746, 3811}, {3748, 3962}, {3812, 4423}, {3885, 4853}, {4255, 4689}, {4329, 4357}, {4383, 4646}


X(5251) = INTERSECTION OF LINES X(1)X(6) AND X(2)X(36)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(a3 - ab2 - ac2 - abc - 2b2c - 2bc2)

X(5251) lies on these lines: {1, 6}, {2, 36}, {3, 1698}, {8, 3746}, {10, 21}, {28, 1224}, {30, 3925}, {40, 3560}, {42, 4653}, {55, 3679}, {56, 3624}, {63, 4880}, {65, 191}, {71, 4877}, {119, 140}, {165, 1012}, {261, 5209}, {404, 3634}, {442, 3585}, {443, 4299}, {452, 1479}, {484, 3753}, {498, 2551}, {499, 5084}, {515, 1006}, {517, 3683}, {519, 1621}, {748, 995}, {750, 4257}, {758, 3219}, {846, 4424}, {899, 4256}, {908, 1125}, {936, 3612}, {997, 3305}, {999, 4423}, {1308, 2752}, {1334, 4752}, {1376, 5010}, {1573, 1914}, {1699, 3428}, {2099, 3899}, {2475, 3841}, {2550, 4302}, {2646, 5044}, {2886, 3583}, {3086, 5129}, {3295, 3632}, {3303, 3633}, {3336, 3812}, {3579, 3698}, {3582, 3816}, {3626, 3871}, {3647, 3754}, {3691, 4251}, {3715, 3940}, {3757, 4692}, {3826, 4316}, {3833, 4973}, {3844, 4265}, {3884, 4861}, {3901, 3927}, {3913, 4668}, {4015, 4420}, {4187, 4999}, {4223, 5144}, {4309, 5082}, {4428, 4677}, {4512, 5119}


X(5252) = INTERSECTION OF LINES X(1)X(5) AND X(7)X(8)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (a2 + b2 + c2 - ab - ac + 2bc)/(b + c - a)

X(5252) lies on these lines: {1, 5}, {2, 1319}, {4, 1000}, {7, 8}, {10, 56}, {30, 5119}, {34, 1883}, {55, 515}, {57, 3679}, {63, 529}, {145, 3485}, {210, 3421}, {225, 5130}, {226, 519}, {354, 1056}, {392, 4679}, {443, 3698}, {484, 3654}, {498, 1385}, {517, 1478}, {528, 3895}, {553, 4669}, {594, 2285}, {899, 1450}, {944, 2646}, {946, 2098}, {950, 954}, {960, 3436}, {962, 5229}, {993, 5172}, {999, 1737}, {1010, 1408}, {1125, 1388}, {1155, 4293}, {1210, 3304}, {1376, 1470}, {1415, 4386}, {1420, 1698}, {1788, 3600}, {1826, 2256}, {1877, 5101}, {2475, 3909}, {2476, 4861}, {2886, 3872}, {3036, 3306}, {3058, 3586}, {3241, 4870}, {3244, 3947}, {3339, 4668}, {3340, 3632}, {3434, 3880}, {3474, 5183}, {3488, 3748}, {3579, 4299}, {3584, 3655}, {3621, 5178}, {3625, 3671}, {3626, 4031}, {3877, 5080}, {3890, 5046}, {3893, 5082}, {4297, 5217}, {4311, 5204}, {4415, 5155}, {4654, 4677}

X(5252) = outer-Johnson-to-ABC similarity image of X(1)


X(5253) = INTERSECTION OF LINES X(1)X(88) AND X(2)X(12)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(a3 - ab2 - ac2 + 3abc + b2c + bc2)

X(5253) lies on these lines: {1, 88}, {2, 12}, {3, 962}, {5, 104}, {8, 474}, {11, 2475}, {21, 36}, {35, 551}, {40, 3890}, {46, 3877}, {55, 3622}, {57, 3869}, {63, 3361}, {78, 3333}, {81, 1193}, {85, 934}, {86, 4225}, {145, 1376}, {171, 1201}, {191, 4973}, {377, 3086}, {411, 3576}, {484, 3884}, {497, 4190}, {499, 2476}, {758, 3337}, {908, 4298}, {936, 3681}, {942, 4511}, {960, 3218}, {976, 3976}, {978, 1468}, {993, 3624}, {997, 3338}, {1001, 4189}, {1004, 4313}, {1014, 4357}, {1104, 4239}, {1210, 5086}, {1290, 3109}, {1319, 3812}, {1470, 3485}, {1476, 5176}, {1478, 4193}, {2260, 2287}, {2306, 5240}, {2478, 4293}, {2646, 3742}, {3294, 5030}, {3336, 3878}, {3428, 3523}, {3555, 4420}, {3585, 3825}, {3601, 4666}, {3617, 4413}, {3623, 3913}, {3636, 3746}, {3753, 4861}, {3811, 3889}, {3816, 5046}, {4187, 5080}, {4696, 5205}, {5187, 5229}


X(5254) = INTERSECTION OF LINES X(4)X(6) AND X(30)X(32)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b2 - c2)2 + a2(b2 + c2)

Let U be the circle obtained as the inverse-in-the-polar-circle of the 2nd Lemoine circle. The center of U is X(5254). (Randy Hutson, November 22, 2014)

X(5254) lies on these lines: {2, 1975}, {3, 230}, {4, 6}, {5, 39}, {11, 2275}, {12, 2276}, {20, 3053}, {30, 32}, {76, 141}, {83, 597}, {140, 574}, {148, 384}, {184, 460}, {185, 1562}, {187, 550}, {194, 325}, {232, 235}, {290, 695}, {297, 3981}, {315, 524}, {316, 3629}, {338, 1235}, {376, 5023}, {381, 2548}, {395, 616}, {396, 617}, {427, 1194}, {489, 3068}, {490, 3069}, {495, 1500}, {496, 1015}, {538, 626}, {548, 5206}, {594, 4385}, {595, 5134}, {726, 4136}, {1086, 3673}, {1105, 1970}, {1107, 2886}, {1146, 3959}, {1180, 5133}, {1184, 1370}, {1196, 1368}, {1329, 1575}, {1353, 1570}, {1384, 1657}, {1574, 3820}, {1596, 3199}, {1656, 3055}, {1885, 1968}, {3061, 3944}, {3522, 5210}, {3564, 5028}, {3589, 4048}, {3627, 5007}, {3721, 3782}, {3845, 5041}, {3934, 4045}, {4173, 5167}

X(5254) = midpoint of X(3070) and X(3071)
X(5254) = complement of X(1975)
X(5254) = anticomplement of X(7789)
X(5254) = exsimilicenter of nine-point and (1/2)-Moses circles; the insimilicenter is X(3815)
X(5254) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (5,39,3815), (39,115,5)


X(5255) = INTERSECTION OF LINES X(1)X(3) AND X(8)X(31)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(a3 + a2b + a2c - abc + b2c + bc2)

X(5255) lies on these lines: {1, 3}, {2, 3915}, {4, 983}, {6, 979}, {8, 31}, {9, 989}, {10, 82}, {21, 902}, {32, 2329}, {37, 3496}, {42, 3871}, {44, 4662}, {58, 519}, {72, 3961}, {100, 1193}, {145, 1468}, {213, 3684}, {341, 4676}, {355, 3073}, {404, 1201}, {518, 1046}, {528, 1834}, {582, 3654}, {601, 944}, {603, 3476}, {643, 2363}, {750, 3616}, {752, 1330}, {958, 3052}, {976, 3869}, {978, 1191}, {1106, 4308}, {1203, 3293}, {1253, 4344}, {1254, 4318}, {1279, 3812}, {1386, 4646}, {1572, 3061}, {1706, 1722}, {1724, 3679}, {1743, 3713}, {1914, 2295}, {2176, 4386}, {2269, 2298}, {2292, 3920}, {2321, 4264}, {2650, 3722}, {2901, 4693}, {3434, 5230}, {3743, 5184}, {3769, 4673}, {3868, 3938}, {3923, 4385}, {3973, 4866}, {3997, 4251}, {4255, 4421}, {4418, 4968}, {4649, 5145}

X(5255) = {X(1),X(3)}-harmonic conjugate of X(37617)


X(5256) = INTERSECTION OF LINES X(1)X(2) AND X(6)X(63)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (a + b + c)2 - 2bc
Barycentrics   g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = a(a2 + b2 + c2 + 2ab + 2ac)

X(5256) lies on these lines: {1, 2}, {6, 63}, {7, 223}, {21, 1453}, {27, 34}, {33, 469}, {37, 3305}, {38, 3751}, {55, 1386}, {56, 4719}, {57, 77}, {58, 4652}, {92, 2331}, {193, 4001}, {204, 1013}, {226, 3946}, {238, 968}, {312, 4360}, {321, 3875}, {329, 3672}, {333, 3759}, {345, 3618}, {380, 3101}, {440, 1062}, {464, 1040}, {553, 4667}, {748, 1962}, {894, 3210}, {908, 3553}, {940, 1100}, {982, 4649}, {988, 1468}, {1211, 4272}, {1214, 1445}, {1230, 3760}, {1376, 3745}, {1427, 4350}, {1707, 2308}, {1743, 3219}, {1763, 2172}, {2177, 3749}, {2352, 5132}, {3052, 4689}, {3247, 3930}, {3434, 3755}, {3677, 3873}, {3886, 3896}, {3923, 4970}, {3966, 4026}, {3993, 4011}, {4021, 4656}, {4085, 4865}, {4255, 4855}, {4270, 4357}, {4285, 4643}, {4413, 4682}, {4868, 5119}, {4886, 5224}

X(5256) = {X(1),X(2)}-harmonic conjugate of X(5287)


X(5257) = INTERSECTION OF LINES X(2)X(7) AND X(10)X(37)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b + c)(3a + b + c)

X(5257) lies on these lines: {1, 966}, {2, 7}, {6, 1125}, {8, 3247}, {10, 37}, {19, 406}, {45, 3634}, {71, 3294}, {75, 4044}, {86, 4416}, {141, 4698}, {145, 4034}, {192, 4967}, {198, 405}, {225, 281}, {228, 4204}, {238, 4264}, {391, 1449}, {392, 2262}, {461, 4512}, {551, 1100}, {573, 946}, {756, 3778}, {860, 1826}, {978, 5105}, {993, 2178}, {1001, 4254}, {1010, 4877}, {1211, 4035}, {1266, 4699}, {1654, 3879}, {1698, 1738}, {1743, 3624}, {2171, 4848}, {2238, 4104}, {3008, 4657}, {3244, 3723}, {3617, 4007}, {3622, 4982}, {3632, 4545}, {3636, 4856}, {3663, 3739}, {3664, 4643}, {3671, 4047}, {3679, 4060}, {3912, 4687}, {3946, 4384}, {3949, 3970}, {3965, 4847}, {3985, 4656}, {4021, 4361}, {4061, 4771}, {4260, 5044}, {4389, 4751}, {4431, 4664}, {4648, 4748}, {4665, 4681}, {4668, 4898}


X(5258) = INTERSECTION OF LINES X(1)X(6) AND X(8)X(35)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(a3 - ab2 - ac2 + abc - 2b2c - 2bc2)

X(5258) lies on these lines: {1, 6}, {3, 3679}, {8, 35}, {10, 36}, {21, 519}, {55, 3632}, {56, 1698}, {65, 4880}, {100, 3626}, {101, 3691}, {172, 1573}, {191, 517}, {200, 3612}, {210, 1385}, {214, 4015}, {442, 529}, {443, 4317}, {484, 3916}, {498, 3421}, {499, 2551}, {515, 3651}, {528, 4330}, {535, 2475}, {551, 5047}, {961, 1224}, {999, 3624}, {1005, 4847}, {1319, 5044}, {1388, 3715}, {1444, 4967}, {1478, 5177}, {1482, 3899}, {1621, 3244}, {2099, 3927}, {2550, 4299}, {2802, 3647}, {2886, 3585}, {3214, 4256}, {3218, 3754}, {3219, 3878}, {3295, 3633}, {3336, 3753}, {3337, 3812}, {3560, 3929}, {3582, 4187}, {3625, 3871}, {3678, 4511}, {3681, 3897}, {3730, 4390}, {3813, 4857}, {3820, 5193}, {3913, 4677}, {3918, 4973}, {3956, 4881}, {4302, 5082}, {4668, 5010}, {4853, 5119}


X(5259) = INTERSECTION OF LINES X(1)X(6) AND X(2)X(35)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(a3 - ab2 - ac2 - 3abc - 2b2c - 2bc2)

X(5259) lies on these lines: {1, 6}, {2, 35}, {3, 1699}, {10, 1621}, {12, 2078}, {21, 36}, {28, 1839}, {46, 4512}, {55, 1698}, {56, 4355}, {58, 3720}, {100, 3634}, {105, 1224}, {140, 2077}, {142, 1770}, {191, 942}, {386, 748}, {411, 3817}, {442, 3583}, {443, 4302}, {452, 1478}, {474, 5010}, {484, 3812}, {498, 5084}, {551, 2975}, {846, 3670}, {946, 1006}, {993, 3616}, {1089, 3757}, {1193, 4653}, {1259, 5231}, {1283, 5051}, {1329, 3584}, {1838, 4183}, {2260, 4877}, {2308, 4658}, {2550, 4309}, {2886, 4857}, {3085, 5129}, {3218, 3647}, {3219, 3874}, {3245, 3754}, {3293, 3750}, {3295, 3679}, {3303, 3632}, {3305, 3811}, {3336, 4640}, {3337, 3742}, {3560, 3576}, {3582, 4999}, {3685, 4647}, {3822, 5046}, {3848, 5131}, {3894, 3927}, {3898, 4861}, {3935, 4015}, {4068, 4716}


X(5260) = INTERSECTION OF LINES X(2)X(12) AND X(10)X(21)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(a3 - ab2 - ac2 - abc - 3b2c - 3bc2)

X(5260) lies on these lines: {1, 748}, {2, 12}, {8, 405}, {9, 1405}, {10, 21}, {36, 3634}, {55, 3617}, {63, 3339}, {65, 3219}, {104, 140}, {145, 1001}, {191, 3754}, {355, 1006}, {392, 4861}, {404, 993}, {442, 5080}, {452, 3434}, {484, 3647}, {502, 1224}, {644, 3294}, {846, 4642}, {950, 5178}, {956, 3616}, {984, 3924}, {997, 3897}, {1043, 4651}, {1104, 3920}, {1320, 3884}, {1376, 4189}, {1478, 4197}, {1722, 4850}, {1757, 2650}, {1891, 4233}, {2078, 5176}, {2475, 3925}, {2646, 3740}, {2886, 5046}, {3091, 3428}, {3218, 3812}, {3293, 4653}, {3303, 3621}, {3337, 3833}, {3579, 4002}, {3585, 3841}, {3622, 4423}, {3626, 3746}, {3679, 3871}, {3697, 4420}, {3698, 4640}, {3757, 4696}, {3872, 3890}, {3913, 4678}, {3935, 4662}, {4183, 5174}, {4188, 4413}, {4511, 5044}


X(5261) = INTERSECTION OF LINES X(2)X(12) AND X(7)X(10)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (a2 + 3b2 + 3c2 + 6bc)/(b + c - a)

X(5261) lies on these lines: {1, 3091}, {2, 12}, {4, 390}, {5, 1056}, {7, 10}, {8, 226}, {11, 5068}, {20, 35}, {34, 3920}, {55, 3146}, {65, 3617}, {85, 341}, {145, 3485}, {192, 2996}, {355, 3487}, {381, 1058}, {387, 1126}, {391, 1405}, {442, 3421}, {452, 2078}, {496, 3545}, {497, 3832}, {498, 3523}, {519, 4323}, {612, 4296}, {976, 2647}, {984, 1254}, {986, 4346}, {999, 3090}, {1125, 4308}, {1219, 3705}, {1393, 4392}, {1441, 4385}, {1469, 3620}, {1479, 3839}, {1617, 5047}, {1698, 4298}, {1722, 4327}, {1837, 3475}, {2099, 3621}, {3086, 5056}, {3303, 5225}, {3304, 3614}, {3361, 3634}, {3476, 3622}, {3522, 5218}, {3543, 3585}, {3584, 4299}, {3616, 5219}, {3624, 4315}, {3649, 4678}, {3671, 3679}, {3704, 4461}, {3870, 5175}, {3961, 4332}, {4654, 4848}


X(5262) = INTERSECTION OF LINES X(1)X(2) AND X(7)X(34)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(a3 + b3 + c3 + a2b + a2c + ab2 + ac2 + abc)

X(5262) lies on these lines: {1, 2}, {3, 4850}, {6, 977}, {7, 34}, {21, 1104}, {28, 60}, {31, 986}, {37, 5047}, {57, 4296}, {58, 3218}, {63, 1453}, {65, 82}, {75, 964}, {77, 1467}, {238, 2292}, {257, 1178}, {312, 5192}, {350, 1228}, {377, 4000}, {404, 3752}, {452, 3672}, {595, 4424}, {758, 1203}, {950, 3100}, {982, 1468}, {990, 3146}, {1010, 4359}, {1040, 4313}, {1046, 2308}, {1062, 3488}, {1100, 2303}, {1191, 3877}, {1220, 4968}, {1245, 4388}, {1325, 2363}, {1442, 3212}, {1449, 2082}, {1621, 3931}, {1724, 3219}, {1743, 3951}, {2476, 3772}, {2646, 4719}, {3210, 4195}, {3315, 5045}, {3337, 4351}, {3339, 4347}, {3744, 3871}, {3745, 3812}, {3746, 4868}, {3876, 4383}, {3891, 4385}, {4972, 5015}, {5090, 5142}


X(5263) = INTERSECTION OF LINES X(1)X(75) AND X(2)X(11)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a3 + ab2 + ac2 + abc + b2c + bc2

X(5263) lies on these lines: {1, 75}, {2, 11}, {6, 8}, {9, 4676}, {10, 82}, {19, 29}, {31, 333}, {37, 3685}, {38, 4418}, {42, 3996}, {69, 4307}, {85, 2263}, {87, 1222}, {141, 4645}, {171, 3741}, {190, 984}, {239, 1386}, {312, 612}, {321, 3920}, {516, 4357}, {518, 894}, {519, 4649}, {752, 3775}, {958, 4195}, {982, 3980}, {993, 4234}, {1008, 5224}, {1125, 1738}, {1211, 4388}, {1215, 3961}, {1266, 4353}, {1279, 3739}, {1441, 4318}, {1757, 4672}, {1861, 5174}, {1999, 3706}, {2049, 3295}, {2607, 3878}, {2975, 3286}, {3219, 4981}, {3241, 4499}, {3242, 4363}, {3246, 3846}, {3416, 3661}, {3616, 4000}, {3664, 4684}, {3744, 3757}, {3751, 3758}, {3842, 4432}, {3879, 4349}, {3993, 4693}, {4709, 4716}, {4732, 4974}

X(5263) = anticomplement of X(4026)


X(5264) = INTERSECTION OF LINES X(1)X(3) AND X(10)X(31)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(a3 + a2b + a2c + b2c + bc2)

X(5264) lies on these lines: {1, 3}, {2, 595}, {6, 3293}, {8, 58}, {10, 31}, {32, 2295}, {37, 1759}, {41, 3997}, {43, 1203}, {44, 3697}, {79, 983}, {80, 987}, {81, 3871}, {82, 4429}, {90, 989}, {100, 386}, {109, 388}, {191, 984}, {213, 4386}, {238, 1698}, {404, 995}, {405, 3052}, {474, 1191}, {515, 601}, {519, 1468}, {573, 2298}, {594, 4275}, {609, 2329}, {748, 3634}, {750, 1125}, {758, 976}, {956, 4252}, {1046, 3961}, {1089, 3923}, {1104, 3753}, {1106, 4315}, {1210, 1497}, {1253, 4349}, {1254, 4347}, {1376, 3216}, {1451, 4848}, {1453, 1706}, {1478, 1777}, {1714, 2550}, {2308, 3214}, {2345, 4264}, {2975, 4257}, {3085, 4307}, {3754, 3924}, {3874, 3938}, {4362, 4647}, {4450, 5051}


X(5265) = INTERSECTION OF LINES X(2)X(12) AND X(20)X(36)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b2 + c2 - 5a2 + 2bc)/(b + c - a)

X(5265) lies on these lines: {1, 3523}, {2, 12}, {3, 390}, {7, 1125}, {8, 1420}, {10, 4308}, {11, 3146}, {20, 36}, {34, 4232}, {43, 4322}, {57, 3616}, {65, 3622}, {108, 4200}, {140, 1056}, {145, 1319}, {193, 1428}, {201, 4392}, {238, 1106}, {279, 1447}, {348, 3598}, {376, 496}, {391, 604}, {404, 1617}, {439, 4366}, {495, 3525}, {497, 3522}, {499, 3091}, {551, 3339}, {614, 4296}, {631, 999}, {938, 3576}, {944, 5126}, {956, 1476}, {978, 1458}, {988, 3672}, {993, 5129}, {1388, 3623}, {1445, 3333}, {1466, 1621}, {1470, 4189}, {1471, 3945}, {1478, 5056}, {1698, 4315}, {3241, 4848}, {3295, 3524}, {3304, 5218}, {3476, 3617}, {3543, 3582}, {3624, 4298}, {3660, 3868}, {5059, 5225}, {5068, 5229}


X(5266) = INTERSECTION OF LINES X(1)X(3) AND X(32)X(37)

Trilinears        arSA - SSA : brSA - SSB : crSA - SSC    César Lozada (9/07/2013)
Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(2a3 + b3 + c3 + a2b +a2c + b2c + bc2)

X(5266) lies on these lines: {1, 3}, {2, 5015}, {4, 4339}, {6, 3694}, {10, 1104}, {21, 3920}, {31, 72}, {32, 37}, {38, 3916}, {39, 1100}, {42, 1009}, {44, 3678}, {58, 518}, {187, 3723}, {200, 1453}, {210, 1724}, {238, 5044}, {386, 1386}, {387, 3189}, {392, 1472}, {405, 612}, {442, 3011}, {474, 614}, {519, 3704}, {595, 960}, {601, 1071}, {902, 2292}, {943, 2298}, {975, 1001}, {983, 987}, {997, 1191}, {1010, 3757}, {1125, 1279}, {1384, 3247}, {1427, 4347}, {1468, 3555}, {1707, 3927}, {1770, 3782}, {1785, 1852}, {2204, 5089}, {3242, 4252}, {3293, 3689}, {3419, 5230}, {3475, 4340}, {3487, 4307}, {3753, 3924}, {3831, 4434}, {3879, 3933}, {3881, 4864}, {4195, 4385}, {4256, 4719}

X(5266) = {X(1),X(3)}-harmonic conjugate of X(37592)


X(5267) = INTERSECTION OF LINES X(3)X(10) AND X(21)X(36)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(2a3 - 2ab2 - 2ac2 - b2c - bc2)

X(5267) lies on these lines: {1, 89}, {2, 3585}, {3, 10}, {8, 5010}, {12, 535}, {21, 36}, {30, 4999}, {35, 519}, {46, 3919}, {55, 3244}, {56, 551}, {58, 2185}, {63, 3612}, {78, 4134}, {100, 3626}, {140, 3814}, {149, 4330}, {187, 1107}, {191, 4511}, {214, 960}, {404, 3634}, {405, 5204}, {501, 1098}, {549, 1329}, {550, 2886}, {574, 4426}, {758, 2646}, {942, 4973}, {956, 3625}, {1011, 3840}, {1030, 3686}, {1055, 3294}, {1155, 3754}, {1319, 3884}, {1385, 3878}, {1444, 3664}, {1621, 3636}, {1698, 4188}, {1861, 3520}, {2178, 3986}, {2475, 4316}, {2550, 3528}, {2551, 3524}, {3035, 3530}, {3560, 3817}, {3635, 3746}, {3741, 4184}, {3812, 5122}, {3927, 4525}, {3940, 4537}, {4386, 5206}


X(5268) = INTERSECTION OF LINES X(1)X(2) AND X(25)X(35)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(a2 + b2 + c2 + 4bc)

X(5268) lies on these lines: {1, 2}, {6, 3740}, {9, 171}, {12, 1038}, {22, 5010}, {25, 35}, {31, 3305}, {33, 5218}, {37, 1376}, {38, 3306}, {45, 4640}, {55, 5020}, {57, 984}, {63, 750}, {69, 4104}, {87, 2297}, {100, 968}, {165, 846}, {181, 3781}, {210, 940}, {230, 3553}, {305, 3761}, {345, 4078}, {427, 5155}, {474, 988}, {1001, 3749}, {1196, 2276}, {1215, 3718}, {1370, 3585}, {1447, 4328}, {1448, 3947}, {1469, 3819}, {1742, 1750}, {2263, 5226}, {2650, 3984}, {3158, 3750}, {3242, 3742}, {3247, 3290}, {3550, 4512}, {3554, 3815}, {3666, 4413}, {3715, 4641}, {3729, 3971}, {3744, 4423}, {3745, 4383}, {3772, 3826}, {3929, 4650}, {3966, 5241}, {3967, 4363}, {4339, 5129}

X(5268) = orthoptic-circle-of-Steiner-inellipse-inverse of X(38471)
X(5268) = {X(1),X(2)}-harmonic conjugate of X(5272)


X(5269) = INTERSECTION OF LINES X(1)X(3) AND X(9)X(31)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(3a2 + b2 + c2 + 2bc)

X(5269) lies on these lines: {1, 3}, {2, 3883}, {6, 200}, {9, 31}, {10, 1453}, {33, 1395}, {37, 3052}, {38, 3928}, {42, 1449}, {63, 3920}, {81, 3870}, {84, 601}, {181, 3056}, {197, 2270}, {204, 281}, {210, 1743}, {226, 3424}, {380, 3198}, {388, 1394}, {553, 4310}, {595, 975}, {611, 2003}, {614, 750}, {869, 2258}, {902, 968}, {950, 4339}, {984, 1707}, {985, 1961}, {987, 989}, {1001, 4682}, {1254, 4348}, {1376, 1386}, {1397, 2330}, {1407, 4321}, {1706, 4695}, {1999, 3886}, {2303, 2328}, {2318, 3997}, {3243, 3938}, {3474, 3663}, {3475, 3664}, {3632, 4046}, {3683, 3731}, {3715, 3973}, {3751, 3961}, {3782, 4312}, {3791, 4457}, {3923, 4135}, {4418, 4659}, {4641, 5223}


X(5270) = INTERSECTION OF LINES X(1)X(4) AND X(12)X(36)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b4 + c4 - a4 - 3a2bc - 2b2c2

X(5270) lies on these lines: {1, 4}, {2, 4317}, {3, 3584}, {5, 3582}, {8, 3901}, {10, 3218}, {11, 3850}, {12, 36}, {21, 535}, {30, 3746}, {35, 495}, {55, 1657}, {56, 1656}, {65, 2962}, {79, 517}, {80, 942}, {149, 3635}, {377, 3679}, {381, 3304}, {382, 3303}, {442, 529}, {484, 4292}, {496, 3858}, {498, 3523}, {499, 3600}, {519, 2475}, {548, 4995}, {551, 5046}, {952, 3649}, {999, 3851}, {1125, 5080}, {1698, 3436}, {1737, 3337}, {1935, 2964}, {2550, 4668}, {2975, 3822}, {3058, 3627}, {3085, 3522}, {3086, 5068}, {3146, 4309}, {3295, 5073}, {3434, 3633}, {3754, 5176}, {3874, 5086}, {3884, 5057}, {3920, 5189}, {3947, 4311}, {4302, 5059}

X(5270) = {X(1),X(4)}-harmonic conjugate of X(4857)


X(5271) = INTERSECTION OF LINES X(1)X(2) AND X(19)X(27)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a3 - ab2 - ac2 - 2abc - 2b2c - 2bc2

X(5271) lies on these lines: {1, 2}, {7, 4001}, {9, 321}, {19, 27}, {45, 3175}, {55, 3696}, {57, 1150}, {77, 1943}, {226, 3686}, {278, 307}, {312, 3305}, {322, 3306}, {329, 391}, {344, 3610}, {379, 4968}, {440, 3419}, {469, 5174}, {518, 4042}, {740, 968}, {850, 1021}, {940, 3739}, {964, 1453}, {1001, 3706}, {1211, 3772}, {1376, 2352}, {1621, 3886}, {1707, 4418}, {1746, 1766}, {1790, 1958}, {1817, 2975}, {2886, 3966}, {3219, 3729}, {3416, 3925}, {3434, 3883}, {3487, 4101}, {3578, 4654}, {3666, 4361}, {3715, 3967}, {3731, 3995}, {3782, 4643}, {3846, 4682}, {3875, 5235}, {3891, 4981}, {3929, 4659}, {3936, 4034}, {3969, 4007}, {4363, 4641}, {4417, 4886}

X(5271) = isogonal conjugate of X(2215)


X(5272) = INTERSECTION OF LINES X(1)X(2) AND X(57)X(238)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(a2 + b2 + c2 - 4bc)

X(5272) lies on these lines: {1, 2}, {6, 3742}, {9, 982}, {11, 1040}, {25, 36}, {31, 3306}, {38, 3305}, {56, 5020}, {57, 238}, {63, 244}, {87, 269}, {105, 165}, {142, 1716}, {230, 3554}, {305, 3760}, {354, 3751}, {405, 988}, {497, 1738}, {968, 4850}, {984, 3677}, {990, 3817}, {1001, 3752}, {1191, 3812}, {1196, 2275}, {1279, 1376}, {1370, 3583}, {1386, 3848}, {1435, 1957}, {1449, 4038}, {1699, 1721}, {1724, 3338}, {1739, 5119}, {3052, 3246}, {3056, 3819}, {3242, 3740}, {3271, 3784}, {3315, 3681}, {3361, 4223}, {3553, 3815}, {3666, 4423}, {3729, 4011}, {3744, 4413}, {3772, 3816}, {3782, 4679}, {3895, 4695}, {4327, 5226}, {4641, 4860}

X(5272) = {X(1),X(2)}-harmonic conjugate of X(5268)


X(5273) = INTERSECTION OF LINES X(2)X(7) AND X(8)X(21)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b + c - a)(b2 + c2 - 3a2 - 2ab - 2ac - 2bc)

X(5273) lies on these lines: {2, 7}, {8, 21}, {10, 20}, {27, 281}, {31, 4344}, {81, 219}, {189, 268}, {191, 4295}, {210, 5218}, {220, 940}, {261, 1264}, {312, 3161}, {348, 479}, {354, 960}, {377, 1155}, {390, 4512}, {391, 3687}, {405, 938}, {443, 3916}, {497, 3683}, {631, 1071}, {910, 966}, {936, 3523}, {1002, 5208}, {1200, 3691}, {1210, 5129}, {1212, 3666}, {1214, 3160}, {1329, 4197}, {1479, 2894}, {1617, 2975}, {1698, 4208}, {1707, 4307}, {1764, 3730}, {2096, 3820}, {2550, 4640}, {3187, 4460}, {3210, 4402}, {3241, 3748}, {3474, 3925}, {3487, 3927}, {3679, 4304}, {3711, 4995}, {3772, 4419}, {3869, 4323}, {3877, 4345}, {4860, 4999}

X(5273) = {X(2),X(63)}-harmonic conjugate of X(7)
X(5273) = complement of isotomic conjugate of X(30711)


X(5274) = INTERSECTION OF LINES X(2)X(11) AND X(20)X(36)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b + c - a)(a2 + 3b2 + 3c2 - 6bc)

X(5274) lies on these lines: {1, 3091}, {2, 11}, {4, 496}, {5, 1058}, {7, 1699}, {8, 3452}, {12, 5068}, {20, 36}, {56, 3146}, {145, 1837}, {150, 4845}, {279, 2898}, {330, 2996}, {346, 3705}, {381, 1056}, {388, 3832}, {495, 3545}, {499, 3523}, {519, 4345}, {614, 3100}, {938, 946}, {950, 3616}, {962, 1210}, {982, 2310}, {1125, 4208}, {1478, 3839}, {1788, 5183}, {1864, 3873}, {2098, 3621}, {2551, 3813}, {2900, 4511}, {3056, 3620}, {3057, 3617}, {3085, 5056}, {3090, 3295}, {3304, 5229}, {3486, 3622}, {3543, 3583}, {3582, 4302}, {3598, 4872}, {3624, 4314}, {3679, 4342}, {3741, 5232}, {3944, 4310}, {3945, 4038}, {4187, 5082}


X(5275) = INTERSECTION OF LINES X(2)X(6) AND X(19)X(25)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(a3 + ab2 + ac2 + 2abc + 2b2c + 2bc2)

X(5275) lies on these lines: {1, 2271}, {2, 6}, {9, 171}, {19, 25}, {21, 3053}, {22, 1030}, {32, 405}, {39, 474}, {45, 2243}, {56, 1107}, {169, 975}, {172, 958}, {220, 2295}, {305, 3770}, {392, 1572}, {404, 5013}, {406, 2207}, {442, 3767}, {614, 1100}, {672, 750}, {956, 1573}, {984, 3509}, {1001, 1914}, {1194, 4261}, {1196, 2092}, {1376, 2276}, {1447, 5228}, {1449, 4038}, {1468, 3691}, {1575, 4413}, {1610, 3207}, {1655, 1975}, {2235, 5205}, {2280, 3720}, {2548, 4187}, {3242, 3726}, {3247, 3750}, {3263, 4363}, {3291, 4277}, {3550, 3731}, {3923, 3985}, {4189, 5023}, {4223, 4258}, {4254, 5020}, {4262, 4653}, {4655, 4987}

X(5275) = {X(2),X(385)}-harmonic conjugate of X(16992)


X(5276) = INTERSECTION OF LINES X(2)X(6) AND X(9)X(31)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(a3 + ab2 + ac2 + abc + b2c + bc2)

X(5276) lies on these lines: {1, 41}, {2, 6}, {9, 31}, {21, 32}, {25, 941}, {37, 82}, {38, 3509}, {39, 404}, {42, 3684}, {100, 743}, {171, 672}, {172, 1107}, {284, 4224}, {384, 1655}, {573, 1754}, {584, 4228}, {595, 3294}, {609, 993}, {614, 1449}, {894, 3263}, {910, 3666}, {984, 985}, {1100, 3290}, {1180, 4261}, {1194, 2092}, {1196, 2670}, {1206, 3757}, {1333, 1627}, {1500, 3871}, {1572, 3877}, {1778, 4275}, {1922, 4518}, {2207, 4194}, {2292, 3496}, {2348, 3745}, {2476, 3767}, {2548, 4193}, {2651, 4274}, {3053, 4189}, {3598, 5228}, {3930, 3961}, {4188, 5013}, {4209, 4352}, {4239, 4277}, {4424, 5011}, {5007, 5047}


X(5277) = INTERSECTION OF LINES X(2)X(32) AND X(35)X(37)

Trilinears        a3r + bcS : b3r + caS : c3r + abS>    César Lozada (9/07/2013)
Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(a3 + abc + b2c + bc2)

X(5277) lies on these lines: {1, 1929}, {2, 32}, {6, 474}, {8, 2242}, {9, 2305}, {10, 172}, {12, 1415}, {21, 187}, {35, 37}, {36, 1107}, {39, 404}, {41, 750}, {58, 2238}, {99, 1655}, {100, 1500}, {101, 2295}, {112, 451}, {115, 2475}, {171, 213}, {199, 612}, {230, 442}, {274, 385}, {377, 3767}, {391, 5042}, {405, 3053}, {406, 1968}, {468, 2204}, {574, 4188}, {609, 1698}, {762, 2248}, {763, 1654}, {846, 2135}, {940, 2271}, {966, 5019}, {992, 4264}, {1125, 1914}, {1213, 1333}, {1573, 2975}, {2092, 2303}, {2160, 4016}, {2241, 3616}, {2549, 4190}, {3291, 4239}, {3509, 3954}, {3727, 5011}, {4189, 5206}


X(5278) = INTERSECTION OF LINES X(2)X(6) AND X(10)X(31)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a3 - ab2 - ac2 - 2abc - b2c - bc2

X(5278) lies on these lines: {1, 4981}, {2, 6}, {8, 405}, {9, 321}, {10, 31}, {37, 3187}, {45, 3995}, {55, 4651}, {63, 169}, {75, 3219}, {100, 1011}, {142, 4001}, {226, 1405}, {306, 2280}, {317, 445}, {573, 1746}, {748, 3741}, {756, 4362}, {896, 3980}, {956, 4245}, {968, 3896}, {984, 3891}, {1001, 4042}, {1125, 4101}, {1212, 3998}, {1229, 3719}, {1330, 4197}, {1441, 1708}, {1714, 5051}, {2177, 4685}, {2205, 4426}, {2476, 2651}, {2550, 4450}, {3006, 3966}, {3011, 4104}, {3120, 4703}, {3305, 4358}, {3681, 3757}, {3683, 3696}, {3691, 3765}, {3715, 3952}, {3729, 4980}, {3739, 4641}, {3791, 3842}, {3883, 5014}, {5081, 5136}


X(5279) = INTERSECTION OF LINES X(2)X(7) AND X(8)X(19)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b4 + c4 - a4 - a2bc + b3c + bc3)

X(5279) lies on these lines: {2, 7}, {6, 977}, {8, 19}, {10, 1781}, {20, 346}, {21, 37}, {27, 321}, {28, 72}, {40, 3692}, {48, 4511}, {69, 1760}, {71, 1761}, {75, 379}, {78, 610}, {100, 3694}, {101, 2327}, {169, 391}, {198, 1259}, {219, 608}, {272, 335}, {281, 3436}, {306, 2897}, {377, 2345}, {380, 3870}, {518, 2264}, {573, 1759}, {604, 3061}, {910, 3965}, {965, 3876}, {975, 3731}, {1172, 4463}, {1330, 4456}, {1442, 1959}, {1723, 4310}, {1817, 3998}, {1826, 5080}, {1953, 4861}, {2092, 2240}, {2171, 2329}, {2173, 3949}, {2174, 4053}, {2256, 3877}, {2269, 3496}, {2354, 4388}, {3950, 4304}


X(5280) = INTERSECTION OF LINES X(1)X(6) AND X(32)X(35)

Trilinears        SR + aSω : SR + bSω : SR + cSω    César Lozada (9/07/2013)
Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(a2 + b2 + c2 + bc)

X(5280) lies on these lines: {1, 6}, {3, 609}, {31, 3730}, {32, 35}, {36, 39}, {41, 386}, {42, 251}, {48, 5105}, {58, 672}, {71, 4264}, {81, 3912}, {83, 350}, {101, 1193}, {304, 3758}, {595, 1334}, {651, 3674}, {894, 1930}, {986, 1759}, {1015, 5041}, {1126, 1438}, {1174, 2299}, {1197, 3507}, {1384, 5217}, {1448, 2285}, {1468, 4253}, {1500, 1914}, {1890, 3755}, {1922, 3864}, {1973, 4270}, {2174, 5153}, {2242, 2275}, {2260, 4284}, {2503, 2653}, {3053, 5010}, {3056, 5039}, {3293, 3684}, {3496, 4424}, {3509, 3670}, {3685, 4099}, {3710, 3997}, {3744, 3991}, {3934, 4396}, {3961, 4006}, {4642, 5011}, {5024, 5204}


X(5281) = INTERSECTION OF LINES X(2)X(11) AND X(20)X(35)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b + c - a)(b2 + c2 - 5a2 - 2bc)

X(5281) lies on these lines: {1, 3523}, {2, 11}, {3, 1056}, {7, 165}, {8, 3158}, {9, 1200}, {10, 4313}, {12, 3146}, {20, 35}, {33, 4232}, {43, 2293}, {140, 1058}, {144, 4640}, {145, 2646}, {171, 1253}, {193, 2330}, {376, 495}, {388, 3522}, {391, 2268}, {496, 3525}, {498, 3091}, {516, 5226}, {551, 4345}, {612, 3100}, {631, 3295}, {999, 3524}, {1040, 3920}, {1155, 3475}, {1447, 3672}, {1479, 5056}, {1697, 3616}, {1698, 4314}, {1961, 4336}, {3057, 3622}, {3086, 3746}, {3486, 3617}, {3487, 3579}, {3543, 3584}, {3550, 4307}, {3614, 3854}, {3712, 3974}, {4293, 5010}, {5059, 5229}, {5068, 5225}


X(5282) = INTERSECTION OF LINES X(2)X(7) AND X(6)X(38)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b3 + c3 - a3 + b2c + bc2)

X(5282) lies on these lines: {2, 7}, {6, 38}, {8, 3496}, {10, 1759}, {31, 37}, {32, 976}, {41, 72}, {44, 4003}, {45, 896}, {55, 3930}, {66, 71}, {141, 4376}, {169, 3691}, {191, 3730}, {198, 199}, {201, 220}, {210, 910}, {218, 3927}, {517, 4390}, {518, 2280}, {748, 3290}, {956, 2170}, {984, 985}, {997, 1055}, {1212, 1451}, {1395, 5089}, {1707, 1961}, {1709, 1766}, {1761, 2345}, {1914, 3938}, {2235, 3116}, {2239, 2276}, {2243, 4386}, {2246, 4712}, {2269, 5227}, {2329, 3869}, {2911, 3958}, {2975, 3061}, {3679, 5011}, {3681, 3684}, {3693, 4640}, {3721, 3924}, {4119, 5014}, {4136, 5016}


X(5283) = INTERSECTION OF LINES X(1)X(6) AND X(2)X(39)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(ab2 + ac2 + abc + b2c + bc2)

X(5283) lies on these lines: {1, 6}, {2, 39}, {8, 1500}, {10, 2276}, {21, 32}, {35, 4386}, {42, 3691}, {115, 2476}, {172, 993}, {187, 4189}, {232, 406}, {377, 2549}, {386, 2238}, {391, 941}, {404, 574}, {474, 5013}, {612, 1011}, {756, 869}, {846, 3496}, {940, 5021}, {966, 2092}, {968, 2082}, {986, 3125}, {992, 5105}, {1015, 3616}, {1125, 2275}, {1213, 4261}, {1475, 3720}, {1506, 4193}, {1575, 1698}, {1621, 2241}, {2242, 2975}, {2268, 2304}, {2292, 3735}, {2295, 3730}, {2303, 5019}, {2478, 2548}, {3199, 4194}, {3666, 4384}, {3815, 4187}, {3959, 4424}, {4185, 5089}, {4251, 4653}, {4264, 4877}

X(5283) = isotomic conjugate of X(1218)
X(5283) = complement of X(34284)
X(5283) = {X(1),X(9)}-harmonic conjugate of X(213)


X(5284) = INTERSECTION OF LINES X(2)X(11) AND X(21)X(36)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(a2 - ab - ac - 3bc)

X(5284) lies on these lines: {1, 748}, {2, 11}, {9, 3873}, {21, 36}, {37, 3108}, {38, 3315}, {44, 4883}, {81, 238}, {210, 3957}, {244, 846}, {329, 405}, {354, 3219}, {404, 3624}, {484, 3833}, {496, 943}, {899, 3750}, {958, 3622}, {968, 4850}, {1155, 3848}, {1279, 3920}, {1320, 3898}, {1479, 4197}, {1617, 5226}, {1698, 3871}, {1848, 4233}, {2895, 4966}, {3218, 3683}, {3246, 3745}, {3303, 3617}, {3306, 4512}, {3337, 3647}, {3436, 5129}, {3634, 3746}, {3685, 4359}, {3715, 4661}, {3740, 3748}, {3741, 5235}, {3757, 4358}, {3812, 5183}, {3841, 4857}, {3936, 4204}, {4228, 4872}, {4418, 4432}, {4430, 5220}


X(5285) = INTERSECTION OF LINES X(1)X(3) AND X(9)X(25)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(b4 + c4 - a4 - a2bc + b3c + bc3)

X(5285) lies on these lines: {1, 3}, {9, 25}, {10, 28}, {22, 63}, {23, 3219}, {31, 579}, {33, 1766}, {42, 284}, {48, 3190}, {71, 1474}, {72, 2915}, {73, 3430}, {100, 306}, {101, 2318}, {109, 1297}, {154, 219}, {159, 197}, {181, 2330}, {184, 2323}, {198, 1260}, {199, 228}, {209, 2194}, {212, 573}, {222, 1350}, {226, 4220}, {291, 1283}, {511, 2003}, {516, 1848}, {951, 1042}, {1376, 3844}, {1397, 3056}, {1473, 3928}, {1486, 4512}, {1495, 3690}, {1631, 3185}, {1995, 3305}, {2187, 2289}, {2222, 2747}, {2299, 4456}, {2360, 3682}, {3098, 3784}, {3752, 5096}, {4221, 4304}


X(5286) = INTERSECTION OF LINES X(2)X(39) AND X(4)X(6)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (a2 + b2 + c2)2 - 4b2c2

X(5286) lies on these lines: {2, 39}, {4, 6}, {20, 32}, {83, 2996}, {115, 147}, {140, 5024}, {148, 4027}, {172, 4293}, {187, 3522}, {193, 315}, {230, 631}, {232, 3089}, {316, 1570}, {376, 3053}, {385, 3785}, {390, 2241}, {487, 3068}, {488, 3069}, {550, 1384}, {574, 3523}, {578, 1217}, {609, 4299}, {672, 5230}, {962, 1572}, {1212, 3772}, {1285, 3529}, {1506, 5056}, {1851, 2082}, {1885, 3172}, {1914, 4294}, {2242, 3600}, {2275, 3086}, {2276, 3085}, {2345, 4385}, {3054, 3533}, {3090, 3815}, {3096, 3620}, {3146, 5007}, {3528, 5023}, {3673, 4000}, {3832, 5041}, {4644, 4911}, {5008, 5059}

X(5286) = anticomplement of X(7795)
X(5286) = barycentric product X(2345)*X(4000)


X(5287) = INTERSECTION OF LINES X(1)X(2) AND X(9)X(81)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (a + b + c)2 + 2bc
Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(a2 + b2 + c2 + 2ab + 2ac + 4bc)

X(5287) lies on these lines: {1, 2}, {6, 3305}, {9, 81}, {27, 33}, {34, 469}, {37, 63}, {45, 4641}, {46, 3743}, {55, 4682}, {57, 1255}, {77, 226}, {86, 312}, {171, 968}, {223, 1442}, {329, 3945}, {333, 4687}, {440, 1060}, {464, 1038}, {750, 1962}, {756, 3751}, {984, 4038}, {1001, 3745}, {1100, 4383}, {1211, 4851}, {1230, 3761}, {1386, 4423}, {1453, 5047}, {1790, 2268}, {1817, 3601}, {2334, 4662}, {3175, 4363}, {3219, 3731}, {3242, 4883}, {3306, 3666}, {3664, 4656}, {3715, 4663}, {3723, 3752}, {3729, 3995}, {3737, 4789}, {3782, 4675}, {3875, 4359}, {3980, 3993}

X(5287) = {X(1),X(2)}-harmonic conjugate of X(5256)


X(5288) = INTERSECTION OF LINES X(1)X(6) AND X(8)X(36)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(a3 - ab2 - ac2 + 3abc - 2b2c - 2bc2)

X(5288) lies on these lines: {1, 6}, {3, 3632}, {8, 36}, {21, 3244}, {35, 519}, {46, 4853}, {55, 3633}, {56, 3679}, {100, 3625}, {145, 993}, {191, 3057}, {214, 4420}, {404, 3626}, {499, 3421}, {528, 4324}, {529, 3585}, {758, 4861}, {999, 1698}, {1329, 3582}, {1376, 4668}, {1388, 3940}, {1621, 3635}, {1759, 4051}, {2098, 3899}, {2099, 3901}, {2178, 4034}, {2550, 4317}, {3219, 3884}, {3304, 3624}, {3337, 3753}, {3579, 3893}, {3583, 3813}, {3584, 4999}, {3636, 5047}, {3872, 4880}, {3880, 3916}, {3913, 5010}, {4253, 4390}, {4278, 4720}, {4299, 5082}, {4816, 5204}


X(5289) = INTERSECTION OF LINES X(1)X(6) AND X(8)X(11)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b + c - a)(2b2 + 2c2 - a2 + ab + ac - 2bc)

X(5289) lies on these lines: {1, 6}, {2, 2099}, {3, 214}, {8, 11}, {10, 1482}, {21, 2320}, {36, 3899}, {55, 3877}, {56, 3218}, {63, 1319}, {65, 3306}, {78, 3057}, {145, 2551}, {200, 3880}, {210, 3872}, {329, 529}, {517, 997}, {519, 3452}, {527, 4315}, {551, 4930}, {758, 999}, {965, 1953}, {1388, 2975}, {1389, 3090}, {2390, 3784}, {3207, 3496}, {3295, 3884}, {3303, 3890}, {3304, 3868}, {3338, 4018}, {3340, 3812}, {3445, 3976}, {3576, 4640}, {3616, 4999}, {3679, 5123}, {3680, 4882}, {3876, 4861}, {3885, 4420}, {4421, 5119}, {4662, 4853}, {4711, 4915}


X(5290) = INTERSECTION OF LINES X(1)X(4) AND X(7)X(10)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (a2 + 2b2 + 2c2 + ab + ac + 4bc)/(b + c - a)

X(5290) lies on these lines: {1, 4}, {2, 3361}, {5, 3333}, {7, 10}, {8, 3671}, {12, 57}, {40, 495}, {56, 3624}, {65, 3679}, {79, 5119}, {85, 1930}, {142, 2551}, {165, 3085}, {200, 377}, {381, 5045}, {551, 4308}, {553, 1788}, {612, 1448}, {975, 4320}, {986, 4862}, {1074, 1103}, {1125, 3600}, {1388, 4870}, {1435, 5142}, {1697, 1836}, {1722, 4859}, {1773, 1781}, {2099, 3633}, {2475, 3870}, {2476, 5231}, {2550, 4882}, {3146, 4314}, {3244, 4323}, {3340, 3632}, {3616, 4315}, {3704, 4659}, {3920, 4347}, {3982, 4848}, {4666, 5046}, {4847, 5177}


X(5291) = INTERSECTION OF LINES X(1)X(6) AND X(8)X(32)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(a3 + abc - b2c - bc2)

X(5291) lies on these lines: {1, 6}, {2, 2242}, {8, 32}, {10, 172}, {21, 1500}, {31, 4390}, {36, 1575}, {39, 2975}, {58, 2295}, {100, 187}, {101, 2238}, {111, 898}, {115, 5080}, {145, 2241}, {232, 1783}, {385, 668}, {404, 1574}, {519, 1914}, {594, 1333}, {609, 3679}, {650, 667}, {759, 813}, {899, 1055}, {993, 2276}, {1016, 1252}, {1150, 3661}, {1571, 4652}, {1572, 3872}, {1759, 3959}, {2239, 5091}, {2243, 5011}, {2251, 3684}, {2345, 5019}, {2703, 5164}, {3125, 3509}, {3436, 3767}, {3734, 4441}, {3780, 4251}, {4112, 4362}


X(5292) = INTERSECTION OF LINES X(1)X(2) AND X(5)X(6)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a4 + b4 + c4 + 2a3b + 2a3c + 2a2bc - 2b2c2

X(5292) lies on these lines: {1, 2}, {3, 1834}, {4, 58}, {5, 6}, {20, 4257}, {30, 4252}, {31, 1479}, {46, 1076}, {57, 225}, {69, 3454}, {81, 2476}, {140, 4255}, {230, 2271}, {283, 1724}, {345, 2901}, {442, 940}, {496, 1191}, {497, 595}, {579, 1766}, {631, 4256}, {902, 4309}, {942, 3772}, {959, 994}, {967, 1889}, {1046, 3944}, {1068, 4000}, {1150, 5051}, {1468, 1478}, {1719, 3336}, {2163, 4325}, {3072, 5156}, {3192, 3542}, {3193, 4193}, {3769, 5015}, {3824, 4675}, {3927, 4415}, {4187, 4383}, {4340, 5177}


X(5293) = INTERSECTION OF LINES X(1)X(2) AND X(9)X(32)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(a3 + b3 + c3 + abc + 2b2c + 2bc2)

X(5293) lies on these lines: {1, 2}, {3, 984}, {9, 32}, {12, 2647}, {21, 756}, {31, 3876}, {35, 228}, {37, 1247}, {38, 404}, {58, 1757}, {72, 171}, {100, 2292}, {201, 1758}, {238, 5044}, {474, 982}, {750, 3868}, {872, 4281}, {943, 2648}, {970, 3688}, {986, 1376}, {1010, 1215}, {1054, 3670}, {1104, 3740}, {1220, 3699}, {1468, 3681}, {1490, 1742}, {2303, 3949}, {3242, 3976}, {3496, 4386}, {3509, 3954}, {3731, 4262}, {3847, 5015}, {3927, 4650}, {4005, 4641}, {4096, 4234}, {4252, 5220}, {4267, 4557}, {4332, 5226}


X(5294) = INTERSECTION OF LINES X(2)X(7) AND X(10)X(31)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 2a3 + b3 + c3 + a2b + a2c + b2c + bc2

X(5294) lies on these lines: {1, 3710}, {2, 7}, {6, 306}, {8, 1453}, {10, 31}, {38, 1125}, {44, 1211}, {81, 3912}, {141, 4001}, {228, 1009}, {345, 3618}, {474, 1473}, {516, 4972}, {519, 3969}, {896, 3634}, {1210, 5192}, {1215, 3011}, {1386, 3703}, {1698, 1707}, {1730, 4456}, {1738, 4418}, {1861, 2299}, {1890, 4429}, {2221, 4383}, {2321, 3187}, {2325, 3995}, {2887, 4672}, {3008, 4359}, {3586, 4217}, {3589, 3666}, {3683, 4026}, {3717, 3920}, {3745, 3932}, {3772, 4054}, {3773, 3791}, {3836, 4697}, {3914, 3923}, {4202, 4292}

X(5294) = complement of X(17184)


X(5295) = INTERSECTION OF LINES X(4)X(8) AND X(10)X(37)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b + c)(a3 - ab2 - ac2 - 2abc - 2b2c - 2bc2)

X(5295) lies on these lines: {1, 2049}, {4, 8}, {5, 3687}, {10, 37}, {12, 4046}, {65, 4647}, {75, 942}, {200, 3191}, {210, 1089}, {306, 442}, {312, 5044}, {319, 1330}, {341, 4043}, {387, 2345}, {392, 3702}, {728, 3294}, {964, 3187}, {1010, 1999}, {1150, 3916}, {1479, 3966}, {2292, 4365}, {3159, 3626}, {3175, 3679}, {3295, 3886}, {3555, 4968}, {3617, 3995}, {3678, 3967}, {3697, 3701}, {3698, 4714}, {3729, 3927}, {3876, 4671}, {3878, 4717}, {3952, 4533}, {3983, 3992}, {4015, 4125}, {4054, 4101}, {4658, 4670}, {4894, 4914}


X(5296) = INTERSECTION OF LINES X(2)X(7) AND X(8)X(37)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b2 + c2 - a2 + 4ab + 4ac + 2bc

X(5296) lies on these lines: {1, 391}, {2, 7}, {6, 3616}, {8, 37}, {10, 346}, {19, 4194}, {21, 198}, {45, 1213}, {69, 4687}, {141, 4748}, {145, 3247}, {200, 4343}, {344, 5224}, {573, 962}, {958, 1696}, {1125, 1743}, {1449, 3622}, {1621, 4254}, {2262, 3877}, {2297, 4334}, {2321, 3617}, {3621, 4034}, {3624, 3973}, {3625, 4898}, {3626, 4098}, {3672, 4384}, {3679, 3950}, {3739, 4419}, {3912, 5232}, {3945, 4416}, {4000, 4364}, {4007, 4029}, {4072, 4691}, {4363, 4488}, {4461, 4967}, {4643, 4648}, {4755, 4851}


X(5297) = INTERSECTION OF LINES X(1)X(2) AND X(37)X(100)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(a2 + b2 + c2 + 3bc)

X(5297) lies on these lines: {1, 2}, {12, 858}, {22, 5217}, {23, 35}, {33, 4232}, {37, 100}, {45, 2243}, {55, 1995}, {81, 210}, {86, 3699}, {88, 1390}, {110, 2330}, {171, 756}, {741, 4518}, {750, 984}, {894, 3952}, {940, 3681}, {1010, 3701}, {1370, 5229}, {1442, 4551}, {1500, 3291}, {1870, 5094}, {1909, 3266}, {2895, 4104}, {3100, 5218}, {3306, 4392}, {3579, 4220}, {3585, 5189}, {3614, 5133}, {3740, 3745}, {3842, 4434}, {3971, 4418}, {4096, 4697}, {4318, 5219}, {4413, 4850}, {4670, 4767}, {4995, 5160}

X(5297) = isogonal conjugate of X(34916)


X(5298) = INTERSECTION OF LINES X(2)X(12) AND X(11)X(30)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = [4a2 - (b + c)2](b + c - a)
X(5298) = R*X(1) - r*X(2) - r*X(3)   (Peter Moses, April 2, 2013)

X(5298) lies on these lines: {1, 549}, {2, 12}, {3, 3058}, {11, 30}, {46, 3656}, {55, 3524}, {65, 551}, {140, 3584}, {214, 519}, {376, 3086}, {381, 499}, {484, 1387}, {524, 1428}, {528, 5172}, {546, 4325}, {547, 3614}, {548, 4857}, {553, 1125}, {597, 1469}, {631, 3304}, {999, 5054}, {1358, 1447}, {1388, 1788}, {1420, 3679}, {1478, 5055}, {1479, 3534}, {1656, 4317}, {1737, 5126}, {2482, 3027}, {3303, 3523}, {3361, 4654}, {3530, 3746}, {3545, 4293}, {3585, 5066}, {3616, 5221}, {3813, 4188}, {3830, 4299}


X(5299) = INTERSECTION OF LINES X(1)X(6) AND X(32)X(36)

Trilinears        SR - aSω : SR - bSω : SR - cSω    César Lozada (9/07/2013)
Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(a2 + b2 + c2 - bc)

X(5299) lies on these lines: {1, 6}, {31, 4253}, {32, 36}, {35, 39}, {41, 995}, {42, 3108}, {48, 5037}, {56, 609}, {58, 163}, {71, 4284}, {83, 1909}, {101, 1201}, {169, 614}, {172, 1015}, {239, 1930}, {304, 3759}, {386, 2280}, {572, 4300}, {595, 672}, {604, 2172}, {982, 1759}, {1193, 4251}, {1384, 5204}, {1429, 2003}, {1432, 2224}, {1469, 5039}, {1500, 5041}, {2241, 2276}, {2260, 4264}, {3216, 3684}, {3496, 3670}, {3509, 3953}, {3730, 3915}, {3934, 4400}, {5010, 5013}, {5024, 5217}


X(5300) = INTERSECTION OF LINES X(7)X(8) AND X(10)X(31)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b4 + c4 - a4 - ab2c - abc2 + b3c + bc3

X(5300) lies on these lines: {1, 4202}, {2, 5015}, {3, 3006}, {4, 3701}, {7, 8}, {10, 31}, {41, 4071}, {145, 5100}, {306, 379}, {315, 3263}, {341, 5080}, {404, 3705}, {516, 3710}, {540, 1046}, {612, 5051}, {976, 2887}, {1125, 4894}, {1193, 4865}, {1330, 3681}, {1478, 4696}, {1479, 4358}, {1839, 3610}, {2177, 3178}, {2292, 4660}, {2475, 4385}, {3434, 3702}, {3436, 4723}, {3616, 4514}, {3757, 4197}, {3811, 3936}, {3876, 4388}, {3902, 5082}, {4193, 5205}, {4198, 5174}, {4200, 5081}, {4417, 4420}


X(5301) = INTERSECTION OF LINES X(6)X(31) AND X(32)X(37)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(a3 + a2b + a2c - b2c - bc2)

X(5301) lies on these lines: {1, 1333}, {6, 31}, {9, 2220}, {19, 2204}, {32, 37}, {35, 4261}, {44, 3694}, {48, 3285}, {53, 1852}, {56, 1950}, {213, 584}, {284, 595}, {560, 3747}, {577, 1108}, {594, 4426}, {609, 3247}, {906, 1723}, {1030, 2277}, {1100, 2241}, {1172, 1612}, {1213, 4386}, {1449, 5035}, {1474, 2352}, {1621, 2303}, {1839, 3011}, {1841, 1968}, {2174, 2176}, {2178, 3053}, {2242, 3723}, {2251, 3204}, {2275, 5124}, {2278, 2300}, {3730, 5037}, {3749, 5227}, {4026, 4660}


X(5302) = INTERSECTION OF LINES X(1)X(6) AND X(10)X(30)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b + c - a)(2a2 + b2 + c2 + 3ab + 3ac + 4bc)

X(5302) lies on these lines: {1, 6}, {3, 3740}, {8, 3683}, {10, 30}, {21, 210}, {35, 3697}, {55, 4662}, {56, 3305}, {58, 4682}, {63, 3812}, {65, 3219}, {78, 3715}, {100, 3983}, {191, 3753}, {333, 3714}, {354, 5047}, {375, 970}, {377, 1155}, {484, 4002}, {846, 4646}, {993, 5044}, {1329, 3634}, {1698, 3916}, {2646, 3876}, {3158, 4866}, {3214, 4689}, {3338, 3848}, {3452, 4999}, {3617, 5086}, {3694, 4877}, {3826, 4292}, {3913, 4512}, {4383, 4719}, {4390, 4520}, {4413, 4652}


X(5303) = INTERSECTION OF LINES X(3)X(8) AND X(21)X(36)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(3a3 - 3ab2 - 3ac2 + abc - b2c - bc2)

X(5303) lies on these lines: {1, 4757}, {2, 3614}, {3, 8}, {21, 36}, {35, 3244}, {46, 3897}, {55, 3623}, {56, 1621}, {140, 5080}, {145, 5217}, {191, 214}, {320, 1444}, {404, 993}, {958, 4188}, {960, 4881}, {1030, 4969}, {1420, 3890}, {1476, 2078}, {2475, 4999}, {2476, 4299}, {2646, 3218}, {3434, 3522}, {3436, 3523}, {3576, 3869}, {3579, 4861}, {3601, 3873}, {3612, 3868}, {3621, 4421}, {3633, 3871}, {3681, 4855}, {3754, 5131}, {3822, 4325}, {3916, 4511}, {4297, 5086}


X(5304) = INTERSECTION OF LINES X(2)X(6) AND X(20)X(32)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 5a4 + b4 + c4 + 2a2b2 + 2a2c2 - 2b2c2

X(5304) lies on these lines: {2, 6}, {4, 3172}, {20, 32}, {25, 1249}, {30, 1285}, {39, 3523}, {98, 5039}, {111, 3163}, {115, 3839}, {172, 3600}, {216, 1180}, {232, 4232}, {251, 393}, {376, 1384}, {387, 4251}, {390, 1914}, {577, 1627}, {609, 4293}, {800, 1194}, {910, 3598}, {1202, 2257}, {1447, 5222}, {2243, 4346}, {2548, 5056}, {2996, 3407}, {3053, 3522}, {3091, 3767}, {3509, 4310}, {3524, 5024}, {3543, 5008}, {3553, 3920}, {4220, 4254}

X(5304) = midpoint of X(37640) and X(37641)
X(5304) = {X(2),X(6)}-harmonic conjugate of X(37665)
X(5304) = {X(3068),X(3069)}-harmonic conjugate of X(141)


X(5305) = INTERSECTION OF LINES X(5)X(6) AND X(30)X(32)

Barycentrics   2 a^4+a^2 b^2+b^4+a^2 c^2-2 b^2 c^2+c^4 : :

X(5305) lies on these lines: {2, 3933}, {4, 3172}, {5, 6}, {20, 1384}, {30, 32}, {39, 140}, {112, 1885}, {115, 546}, {169, 3772}, {187, 548}, {218, 5230}, {251, 428}, {385, 2896}, {393, 1598}, {524, 626}, {547, 1506}, {549, 5013}, {550, 2549}, {574, 3530}, {631, 5024}, {732, 3589}, {1104, 5179}, {1184, 1368}, {1249, 3089}, {1285, 3146}, {1596, 2207}, {1759, 3782}, {1834, 4251}, {1901, 4264}, {1990, 3199}, {3628, 3815}, {3853, 5008}

X(5305) = midpoint of X(7583) and X(7584)
X(5305) = complement of X(3933)


X(5306) = INTERSECTION OF LINES X(2)X(6) AND X(30)X(32)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 4a4 + b4 + c4 + a2b2 + a2c2 - 2b2c2

X(5306) lies on these lines: {2, 6}, {5, 5007}, {25, 1990}, {30, 32}, {39, 549}, {50, 1627}, {51, 2871}, {53, 428}, {114, 1353}, {115, 3845}, {251, 1989}, {376, 3053}, {381, 3767}, {383, 398}, {397, 1080}, {519, 4136}, {566, 1180}, {1084, 1196}, {1194, 3003}, {1368, 3284}, {1384, 2549}, {1572, 3656}, {1914, 3058}, {2023, 5052}, {2031, 3849}, {2243, 3782}, {2276, 4995}, {2548, 5055}, {3017, 4251}, {3524, 5013}, {3705, 4969}

X(5306) = {X(395),X(396)}-harmonic conjugate of X(141)
X(5306) = complement of X(7788)


X(5307) = INTERSECTION OF LINES X(1)X(4) AND X(19)X(27)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (a2 + ab + ac + 2bc)/(b2 + c2 - a2)

X(5307) lies on these lines: {1, 4}, {2, 1826}, {8, 1869}, {19, 27}, {28, 993}, {56, 1882}, {193, 1839}, {273, 1435}, {312, 1840}, {321, 5227}, {407, 1211}, {518, 1824}, {535, 5146}, {912, 1871}, {958, 1867}, {960, 1868}, {1465, 2050}, {1503, 1836}, {1708, 1746}, {1723, 1751}, {1842, 4198}, {1851, 1890}, {1861, 4196}, {1865, 3772}, {1880, 3666}, {1894, 5155}, {1957, 2299}, {2250, 2282}, {2333, 4384}, {2501, 4897}, {3822, 5142}


X(5308) = INTERSECTION OF LINES X(1)X(2) AND X(7)X(37)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b2 + c2 - a2 - 4ab - 4ac - 2bc

X(5308) lies on these lines: {1, 2}, {7, 37}, {9, 3945}, {45, 4644}, {57, 1334}, {69, 4687}, {81, 218}, {86, 344}, {142, 3247}, {144, 3664}, {220, 940}, {226, 279}, {277, 1255}, {354, 4517}, {379, 4313}, {391, 3879}, {599, 4748}, {857, 948}, {894, 3161}, {966, 4690}, {1001, 4344}, {2295, 5228}, {2345, 4472}, {3950, 4461}, {4021, 4859}, {4029, 4659}, {4357, 4869}, {4360, 4402}, {4361, 4460}, {4413, 4433}, {4643, 4755}

X(5308) = anticomplement of X(16832)
X(5308) = {X(1),X(2)}-harmonic conjugate of X(5222)


X(5309) = INTERSECTION OF LINES X(2)X(39) AND X(6)X(13)

Barycentrics    a4 + b4 + c4 + a2b2 + a2c2 - 2b2c2 : :

X(5309) lies on these lines: {2, 39}, {4, 5007}, {6, 13}, {30, 32}, {148, 3972}, {183, 4045}, {187, 376}, {230, 549}, {395, 3643}, {396, 3642}, {519, 4153}, {524, 5028}, {543, 1003}, {547, 3815}, {597, 5034}, {671, 3407}, {1506, 5055}, {1570, 1992}, {1596, 1990}, {2241, 3058}, {2275, 3582}, {2276, 3584}, {2452, 5099}, {2548, 3545}, {3053, 3534}, {3162, 5064}, {3543, 5008}, {5013, 5054}

X(5309) = complement of X(32833)
X(5309) = anticomplement of X(7880)
X(5309) = X(32)-of-4th-Brocard-triangle
X(5309 = X(32)-of orthocentroidal-triangle
X(5309 = inverse-in-Kiepert-hyperbola of X(3818)
X(5309) = centroid of reflection triangle of X(32)
X(5309 = {X(13),X(14)}-harmonic conjugate of X(3818)
X(5309) = {X(6),X(381)}-harmonic conjugate of X(7753)


X(5310) = INTERSECTION OF LINES X(1)X(22) AND X(2)X(35)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(b4 + c4 - a4 + a2bc + b3c + bc3)

X(5310) lies on these lines: {1, 22}, {2, 35}, {3, 614}, {12, 428}, {19, 25}, {23, 3743}, {31, 579}, {38, 3220}, {42, 251}, {51, 2330}, {56, 4348}, {184, 3056}, {199, 2223}, {350, 1799}, {354, 4265}, {613, 3796}, {674, 2194}, {858, 4330}, {1030, 3290}, {1194, 1914}, {1281, 1283}, {1370, 4302}, {1631, 2352}, {2920, 3057}, {2922, 3670}, {3011, 4220}, {3583, 5133}, {4228, 4276}


X(5311) = INTERSECTION OF LINES X(1)X(2) AND X(31)X(37)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(a2 + b2 + c2 + ab + ac + 2bc)

X(5311) lies on these lines: {1, 2}, {6, 756}, {9, 2308}, {31, 37}, {33, 1839}, {38, 940}, {55, 199}, {63, 3989}, {81, 984}, {171, 4414}, {192, 4418}, {197, 1953}, {210, 1100}, {748, 1386}, {750, 3666}, {902, 968}, {985, 1255}, {1460, 2171}, {2177, 3723}, {2206, 2303}, {3681, 4649}, {3791, 3842}, {3873, 4038}, {3923, 3995}, {4349, 4656}, {4722, 5220}


X(5312) = INTERSECTION OF LINES X(1)X(2) AND X(6)X(35)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(2ab + 2ac + 2b2 + 2c2 + 3bc)

X(5312) lies on these lines: {1, 2}, {6, 35}, {9, 4272}, {36, 4255}, {55, 1203}, {57, 2594}, {58, 5010}, {73, 3339}, {165, 581}, {595, 2177}, {749, 3736}, {750, 4658}, {986, 3901}, {999, 2334}, {1126, 1468}, {1449, 5153}, {1743, 4270}, {1745, 4312}, {3555, 4719}, {3670, 3894}, {3743, 3876}, {3869, 4868}, {3874, 4850}, {3916, 4663}, {4023, 4205}


X(5313) = INTERSECTION OF LINES X(1)X(2) AND X(6)X(36)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(2ab + 2ac + 2b2 + 2c2 + bc)

X(5313) lies on these lines: {1, 2}, {3, 1203}, {6, 36}, {9, 5153}, {31, 4256}, {35, 3052}, {57, 1464}, {72, 4719}, {73, 3361}, {165, 1064}, {748, 4653}, {751, 3736}, {758, 4850}, {982, 3894}, {1191, 3746}, {1420, 2594}, {1449, 4272}, {1453, 3612}, {1470, 2003}, {1743, 5105}, {2308, 4257}, {3670, 3901}, {3792, 4277}, {3877, 4868}, {3899, 4424}


X(5314) = INTERSECTION OF LINES X(3)X(63) AND X(31)X(35)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(b2 + c2 - a2)(a2 + b2 + c2 + bc)

X(5314) lies on these lines: {3, 63}, {9, 22}, {25, 3305}, {31, 35}, {36, 38}, {55, 1386}, {71, 1176}, {100, 3687}, {184, 3781}, {209, 5135}, {219, 3796}, {284, 672}, {378, 3587}, {908, 4220}, {1707, 5010}, {1790, 1818}, {2003, 2979}, {2172, 3730}, {2221, 4255}, {2323, 5012}, {2915, 5044}, {3219, 3220}, {3666, 5096}, {3917, 3955}, {4265, 4641}


X(5315) = INTERSECTION OF LINES X(1)X(6) AND X(31)X(36)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(a2 + b2 + c2 + 2ab + 2ac - bc)

X(5315) lies on these lines: {1, 6}, {31, 36}, {35, 595}, {40, 1480}, {56, 2163}, {58, 106}, {65, 1421}, {81, 551}, {109, 1450}, {221, 3361}, {386, 2177}, {484, 3752}, {651, 4315}, {982, 4880}, {1017, 5007}, {1046, 3953}, {1149, 2308}, {1319, 2003}, {1834, 4857}, {1999, 4975}, {2382, 2703}, {2999, 5119}, {3052, 5010}, {3679, 4383}, {3792, 4749}


X(5316) = INTERSECTION OF LINES X(2)X(7) AND X(10)X(11)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b3 + c3 - a2b - a2c + 8abc - b2c - bc2

X(5316) lies on these lines: {2, 7}, {10, 11}, {312, 4431}, {516, 4413}, {519, 3711}, {899, 3755}, {936, 950}, {946, 1698}, {956, 1125}, {960, 4848}, {984, 5121}, {1000, 3679}, {1150, 3707}, {1210, 5044}, {2321, 4358}, {3601, 5129}, {3698, 4301}, {3740, 3816}, {3752, 4656}, {3817, 3925}, {3826, 5087}, {3840, 4104}, {3883, 5205}, {3912, 5233}

X(5316) = complement of X(3306)


X(5317) = INTERSECTION OF LINES X(4)X(6) AND X(19)X(31)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a/[(b + c)(b2 + c2 - a2)2]

X(5317) lies on these lines: {4, 6}, {19, 31}, {27, 2221}, {28, 1104}, {29, 2303}, {34, 604}, {37, 4183}, {81, 286}, {107, 739}, {112, 915}, {158, 2214}, {162, 1778}, {232, 4220}, {240, 1761}, {608, 1118}, {648, 2991}, {1119, 1396}, {1430, 2260}, {1880, 2204}, {1896, 2298}, {2287, 5016}, {2322, 2345}, {2331, 2332}, {4219, 4261}

X(5317) = isogonal conjugate of X(3998)


X(5318) = INTERSECTION OF LINES X(4)X(6) AND X(5)X(16)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 3b4 + 3c4 - 3a4 - 6b2c2 - (12)1/2a2S

X(5318) lies on these lines: {4, 6}, {5, 16}, {12, 1250}, {13, 15}, {14, 3845}, {17, 550}, {18, 3850}, {61, 3627}, {62, 546}, {141, 622}, {230, 1080}, {381, 395}, {383, 3815}, {463, 1495}, {524, 621}, {530, 623}, {590, 2043}, {615, 2044}, {633, 3630}, {634, 3631}, {1546, 3003}, {3411, 3856}, {3628, 5237}

X(5318) = crosssum of X(3) and X(15)
X(5318) = crosspoint of X(4) and X(13)


X(5319) = INTERSECTION OF LINES X(5)X(6) AND X(20)X(32)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 3a4 + b4 + c4 +2a2b2 + 2a2c2 - 2b2c2

X(5319) lies on these lines: {2, 3108}, {4, 5007}, {5, 6}, {20, 32}, {39, 631}, {115, 3832}, {172, 4317}, {187, 3528}, {193, 626}, {230, 3526}, {548, 3053}, {609, 4325}, {1249, 3199}, {1572, 4301}, {1598, 1990}, {1906, 2207}, {1914, 4309}, {3530, 5013}, {3547, 5158}, {3618, 3934}, {3785, 4045}, {3815, 5070}, {5041, 5067}


X(5320) = INTERSECTION OF LINES X(6)X(25) AND X(31)X(32)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a3(a3 - ab2 - ac2 - 2abc - 2b2c - 2bc2)

X(5320) lies on these lines: {2, 5138}, {4, 1175}, {6, 25}, {22, 4260}, {31, 32}, {42, 2175}, {55, 584}, {65, 2355}, {81, 4223}, {182, 4220}, {198, 4275}, {199, 579}, {284, 1011}, {386, 3145}, {1200, 2357}, {1395, 1409}, {1397, 1400}, {1751, 3136}, {1824, 2264}, {2174, 2352}, {2206, 5019}, {2328, 4251}, {4383, 5135}

X(5320) = crosssum of X(2) and X(377)


X(5321) = INTERSECTION OF LINES X(4)X(6) AND X(5)X(15)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 3b4 + 3c4 - 3a4 - 6b2c2 + (12)1/2a2S

X(5321) lies on these lines: {4, 6}, {5, 15}, {13, 3845}, {14, 16}, {17, 3850}, {18, 550}, {61, 546}, {62, 3627}, {141, 621}, {230, 383}, {381, 396}, {462, 1495}, {524, 622}, {531, 624}, {590, 2044}, {615, 2043}, {633, 3631}, {634, 3630}, {1080, 3815}, {1545, 3003}, {3412, 3856}, {3628, 5238}

X(5321) = crosssum of X(3) and X(16)
X(5321) = crosspoint of X(4) and X(14)


X(5322) = INTERSECTION OF LINES X(1)X(22) AND X(2)X(36)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(b4 + c4 - a4 - a2bc - b3c - bc3)

X(5322) lies on these lines: {1, 22}, {2, 36}, {3, 612}, {11, 428}, {25, 34}, {31, 3220}, {35, 3920}, {51, 1428}, {104, 4231}, {172, 1194}, {184, 1469}, {210, 5096}, {611, 3796}, {858, 4325}, {1370, 4299}, {1460, 1473}, {1626, 2352}, {1799, 1909}, {3011, 4224}, {3585, 5133}, {3745, 4265}, {4640, 5078}


X(5323) = INTERSECTION OF LINES X(7)X(21) AND X(28)X(34)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(a2 + b2 + c2 + 2bc)/[(b + c)(b + c - a)]

X(5323) lies on these lines: {1, 1412}, {3, 4340}, {7, 21}, {28, 34}, {65, 81}, {73, 3736}, {229, 4228}, {333, 1788}, {388, 1010}, {404, 4417}, {894, 1791}, {1038, 2285}, {1043, 3476}, {1325, 5221}, {1350, 2213}, {1400, 1778}, {1420, 4653}, {1466, 1817}, {1470, 4225}, {1848, 4292}, {3340, 4658}, {4224, 4252}


X(5324) = INTERSECTION OF LINES X(8)X(21) AND X(28)X(34)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(a2 + b2 + c2 - 2bc)(b + c - a)/(b + c)

X(5324) lies on these lines: {6, 4224}, {8, 21}, {27, 3423}, {28, 34}, {81, 105}, {165, 4221}, {479, 1014}, {672, 1778}, {759, 3256}, {859, 1617}, {910, 1333}, {940, 4223}, {1040, 2082}, {1183, 2646}, {1350, 4383}, {1437, 3660}, {1473, 1851}, {1633, 3914}, {1812, 3794}, {1817, 3286}, {2287, 2348}, {3060, 4259}


X(5325) = INTERSECTION OF LINES X(2)X(7) AND X(10)X(30)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b + c - a)(b2 + c2 - 4a2 - 3ab - 3ac - 2bc)

X(5325) lies on these lines: {2, 7}, {10, 30}, {210, 4995}, {306, 3578}, {333, 2321}, {345, 3686}, {519, 958}, {549, 5044}, {551, 960}, {846, 3755}, {936, 3524}, {971, 3740}, {1125, 3927}, {1999, 4029}, {2551, 3585}, {3058, 3683}, {3679, 5234}, {3687, 3707}, {3712, 4061}, {4035, 4416}, {4042, 4923}, {4641, 4667}


X(5326) = INTERSECTION OF LINES X(2)X(11) AND X(12)X(36)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b + c - a)(3b2 + 3c2 - 4a2 - 6bc)

X(5326) lies on these lines: {1, 632}, {2, 11}, {3, 3614}, {5, 5010}, {12, 36}, {35, 3628}, {56, 3525}, {498, 999}, {547, 3583}, {1125, 5048}, {1478, 5054}, {1479, 5070}, {1914, 3055}, {2276, 3054}, {2646, 3634}, {3057, 3918}, {3085, 3533}, {3090, 5217}, {3530, 3585}, {3850, 4324}, {4302, 5055}


X(5327) = INTERSECTION OF LINES X(4)X(6) AND X(7)X(21)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (a4 + b4 + c4 - 2a3b - 2a3c - 2b2c2)/(b + c)

X(5327) lies on these lines: {4, 6}, {7, 21}, {27, 1836}, {28, 3556}, {29, 65}, {58, 946}, {81, 497}, {226, 2328}, {238, 1780}, {284, 516}, {333, 2651}, {411, 5132}, {960, 1010}, {990, 3736}, {1430, 1848}, {1817, 3474}, {1858, 2905}, {2287, 2550}, {2303, 4307}, {2360, 4292}, {5057, 5137}


X(5328) = INTERSECTION OF LINES X(2)X(7) AND X(8)X(11)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b + c - a)(3b2 + 3c2 - a2 + 2ab + 2ac - 6bc)

X(5328) lies on these lines: {2, 7}, {8, 11}, {10, 5056}, {153, 214}, {497, 3689}, {936, 3091}, {938, 4187}, {960, 3698}, {1997, 4417}, {2478, 4313}, {2550, 5087}, {2551, 3616}, {3061, 3119}, {3090, 5044}, {3436, 4308}, {4310, 5121}, {4671, 4858}, {4679, 5218}, {5175, 5187}

X(5328) = anticomplement of X(31190)


X(5329) = INTERSECTION OF LINES X(1)X(3) AND X(22)X(31)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(b4 + c4 - a4 - 2a2bc)

X(5329) lies on these lines: {1, 3}, {22, 31}, {24, 602}, {25, 238}, {43, 197}, {159, 1740}, {181, 182}, {199, 985}, {394, 3792}, {511, 1397}, {748, 1995}, {1376, 5096}, {1469, 3955}, {1473, 4650}, {1626, 3286}, {1707, 3220}, {1790, 3736}, {2076, 2162}, {2178, 3509}


X(5330) = INTERSECTION OF LINES X(1)X(21) AND X(8)X(11)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b + c - a)(a2 - ab - ac - 2b2 - 2c2 + 3bc)

X(5330) lies on these lines: {1, 21}, {2, 1482}, {8, 11}, {78, 2136}, {145, 1058}, {392, 5047}, {404, 517}, {452, 3623}, {644, 3061}, {952, 5046}, {960, 4861}, {1788, 2099}, {3057, 3871}, {3244, 4867}, {3579, 4881}, {3621, 3940}, {3872, 3876}, {3880, 4420}, {4673, 4720}


X(5331) = INTERSECTION OF LINES X(6)X(21) AND X(27)X(34)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a/[(b + c)(a2 + ab + ac + 2bc)]

X(5331) lies on these lines: {1, 333}, {6, 21}, {27, 34}, {29, 3192}, {42, 1043}, {56, 81}, {58, 2185}, {86, 1193}, {87, 3736}, {106, 931}, {269, 1434}, {270, 1474}, {284, 2363}, {386, 1010}, {958, 2334}, {1126, 4653}, {2215, 4269}, {2279, 3601}


X(5332) = INTERSECTION OF LINES X(6)X(31) AND X(32)X(36)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(2a2 + b2 + c2 - bc)

X(5332) lies on these lines: {1, 5007}, {6, 31}, {32, 36}, {39, 5010}, {44, 3681}, {172, 999}, {238, 3789}, {239, 4376}, {609, 1015}, {893, 2364}, {982, 2243}, {995, 2251}, {1040, 3284}, {1100, 3873}, {1403, 1404}, {2220, 2277}, {2300, 5037}, {3703, 4969}


X(5333) = INTERSECTION OF LINES X(2)X(6) AND X(21)X(36)

Barycentrics    (a + 2b + 2c)/(b + c) : :

X(5333) lies on these lines: {1, 4720}, {2, 6}, {21, 36}, {58, 748}, {142, 1817}, {226, 1014}, {274, 321}, {314, 4359}, {1001, 4184}, {1010, 3616}, {1043, 3622}, {1412, 5219}, {1698, 4658}, {3219, 4670}, {3286, 4423}, {3720, 3736}, {3786, 3873}, {4654, 4877}

X(5333) = trilinear pole of line X(4716)X(4802) (the perspectrix of ABC and Gemini triangle 24)
X(5333) = perspector of Gemini triangle 23 and cross-triangle of ABC and Gemini triangle 23


X(5334) = INTERSECTION OF LINES X(2)X(14) AND X(4)X(6)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 3b4 + 3c4 - 3a4 - 6b2c2 + (48)1/2a2S

X(5334) lies on these lines: {2, 14}, {4, 6}, {13, 3839}, {16, 20}, {17, 5068}, {18, 3523}, {61, 3091}, {62, 3146}, {193, 622}, {376, 395}, {396, 3545}, {633, 3620}, {1131, 3367}, {1132, 3366}, {1250, 4294}, {2043, 3069}, {2044, 3068}

X(5334) = {X(4),X(6)}-harmonic conjugate of X(5335)


X(5335) = INTERSECTION OF LINES X(2)X(13) AND X(4)X(6)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 3b4 + 3c4 - 3a4 - 6b2c2 - (48)1/2a2S

X(5335) lies on these lines: {2, 13}, {4, 6}, {14, 3839}, {15, 20}, {17, 3523}, {18, 5068}, {61, 3146}, {62, 3091}, {193, 621}, {376, 396}, {395, 3545}, {634, 3620}, {1131, 3392}, {1132, 3391}, {1250, 3085}, {2043, 3068}, {2044, 3069}

X(5335) = {X(4),X(6)}-harmonic conjugate of X(5334)


X(5336) = INTERSECTION OF LINES X(1)X(6) AND X(19)X(32)

Trilinears        a3s - SBSC : b3s - SCSA : c3s - SASB    César Lozada (9/07/2013)
Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(a4 + b4 + c4 + 2a3b + 2a3c - 2b2c2)

X(5336) lies on these lines: {1, 6}, {19, 32}, {25, 1096}, {31, 2171}, {46, 2305}, {609, 1781}, {800, 2331}, {992, 997}, {1184, 5089}, {1400, 3924}, {1572, 1953}, {1731, 5037}, {1826, 3767}, {2285, 5019}, {2321, 4362}, {3290, 5020}, {3612, 5110}


X(5337) = INTERSECTION OF LINES X(1)X(3) AND X(2)X(32)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(a4 + a3b + a3c + a2bc + b3c + bc3)

X(5337) lies on these lines: {1, 3}, {2, 32}, {6, 3882}, {39, 81}, {58, 1009}, {63, 3954}, {69, 5019}, {141, 1333}, {172, 3912}, {193, 5042}, {524, 5035}, {1150, 3661}, {2220, 3589}, {3793, 5241}, {4044, 4396}, {4220, 5188}, {4384, 4386}


X(5338) = INTERSECTION OF LINES X(19)X(25) AND X(28)X(34)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(3a + b + c)/(b2 + c2 - a2)

X(5338) lies on these lines: {2, 1890}, {4, 165}, {19, 25}, {28, 34}, {51, 2261}, {154, 2262}, {204, 1841}, {212, 2270}, {354, 1829}, {461, 4512}, {607, 1190}, {1155, 1878}, {1474, 2280}, {1598, 1753}, {1839, 4207}, {1871, 3517}


X(5339) = INTERSECTION OF LINES X(3)X(14) AND X(4)X(6)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b4 + c4 - a4 - 2b2c2 + 31/2a2S

X(5339) lies on these lines: {3, 14}, {4, 6}, {13, 3843}, {15, 1656}, {16, 1657}, {17, 3851}, {20, 395}, {61, 381}, {62, 382}, {154, 462}, {396, 3091}, {599, 633}, {621, 3763}, {3526, 5238}, {3534, 5237}

X(5339) = {X(4),X(6)}-harmonic conjugate of X(5340)


X(5340) = INTERSECTION OF LINES X(3)X(13) AND X(4)X(6)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b4 + c4 - a4 - 2b2c2 - 31/2a2S

X(5340) lies on these lines: {3, 13}, {4, 6}, {14, 3843}, {15, 1657}, {16, 1656}, {18, 3851}, {20, 396}, {61, 382}, {62, 381}, {154, 463}, {395, 3091}, {599, 634}, {622, 3763}, {3526, 5237}, {3534, 5238}

X(5340) = {X(4),X(6)}-harmonic conjugate of X(5339)


X(5341) = INTERSECTION OF LINES X(6)X(19) AND X(35)X(37)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b4 + c4 - a4 - a2bc - 2b2c2)

X(5341) lies on these lines: {6, 19}, {9, 484}, {35, 37}, {45, 1766}, {50, 1950}, {583, 1731}, {759, 1333}, {910, 3256}, {1400, 1989}, {1719, 4640}, {1723, 5043}, {1760, 4363}, {2171, 2173}, {2178, 5172}, {4271, 5011}


X(5342) = INTERSECTION OF LINES X(4)X(8) AND X(29)X(34)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc(3a + b + c)(b2 + c2 - a2)

X(5342) lies on these lines: {4, 8}, {27, 4384}, {29, 34}, {75, 1890}, {242, 4185}, {278, 4194}, {281, 4200}, {391, 4047}, {452, 1441}, {461, 3616}, {469, 3912}, {1039, 2481}, {1904, 2969}, {4101, 4673}


X(5343) = INTERSECTION OF LINES X(4)X(6) AND X(14)X(20)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 5b4 + 5c4 - 5a4 - 10b2c2 + (48)1/2a2S

X(5343) lies on these lines: {2, 5238}, {4, 6}, {14, 20}, {15, 5056}, {16, 5059}, {17, 3091}, {18, 3522}, {61, 3832}, {62, 3543}, {395, 3529}, {396, 3855}, {1131, 3364}, {1132, 3365}

X(5343) = {X(4),X(6)}-harmonic conjugate of X(5344)


X(5344) = INTERSECTION OF LINES X(4)X(6) AND X(13)X(20)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 5b4 + 5c4 - 5a4 - 10b2c2 - (48)1/2a2S

X(5344) lies on these lines: {2, 5237}, {4, 6}, {13, 20}, {15, 5059}, {16, 5056}, {17, 3522}, {18, 3091}, {61, 3543}, {62, 3832}, {395, 3855}, {396, 3529}, {1131, 3389}, {1132, 3390}

X(5344) = {X(4),X(6)}-harmonic conjugate of X(5343)


X(5345) = INTERSECTION OF LINES X(1)X(22) AND X(25)X(36)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(2b4 + 2c4 - 2a4 - a2bc - b3c - bc3)

X(5345) lies on these lines: {1, 22}, {2, 3585}, {23, 614}, {25, 36}, {609, 1194}, {612, 5010}, {846, 3415}, {988, 2915}, {990, 1719}, {1370, 4316}, {1707, 3220}, {1799, 3761}, {5020, 5204}


X(5346) = INTERSECTION OF LINES X(6)X(17) AND X(30)X(32)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 3a4 + b4 + c4 + a2b2 + a2c2 - 2b2c2

X(5346) lies on these lines: {2, 5041}, {4, 5008}, {6, 17}, {30, 32}, {39, 631}, {115, 3843}, {187, 3522}, {230, 632}, {385, 3096}, {1186, 2086}, {2548, 5071}, {3091, 3767}


X(5347) = INTERSECTION OF LINES X(1)X(3) AND X(6)X(22)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(b4 + c4 - a4 - a2bc - ab2c - abc2)

X(5347) lies on these lines: {1, 3}, {2, 5096}, {6, 22}, {25, 4383}, {81, 4265}, {184, 4259}, {199, 5132}, {386, 2915}, {1626, 4497}, {2194, 4260}, {3220, 4641}, {4184, 5124}


X(5348) = INTERSECTION OF LINES X(1)X(3) AND X(11)X(31)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b + c - a)(a2 + bc - b2)(a2 + bc - c2)

X(5348) lies on these lines: {1, 3}, {2, 2361}, {4, 1399}, {5, 47}, {11, 31}, {12, 255}, {58, 1837}, {109, 1836}, {181, 1364}, {212, 750}, {394, 1376}, {1253, 4995}


X(5349) = INTERSECTION OF LINES X(4)X(6) AND X(18)X(30)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 5b4 + 5c4 - 5a4 - 10b2c2 + (12)1/2a2S

X(5349) lies on these lines: {4, 6}, {5, 5238}, {13, 3861}, {14, 3627}, {15, 3850}, {17, 3858}, {18, 30}, {61, 3845}, {62, 3853}, {382, 395}, {396, 546}

X(5349) = {X(4),X(6)}-harmonic conjugate of X(5350)


X(5350) = INTERSECTION OF LINES X(4)X(6) AND X(17)X(30)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 5b4 + 5c4 - 5a4 - 10b2c2 - (12)1/2a2S

X(5350) lies on these lines: {4, 6}, {5, 5237}, {13, 3627}, {14, 3861}, {16, 3850}, {17, 30}, {18, 3858}, {61, 3853}, {62, 3845}, {382, 396}, {395, 546}

X(5350) = {X(4),X(6)}-harmonic conjugate of X(5349)


X(5351) = INTERSECTION OF LINES X(3)X(6) AND X(18)X(20)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(7b2 + 7c2 - 7a2 - (12)1/2a2S)

X(5351) lies on these lines: {3, 6}, {13, 631}, {14, 550}, {17, 549}, {18, 20}, {202, 5217}, {395, 548}, {397, 3530}, {622, 630}, {1092, 3206}, {3411, 3528}


X(5352) = INTERSECTION OF LINES X(3)X(6) AND X(17)X(20)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(7b2 + 7c2 - 7a2 + (12)1/2a2S)

X(5352) lies on these lines: {3, 6}, {13, 550}, {14, 631}, {17, 20}, {18, 549}, {203, 5217}, {396, 548}, {398, 3530}, {621, 629}, {1092, 3205}, {3412, 3528}


X(5353) = INTERSECTION OF LINES X(1)X(6) AND X(15)X(35)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(2S - 31/2bc)

X(5353) lies on these lines: {1, 6}, {15, 35}, {16, 36}, {42, 2981}, {61, 3746}, {395, 3582}, {396, 3584}, {398, 4857}, {651, 3639}, {1082, 2003}, {1094, 3170}

X(5353) = {X(1),X(6)}-harmonic conjugate of X(5357)


X(5354) = INTERSECTION OF LINES X(2)X(6) AND X(23)X(32)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(a4 + b4 + c4 + 2a2b2 + 2a2c2 - b2c2)

X(5354) lies on these lines: {2, 6}, {22, 1384}, {23, 32}, {25, 1383}, {111, 251}, {187, 1194}, {574, 1180}, {1915, 2502}, {2030, 5012}, {3291, 5007}, {3767, 5169}


X(5355) = INTERSECTION OF LINES X(6)X(13) AND X(20)X(32)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 2a4 + b4 + c4 + 2a2b2 + 2a2c2 - 2b2c2

X(5355) lies on these lines: {5, 5041}, {6, 13}, {20, 32}, {30, 5008}, {39, 140}, {385, 4045}, {543, 3972}, {574, 3524}, {1506, 3090}, {2548, 5068}, {3627, 5007}


X(5356) = INTERSECTION OF LINES X(6)X(19) AND X(36)X(37)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b4 + c4 - a4 - 3a2bc - 2b2c2)

X(5356) lies on these lines: {1, 4287}, {6, 19}, {9, 3336}, {36, 37}, {44, 1781}, {46, 5036}, {1385, 1766}, {1400, 2963}, {1950, 2965}, {2160, 2183}, {2161, 2260}


X(5357) = INTERSECTION OF LINES X(1)X(6) AND X(15)X(36)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(2S + 31/2bc)

X(5357) lies on these lines: {1, 6}, {15, 36}, {16, 35}, {62, 1250}, {395, 3584}, {396, 3582}, {397, 4857}, {559, 2003}, {651, 3638}, {1095, 3171}

X(5357) = {X(1),X(6)}-harmonic conjugate of X(5353)


X(5358) = INTERSECTION OF LINES X(10)X(21) AND X(28)X(34)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b4 + c4 - a4 + 2a2bc - 2b2c2)/(b + c)

X(5358) lies on these lines: {1, 4228}, {10, 21}, {22, 1714}, {28, 34}, {169, 284}, {386, 4224}, {1210, 4233}, {1817, 3008}, {1842, 3220}, {4269, 4456}


X(5359) = INTERSECTION OF LINES X(2)X(6) AND X(22)X(32)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(a4 + b4 + c4 + 2a2b2 + 2a2c2)

X(5359) lies on these lines: {2, 6}, {3, 1180}, {4, 3162}, {22, 32}, {25, 251}, {51, 5039}, {169, 614}, {1196, 1995}, {3767, 5133}


X(5360) = INTERSECTION OF LINES X(4)X(8) AND X(31)X(32)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a3(b + c)(b4 + c4 - a2b2 - a2c2)

X(5360) lies on these lines: {4, 8}, {31, 32}, {37, 263}, {42, 4531}, {100, 2698}, {237, 1755}, {511, 1959}, {512, 661}, {674, 4053}


X(5361) = INTERSECTION OF LINES X(2)X(6) AND X(8)X(35)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 2a3 - 2ab2 - 2ac2 - abc - 2b2c - 2bc2

X(5361) lies on these lines: {2, 6}, {8, 35}, {63, 4659}, {100, 4042}, {956, 4216}, {3219, 4671}, {3679, 4257}, {3757, 4430}, {3769, 4981}


X(5362) = INTERSECTION OF LINES X(2)X(6) AND X(15)X(21)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a[2aS - 31/2(abc + b2c + bc2)]

X(5362) lies on these lines: {2, 6}, {15, 21}, {16, 404}, {37, 2981}, {61, 5047}, {100, 1250}, {470, 1172}, {2323, 5243}

X(5362) = {X(2),X(6)}-harmonic conjugate of X(5367)


X(5363) = INTERSECTION OF LINES X(1)X(3) AND X(23)X(31)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(b4 + c4 - a4 - 3a2bc - b2c2)

X(5363) lies on these lines: {1, 3}, {23, 31}, {181, 575}, {238, 1995}, {576, 1397}, {1283, 3941}, {1395, 3518}, {1740, 2930}


X(5364) = INTERSECTION OF LINES X(2)X(7) AND X(31)X(32)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a3(b3 + c3 - ab2 - ac2 - abc)

X(5364) lies on these lines: {2, 7}, {31, 32}, {198, 1755}, {292, 1613}, {846, 3730}, {968, 1334}, {1707, 2664}, {4020, 5021}


X(5365) = INTERSECTION OF LINES X(4)X(6) AND X(18)X(20)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 7b4 + 7c4 - 7a4 - 14b2c2 + (48)1/2a2S

X(5365) lies on these lines: {4, 6}, {14, 3146}, {15, 5068}, {17, 3854}, {18, 20}, {61, 3839}, {3412, 3832}

X(5365) = {X(4),X(6)}-harmonic conjugate of X(5366)


X(5366) = INTERSECTION OF LINES X(4)X(6) AND X(17)X(20)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 7b4 + 7c4 - 7a4 - 14b2c2 - (48)1/2a2S

X(5366) lies on these lines: {4, 6}, {13, 3146}, {16, 5068}, {17, 20}, {18, 3854}, {62, 3839}, {3411, 3832}

X(5366) = {X(4),X(6)}-harmonic conjugate of X(5365)


X(5367) = INTERSECTION OF LINES X(2)X(6) AND X(16)X(21)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a[2aS + 31/2(abc + b2c + bc2)]

X(5367) lies on these lines: {2, 6}, {15, 404}, {16, 21}, {62, 5047}, {471, 1172}, {1250, 1621}, {2323, 5242}

X(5367) = {X(2),X(6)}-harmonic conjugate of X(5362)


X(5368) = INTERSECTION OF LINES X(6)X(17) AND X(20)X(32)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 4a4 + b4 + c4 + 2a2b2 +2a2c2 - 2b2c2

X(5368) lies on these lines: {6, 17}, {20, 32}, {39, 549}, {115, 546}, {230, 5041}, {3545, 3767}


X(5369) = INTERSECTION OF LINES X(7)X(8) AND X(31)X(32)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a3(b4 + c4 - ab3 - ac3 - ab2c - abc2)

X(5369) lies on these lines: {7, 8}, {31, 32}, {674, 3721}, {1046, 1282}, {1193, 4531}, {2292, 3688}


X(5370) = INTERSECTION OF LINES X(1)X(22) AND X(23)X(36)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(3b4 + 3c4 - 3a4 - a2bc - b3c - bc3)

X(5370) lies on these lines: {1, 22}, {23, 36}, {25, 5204}, {612, 5217}, {858, 4316}, {896, 3220}


X(5371) = INTERSECTION OF LINES X(6)X(22) AND X(31)X(32)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a3(a3 - abc - b2c - bc2)

X(5371) lies on these lines: {6, 22}, {31, 32}, {81, 1915}, {584, 2276}, {2194, 3051}, {2277, 4275}


X(5372) = INTERSECTION OF LINES X(2)X(6) AND X(8)X(36)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 2a3 - 2ab2 - 2ac2 + abc - 2b2c - 2bc2

X(5372) lies on these lines: {2, 6}, {3, 4720}, {8, 36}, {63, 4671}, {1330, 5141}, {4362, 4392}


X(5373) = EQUIAREALITY CENTER

Trilinears   x : y : z = f(A,B,C) : f(B,C,A) : f(C,A,B) where (x,y,z) is the solution of the following system:
(y2 + z2)cos A + 2yz = sin A
(z2 + x2)cos B + 2zx = sin B
(x2 + y2)cos C + 2xy = sin C, where S = 2*area(ABC).
(There is a unique solution with real x,y,z if the reference triangle ABC is acute.)

For any point X inside an acute triangle ABC, let A′ B′ C′ denote the pedal triangle of X. Then X(5373) is the point X for which the quadrilaterals AC′XB′, BA′XC′, CB′XA′ all have the same area.

X(5373) is discussed in the following articles:

Apoloniusz Tyszka, "Steinhaus' problem on partition of a triangle," Forum Geometricorum 7 (2007), 181-185: Tyszka article.

Jean Pierre Ehrmann, "Constructive solution of a generalization of Steinhaus' problem on partition of a triangle," Forum Geometricorum 7 (2007), 187-190: Ehrmann article.

Mowaffaq Hajja and Panagiotis T. Krasopoulos, "Two more triangle centers," Elemente der Mathematik 66 (2011) 164-174.

X(5373) is the incenter of the Thomson triangle, as proved in Thomson Triangle.


X(5374) = TRILINEAR SQUARE ROOT OF X(63)

Trilinears   (cot A)1/2 : (cot B)1/2 : (cot C)1/2

For any point P on segment BC of an acute triangle ABC, let Q be the point on AB nearest to P and let R be the point on AC nearest to P. Let A′ be the choice of P for which area(A′QB) = area(A′RC). Define B′ and C′ cyclically. Then the lines AA′, BB′, CC′ concur in X(5374).

X(5374) is introduced in Mowaffaq Hajja and Panagiotis T. Krasopoulos, "Two more triangle centers," Elemente der Mathematik 66 (2011) 164-174.


X(5375) =  X(100)X(650)∩X(101)X(661)

Barycentrics    a(a - b)(a - c)[a^3 - a^2(b + c) + a(b^2 - bc + c^2) - (b - c)^2(b + c)] : :

X(5375) is the center of the circumconic with perspector X(100). This conic passes through the bicentric pairs P(26), U(26), and P(33), U(33) (Randy Hutson, 9/10/2012) and is a hyperbola (Peter Moses, 10/10/2012). It is introduced here as the Hutson-Moses hyperbola, discussed in the preamble to X(5376).

X(5375) lies on these lines: {44, 3290}, {100, 650}, {101, 661}, {190, 4467}, {644, 3239}, {651, 3676}, {666, 693}, {901, 4394}, {908, 3008}, {2323, 4700}

X(5375) = complement of X(8047)
X(5375) = X(2)-Ceva conjugate of X(100)
X(5375) = complementary conjugate of complement of X(16686)
X(5375) = crosssum of circumcircle intercepts of line PU(27) (line X(244)X(665))

leftri

Points on the Hutson-Moses hyperbola: X(5376)-X(5389)

rightri

The Hutson-Moses hyperbola, introduced at X(5375), is given by the following barycentric equation:

a(a - b)(a - c)yz + b(b - c)(b - a)zx + c(c - a)(c - b)xy = 0.

The hyperbola has perspector X(100), center X(5375), meets the circumcircle in X(898) and the Steiner circumellipse in X(666), and is the isogonal conjugate of the line X(244)X(665). If X = x : y : z (barycentrics) is a point on the circumcircle, then the point

H(X) = x/(a(b - c)) : y/(b(c - a)) : z/(c(a - b))

is on the Hutson-Moses hyperbola. Examples are shown in the following table:

XH(X)
X(99)X(4601)
X(100)X(1016)
X(101)X(765)
X(105)X(666)
X(106)X(3257)
X(109)X(4564)
X(110)X(4567)
X(739)X(898)
X(741)X(4584)
X(934)X(1275)
X(901)X(5376)
X(919)X(5377)
X(813)X(5378)
X(112)X(5379)
X(111)X(5380)
X(898)X(5381)
X(1293)X(5382)
X(932)X(5383)
X(825)X(5384)
X(4588)X(5385)
X(753)X(5386)
X(2748)X(5387)
X(789)X(5388)
X(755)X(5389)

The acute angle Ψ between the asymptotes of the circumhyperbola with perspector X = x : y : z is given by

tan(Ψ) = S*T/(x*SA + y*SB + z*SC),


where T = (x2 + y2 + z2 - 2(yz + zx + xy))1/2, and the eccentricity e is then given by e = sec(Ψ/2). (Peter Moses, 10/11/12). For the Hutson-Moses hyperbola, (x, y, z) = a2/(b2 - c2), b2/(c2 - a2), c2/(a2 - b2).


X(5376) = H(X(901))

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(a - b)2(a - c)2(a - 2b + c)(a + b - 2c)

X(5376) lies on the Hutson-Moses hyperbola and these lines: {1, 765}, {2, 1016}, {57, 4564}, {81, 4567}, {89, 1252}, {100, 3251}, {105, 1320}, {106, 291}, {274, 4601}, {279, 1275}, {666, 4555}, {898, 901}, {1022, 1023}, {1929, 4674}, {2006, 4997}, {2397, 2401}, {4584, 4622}

X(5376) = isogonal conjugate of X(2087)
X(5376) = trilinear product of PU(28)


X(5377) = H(X(919))

Barycentrics   a*(a - b)^2*(a - c)^2*(a^2 + b^2 - a*c - b*c)*(a^2 - a*b - b*c + c^2) : :

X(5377) is the trilinear pole of the line X(100)X(650), this line being tangent at X(100) to the conic {A, B, C, X(2), X(100), PU(112)}, where PU(112) are the isogonal conjugates of the bicentric pair PU(46). (Randy Hutson, September 29, 2014)

X(5377) lies on the Hutson-Moses hyperbola, the Feuerbach circumhyperbola, and these lines: {1, 1053}, {2, 38310}, {4, 6074}, {7, 59}, {8, 1016}, {9, 765}, {21, 4567}, {55, 14947}, {79, 40724}, {80, 14942}, {100, 3126}, {104, 59101}, {105, 1320}, {294, 1642}, {314, 4601}, {497, 31633}, {666, 885}, {673, 3254}, {692, 57018}, {898, 919}, {927, 2742}, {1023, 23893}, {1025, 35355}, {1027, 3257}, {1041, 7012}, {1156, 28071}, {1172, 5379}, {1252, 40779}, {1438, 4876}, {2195, 9365}, {2320, 5385}, {2344, 5384}, {2737, 59133}, {3680, 5382}, {4584, 54353}, {4998, 5218}, {5381, 36798}, {5383, 7155}, {6601, 56850}, {11124, 31628}, {11604, 13576}, {11609, 56853}, {13136, 36802}, {23836, 32735}, {43740, 52456}

X(5377) = reflection of X(100) in X(52884)
X(5377) = isogonal conjugate of X(3675)
X(5377) = symgonal image of X(52884)
X(5377) = isogonal conjugate of the complement of X(53358)
X(57536)-Ceva conjugate of X(1252)
X(5377) = X(i)-isoconjugate of X(j) for these (i,j): {1, 3675}, {11, 1458}, {57, 17435}, {109, 52305}, {241, 2170}, {244, 518}, {291, 38989}, {512, 23829}, {513, 2254}, {514, 665}, {522, 53539}, {649, 918}, {650, 53544}, {663, 43042}, {672, 1086}, {673, 35505}, {764, 1026}, {909, 42770}, {926, 3676}, {1015, 3912}, {1019, 24290}, {1027, 3126}, {1111, 2223}, {1357, 3717}, {1358, 2340}, {1438, 35094}, {1565, 2356}, {1643, 52228}, {1647, 34230}, {1769, 57468}, {1818, 2969}, {1861, 3937}, {1876, 7004}, {2162, 23773}, {2195, 3323}, {2283, 21132}, {2284, 6545}, {2310, 34855}, {2428, 23760}, {3120, 3286}, {3121, 18157}, {3122, 30941}, {3125, 18206}, {3248, 3263}, {3252, 27918}, {3271, 9436}, {3693, 53538}, {3733, 4088}, {3737, 53551}, {3930, 16726}, {3942, 5089}, {4712, 43921}, {4858, 52635}, {5236, 7117}, {7649, 53550}, {8638, 52621}, {9454, 23989}, {14942, 61056}, {16727, 39258}, {17205, 20683}, {18210, 54407}, {21143, 42720}, {22116, 27846}, {23225, 46107}, {24002, 46388}, {36819, 42753}, {43035, 56787}, {43924, 50333}, {43929, 53583}, {52614, 58817}
X(5377) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 3675}, {11, 52305}, {3126, 52304}, {5375, 918}, {5452, 17435}, {6184, 35094}, {23980, 42770}, {33675, 23989}, {39026, 2254}, {39029, 38989}, {39054, 23829}, {39063, 3323}
X(5377) = cevapoint of X(i) and X(j) for these (i,j): {55, 2284}, {100, 518}, {105, 36086}, {294, 52927}, {692, 1914}, {11124, 17435}
X(5377) = trilinear pole of line {100, 650}
X(5377) = barycentric product X(i)*X(j) for these {i,j}: {9, 39293}, {59, 36796}, {100, 666}, {101, 51560}, {105, 1016}, {190, 36086}, {294, 4998}, {518, 57536}, {644, 927}, {646, 32735}, {651, 36802}, {668, 919}, {673, 765}, {692, 36803}, {885, 31615}, {1027, 6632}, {1110, 18031}, {1252, 2481}, {1275, 28071}, {1438, 7035}, {1462, 4076}, {1814, 15742}, {1978, 32666}, {3699, 36146}, {3939, 34085}, {4391, 59101}, {4554, 52927}, {4564, 14942}, {4567, 13576}, {4600, 18785}, {4601, 56853}, {5378, 6654}, {5381, 52902}, {6065, 34018}, {6559, 7045}, {31628, 35313}, {39272, 53337}, {42722, 59021}, {43929, 57950}
X(5377) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 3675}, {43, 23773}, {55, 17435}, {59, 241}, {100, 918}, {101, 2254}, {105, 1086}, {109, 53544}, {241, 3323}, {294, 11}, {517, 42770}, {518, 35094}, {644, 50333}, {650, 52305}, {651, 43042}, {662, 23829}, {666, 693}, {673, 1111}, {692, 665}, {765, 3912}, {885, 40166}, {906, 53550}, {919, 513}, {927, 24002}, {1016, 3263}, {1018, 4088}, {1024, 21132}, {1026, 53583}, {1027, 6545}, {1110, 672}, {1252, 518}, {1262, 34855}, {1415, 53539}, {1416, 53538}, {1438, 244}, {1462, 1358}, {1814, 1565}, {1914, 38989}, {1983, 53555}, {2149, 1458}, {2195, 2170}, {2223, 35505}, {2284, 3126}, {2427, 42758}, {2481, 23989}, {4557, 24290}, {4559, 53551}, {4564, 9436}, {4567, 30941}, {4570, 18206}, {4600, 18157}, {4619, 41353}, {4998, 40704}, {5378, 40217}, {5379, 15149}, {6065, 3693}, {6559, 24026}, {7012, 5236}, {7115, 1876}, {8751, 2969}, {9503, 15634}, {13576, 16732}, {14942, 4858}, {15742, 46108}, {17435, 52304}, {18785, 3120}, {23990, 2223}, {28071, 1146}, {28132, 42455}, {31615, 883}, {32641, 57468}, {32658, 3937}, {32666, 649}, {32735, 3669}, {34085, 52621}, {35333, 16892}, {36057, 3942}, {36086, 514}, {36146, 3676}, {36796, 34387}, {36802, 4391}, {36803, 40495}, {39293, 85}, {41339, 1566}, {41934, 43921}, {43929, 764}, {46163, 2530}, {51560, 3261}, {51987, 42753}, {52635, 61056}, {52902, 52626}, {52927, 650}, {54235, 2973}, {54364, 42754}, {56853, 3125}, {57192, 4925}, {57536, 2481}, {57731, 42720}, {59101, 651}, {59149, 1026}
X(5377) = {X(885),X(35313)}-harmonic conjugate of X(666)


X(5378) = H(X(813))

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(a - b)2(a - c)2(b2 - ac)(c2 - ab)

X(5378) is the trilinear pole of the line X(100)X(649), this line being tangent at X(100) to the hyperbola {A, B, C, X(81), X(100), PU(8)}. (Randy Hutson, September 29, 2014)

X(5378) lies on the Hutson-Moses hyperbola and these lines: {1, 1016}, {6, 765}, {56, 4564}, {58, 4567}, {86, 4601}, {87, 4076}, {106, 291}, {269, 1275}, {660, 876}, {666, 1026}, {813, 898}, {1411, 4518}, {1438, 4876}

X(5378) = isogonal conjugate of X(27846)


X(5379) = H(X(112))

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(a + b)(a + c)(a - b)2(a - c)2(a2 - b2 + c2)(a2 + b2 - c2)

X(5379) lies on the Hutson-Moses hyperbola and these lines: {59, 5080}, {100, 1304}, {110, 1309}, {112, 898}, {162, 3257}, {250, 2074}, {422, 4601}, {648, 666}, {685, 692}, {2397, 2409}, {4564, 4570}

X(5379) = isogonal conjugate of X(18210)
X(5379) = polar conjugate of X(16732)
X(5379) = X(63)-isoconjugate of X(3125)


X(5380) = H(X(111))

Barycentrics   a(a - b)(a - c)(a2 - 2b2 + c2)(a2 + b2 - 2c2) : :

X(5380) lies on the Hutson-Moses hyperbola and these lines: {100, 691}, {111, 898}, {291, 4584}, {666, 671}, {668, 892}, {765, 1018}, {897, 1757}, {1016, 3952}, {1275, 4566}, {2397, 2408}, {4551, 4564}

X(5380) = isogonal conjugate of X(14419)
X(5380) = cevapoint of X(i) and X(j) for these {i,j}: {513, 7292}, {650, 8540}
X(5380) = crosspoint of X(892) and X(36085)
X(5380) = crosssum of X(351) and X(2642)
X(5380) = trilinear pole of X(37)X(100)

X(5381) = H(X(898))

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (a - b)2(a - c)2(2ab - ac - bc)(2ac - ab - bc)

X(5381) lies on the Hutson-Moses hyperbola and these lines: {6, 1016}, {31, 765}, {81, 4601}, {604, 4564}, {666, 889}, {1275, 1407}, {1333, 4567}, {3257, 3570}

X(5381) = isogonal conjugate of X(1646)


X(5382) = H(X(1293))

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(a - b)2(a - c)2(a - 3b + c)(a + b - 3c)

X(5382) lies on the Hutson-Moses hyperbola and these lines: {644, 3669}, {765, 1279}, {898, 1293}, {1016, 3008}, {1332, 3257}, {2397, 2415}

X(5382) = isotomic conjugate of complement of X(25268)


X(5383) = H(X(932))

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (a - b)2(a - c)2(bc + ab - ac)(bc - ab + ac)

X(5383) lies on the Hutson-Moses hyperbola and these lines: {87, 4076}, {190, 1919}, {645, 4584}, {898, 932}, {3257, 4598}, {3287, 4583}

X(5383) = isogonal conjugate of X(6377)
X(5383) = isotomic conjugate of X(21138)


X(5384) = H(X(825))

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(a - b)2(a - c)2(a2 + ab + b2)(a2 + ac + c2)

X(5384) lies on the Hutson-Moses hyperbola and these lines: {110, 4584}, {666, 4586}, {825, 898}, {1016, 1110}, {1492, 3257}, {4570, 4601}


X(5385) = H(X(4588))

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(a - b)2(a - c)2(2a - b + 2c)(2a + 2b - c)

X(5385) lies on the Hutson-Moses hyperbola and these lines: {89, 1252}, {100, 4825}, {101, 3257}, {666, 4597}, {898, 4588}

X(5385) = isotomic conjugate of X(4957)


X(5386) = H(X(753))

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(a - b)(a - c)(a3 - 2b3 + c3)(a3 + b3 - 2c3)

X(5386) lies on the Hutson-Moses hyperbola and these lines: {753, 898}, {765, 3799}, {1016, 3807}


X(5387) = H(X(2748))

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (a - b)2(a - c)2(a2 + b2 + c2 - 3ab)(a2 + b2 + c2 - 3ac)

X(5387) lies on the Hutson-Moses hyperbola and these lines: {898, 2748}, {1016, 3759}


X(5388) = H(X(789))

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b2c2(a - b)2(a - c)2(a2 + ab + b2)(a2 + ac + c2)

X(5388) lies on the Hutson-Moses hyperbola and these lines: {789, 898}, {799, 4584}


X(5389) = H(X(755))

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(a - b)(a - c)(a4 - 2b4 + c4)(a4 + b4 - 2c4)

X(5389) lies on the Hutson-Moses hyperbola and these lines: {755, 898}, {4553, 4567}


X(5390) = EULER-MORLEY-ZHAO POINT

Trilinears       T(A,B,C) : T(B,C,A) : T(C,A,B), where T(A,B,C) = cos(B - C) - cos(B + C) - cos(B/3 + C/3) + cos(5B/3 + 5C/3) - sin(C - B/3 - π/6) - sin(B - C/3 - π/6) + sin(B + 5C/3 - π/6) + sin(C + 5B/3 - π/6)  (Chris van Tienhoven, April 7, 2013)

Barycentrics   a*f(A/3, B/3, C/3) : b*f(B/3, C/3, A/3) : c*f(C/3, A/3, B/3), where f(x,y,z) is defined using the abbreviations [m,n] for sin(x + 2my + 2nz) + sin(x + 2ny + 2mz) and [m] for [m,m]/2, as follows:

f(x,y,z) = [-3,-1] + 5[-2,-1] + [-2,0] - 5[-1,1] - 3[-1,2] - [-1,3] + [0,1] + 2[0,2] - [0,3] - 2[1,3] - 2[2,3] + [-3] - 2[-2] + 3[-1] + 3[0] + 3[1] + 3[2] - 2[3] - [4]   (Barry Wolk)

Let DEF be the classical Morley triangle. The Euler lines of the three triangles AEF, BFD, CDE to concur in X(5390), as discovered by Zhao Yong of Anhui, China, October 2, 2012. For a construction and derivation of barycentric coordinates by Shi Yong, see Problem 20 at Unsolved Problems and Rewards. For further developments, including the development of trilinear and barycentric coordinates as shown above, type X(5390) into Search at Hyacinthos.

If you have The Geometer's Sketchpad, you can view X(5390).

X(5390) lies on this line: {357, 1136}


X(5391) = ISOTOMIC CONJUGATE OF X(1336)

Barycentrics    bc(1 - sin A) : :
Barycentrics    b c - S : :

X(5391) lies on these lines: {2,37}, {7,491}, {8,492}, {10,5490}, {69,13388}, {100,9099}, {239,3069}, {274,1123}, {319,1270}

X(5391) = isotomic conjugate of X(1336)
X(5391) = {X(2),X(75)}-harmonic conjugate of X(1267)


X(5392) = INTERSECTION OF LINES X(4)X(52) AND X(22)X(98)

Barycentrics   sec 2A : sec 2B : sec 2C

X(5392) lies on the Euler perspective cubic (K045), corresponding to the point X(68) on the Euler central cubic (K044). (Randy Hutson, November 22, 2014)

X(5392) lies on the Kiepert hyperbola and these lines: {2, 311}, {3, 96}, {4, 52}, {10, 91}, {22, 98}, {226, 914}, {262, 5133}, {264, 275}, {338, 394}, {467, 2052}

X(5392) = isogonal conjugate of X(571)
X(5392) = isotomic conjugate of X(1993)
X(5392) = pole wrt polar circle of trilinear polar of X(24)
X(5392) = X(48)-isoconjugate (polar conjugate) of X(24)
X(5392) = Cundy-Parry Phi transform of X(96)
X(5392) = Cundy-Parry Psi transform of X(52)
X(5392) = trilinear pole of line X(523)X(2072) (the line of the degenerate cross-triangle of medial and 2nd Euler triangles)


X(5393) = CENTER OF THE PAACHE-MYAKISHEV ELLIPSE

Trilinears    R + r csc A : :
Barycentrics    2 + cot(B/2) + cot(C/2) : 2 + cot(C/2) + cot(A/2) : 2 + cot(A/2) + cot B/2)
Barycentrics    a + 2r : b + 2r : c + 2r
X(5393) = s*X(1) + 3r*X(2)   (Peter Moses, January 2, 2013)

Let W(BA) and W(CA) be the two congruent circles, within triangle ABC, each tangent to the other and to sideline BC of triangle ABC, with W(BA) also tangent to sideline AB and W(CA) also tangent to sideline AC; cf. the Paache configuration at X(1123). Let BA and CA be the touchpoints of these circles with sideline BC. Define the points CB, AC cyclically and define the points AB, BC cyclically. The six points lie on an ellipse having center X(5393) and equation

d(2 + d)x2 + e(2 + e)y2 + f(2 + f)z2 - 2(2 + e + f + ef)yz - 2(2 + f + d + fd)zx - 2(2 + d + e + de)xy = 0,

where d = cot(A/2), e = cot(B/2), f = cot(C/2). Let X = X(5393). Then |GX|/|IX| = s/(3r), where G = centroid, I = incenter, r = inradius, and s = semiperimeter. (Alexei Myakishev, December 25, 2012).

An associated conic, the Paache-Myakishev-Moses conic, is introduced at X(5405). This conic results from the two congruent circles that do not lie within triangle ABC.

If you have The Geometer's Sketchpad, you can view

X(5393), including the ellipse. You can also view the configuration for pairs of circles used in the constructions of X(5393) and X(5405): Pairs of Circles.

X(5393) lies on these lines: {1, 2 }, {9, 3068}, {37, 590}, {57, 482}, {81, 3300}, {175, 5226}, {226, 481}, {491, 4357}, {492, 3879}, {515, 2048}, {615, 1100}, {642, 3666}, {940, 1335}, {1124, 4383}, {1255, 3302}, {1267, 3875}, {1449, 3069}, {1585, 1785}, {1991, 4643}

X(5393) = {X(1),X(2)}-harmonic conjugate of X(5405)


X(5394) = CONGRUENT INCIRCLES POINT

Barycentrics   (unknown)

X(5394) is the point X for which the three triangles AXB, BXC, CXA have congruent incircles. The existence of this point is proved by Noam Elkies in Mathematics Magazine 60 (1987) 117. His proof applies to a much wider range of functions (with the inradius replaced by the area, semiperimeter, etc., or any positive combination thereof).

Following is a copy-and-run Mathematica program that computes actual trilinear distances (1.7916..., 1.7057..., 1.6328...) of X(5394) for the triangle given by (a,b,c) = (6,9,13).

(1/2 Sqrt[(a + b - c) (a - b + c) (-a + b + c) (a + b + c)] {x/a, y/b, z/c} /. #1 /.
NSolve[{x + y + z == 1, (a + Sqrt[b^2 x^2 + (a^2 + b^2 - c^2) x y + a^2 y^2] +
Sqrt[c^2 x^2 + (a^2 - b^2 + c^2) x z + a^2 z^2])/
x == (b + Sqrt[b^2 x^2 + (a^2 + b^2 - c^2) x y + a^2 y^2] +
Sqrt[c^2 y^2 + (-a^2 + b^2 + c^2) y z + b^2 z^2])/
y == (c + Sqrt[c^2 x^2 + (a^2 - b^2 + c^2) x z + a^2 z^2] +
Sqrt[c^2 y^2 + (-a^2 + b^2 + c^2) y z + b^2 z^2])/
z /. #1}, {x, y, z}, WorkingPrecision → 40][[1]] &)[Thread[{a, b, c} → {6, 9,13}]]
(* Code by Peter Moses, October 23, 2012. *)

Let S = 2 area ABC, s1 = a + b + c, s2 = b c + c a + a c, s3 = a b c. Then the radius of the congruent incircles is the least positive solution of the following 8th-degree polynomial equation:

1 -
8 s1 x / S +
(23 s1^2 + 8 s2) x^2 / S^2 -
2 s1 (13 s1^2 + 24 s2) x^3 / S^3 +
2 (3 s1^4 + 42 s1^2 s2 + 8 s2^2 + 12 s1 s3) x^4 / S^4 -
16 s1 (s1^2 s2 + 4 s2^2 + 6 s1 s3) x^5 / S^5 +
4 s1 (2 s1^5 - 9 s1^3 s2 + 4 s1 s2^2 + 24 s1^2 s3 + 24 s2 s3) x^6 / S^6 +
96 s1 s2 x^7 / S^5 -
288 s1 s3 x^8 / S^6 = 0.

For example, if {a,b,c} = {6,9,13} the equation is as follows:

1-4 Sqrt[7/5] x+(2503 x^2)/280-(2021 x^3)/(40 Sqrt[35])+(269373 x^4)/62720-(140289 x^5)/(22400 Sqrt[35])+(187 x^6)/1960+(747 x^7)/(44800 Sqrt[35])-(3159 x^8)/6272000 = 0,

of which the least positive solution is x = 0.803384896325630173615878150981...

Here is a Mathematica code for computing the radius:

testtriangle = {6, 9, 13};
N[First[Sort[Select[x/.Solve[(1 - 8 s1 x / S + (23 s1^2 + 8 s2) x^2 / S^2 - 2 s1 (13 s1^2 + 24 s2) x^3 / S^3 + 2 (3 s1^4 + 42 s1^2 s2 + 8 s2^2 + 12 s1 s3) x^4 / S^4 - 16 s1 (s1^2 s2 + 4 s2^2 + 6 s1 s3) x^5 / S^5 + 4 s1 (2 s1^5 - 9 s1^3 s2 + 4 s1 s2^2 + 24 s1^2 s3 + 24 s2 s3) x^6 / S^6 + 96 s1 s2 x^7 / S^5 - 288 s1 s3 x^8 / S^6 /.Thread[{s1, s2, s3, S} → {a + b + c, b c + c a + a b, a b c, 1/2 Sqrt[(a + b - c) (a - b + c) (-a + b + c) (a + b + c)]}] /.Thread[{a, b, c} → testtriangle]) == 0, x], #>0&]]], 30]
(Notes and code from Peter Moses, July 24, 2019)

Following is another approach to formulating and computing the congruent incircles radius. Let
k0 = s1^2 (s1^3-4 s1 s2+12 s3)^2
k1 = -s1 (11 s1^5-60 s1^3 s2+80 s1 s2^2+48 s1^2 s3-96 s2 s3)
k2 = 4 (11 s1^4-36 s1^2 s2+16 s2^2+24 s1 s3)
k3 = -16 (5 s1^2-8 s2)
k4 = 64, where
s1 = a + b + c
s2 = b c + c a + a b
s3 = a b c.
Next, let x be the maximal root of k0 + k1 x + k2 x^2 + k3 x^3 + k4 x^4 = 0. Then the desired radius is S / (s1 + 2 Sqrt[x]) where S = 2 * Area ABC.

Here is a Mathematica code for computing the radius:

testtriangle={6,9,13}; N[S/(s1+2 Sqrt[Last[Sort[x/.Solve[ (s1^2 (s1^3-4 s1 s2+12 s3)^2-s1 (11 s1^5-60 s1^3 s2+80 s1 s2^2+48 s1^2 s3-96 s2 s3)x+4 (11 s1^4-36 s1^2 s2+16 s2^2+24 s1 s3) x^2-16 (5 s1^2-8 s2) x^3+64 x^4/.#)==0,x]]]])/.#&[Thread[{s1,s2,s3,S} → {a+b+c,b c+c a+a b,a b c,1/2 Sqrt[(a+b-c) (a-b+c) (-a+b+c) (a+b+c)]}]/.Thread[{a,b,c} → testtriangle]],30]
(Notes and code from Peter Moses, August 13, 2019)

X(5394) lies on no line X(i)X(j) for 1 <= i < j <= 33000.


X(5395) = ISOTOMIC CONJUGATE OF X(3620)

Trilinears       1/(sin A + 2 cos A tan ω) : 1/(sin B + 2 cos B tan ω) : 1/(sin C + 2 cos C tan ω)
Trilinears       1/(2 cos A + sin A cot ω) : 1/(2 cos B + sin B cot ω) : 1/(2 cos C + sin C tan ω)
Trilinears       1/(2 cos A sin ω + sin A cos ω) : 1/(2 cos B sin ω + sin B cos ω) : 1/(2 cos C sin ω + sin C cos ω)
Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 1/(3b2 + 3c2 - a2)

Let X, Y, Z be the points defined by Dominik Burek as at X(1217). If the initial point P is the centroid, then the perspector of the triangles XYZ and ABC is X(5395). (Peter Moses, June 9, 2012)

X(5395) lies on these lines: {2, 3053}, {4, 5050}, {6, 2996}, {20, 262}, {76, 193}, {83, 5033}, {98, 3091}, {439, 3815}, {458, 459}, {620, 2548}, {671, 5286}, {3146, 3329}, {3424, 3832}

X5395) = isogonal conjugate of X(5013)
X(5395) = polar conjugate of X(8889)


X(5396) = INTERSECTION OF LINES X(1)X(5) AND X(3)X(6)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = 1 + cos(B - A) + cos(C - A)
Trilinears       g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (cos A)(cos A + cos B + cos C) + (sin A)(sin A + sin B + sin C)
Trilinears       h(A,B,C) : h(B,C,A) : h(C,A,B), where h(A,B,C) = R*(cos A)(cos A + cos B + cos C) + s*sin A
X(5396) = (b + c)(c + a)(a + b)*X(1) - 2abc*X(5)   (Peter Moses, January 2, 2013)

X(5396)-X(5400) were submitted with trilinears by Randy Hutson, December 12, 2012.

X(5396) = {X(3),X(6)}-harmonic conjugate of X(5398)

X(5396) lies on these lines: {1, 5}, {3, 6}, {35, 2361}, {40, 5312}, {42, 517}, {51, 859}, {54, 60}, {73, 942}, {140, 3216}, {515, 2051}, {912, 3666}, {1066, 5045}, {1155, 4337}, {1193, 1385}, {1450, 5126}, {1871, 1880}, {2800, 4868}, {3060, 4216}, {3190, 3940}, {3576, 5313}, {3579, 4300}, {3682, 5044}}

X(5396) = isogonal conjugate of X(5397)
X(5396) = crossdifference of every pair of points on line X(523)X(654)
X(5396) = {X(371),X(372)}-harmonic conjugate of X(2278)


X(5397) = ISOGONAL CONJUGATE OF X(5396)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = 1/(1 + cos(B - A)) + cos(C - A))
Trilinears       g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = 1/[(cos A)(cos A + cos B + cos C) + (sin A)(sin A + sin B + sin C)]
Trilinears       h(A,B,C) : h(B,C,A) : h(C,A,B), where h(A,B,C) = 1/[R*(cos A)(cos A + cos B + cos C) + s*sin A]

X(5397) lies on the hyperbola that passes through the points A, B, C, X(1), X(36), as well as the Kiepert hyperbola. X(5397) is the trilinear pole of the line X(523)X(654). (Randy Hutson, Dec. 31, 2012)

X(5397) lies on the Kiepert hyperbola and these lines: {4, 2278}, {5, 60}, {10, 2323}, {12,54}, {36, 226}, {59, 495}, {94, 3615}, {275, 860}, {321, 4511}, {1443, 1446}, {2051, 4276}, {2052, 5136}, {2618, 3737}

X(5397) = isogonal conjugate of X(5396)


X(5398) = {X(3), X(6)}-HARMONIC CONJUGATE OF X(5396)

Trilinears       g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (cos A)(cos A + cos B + cos C) - (sin A)(sin A + sin B + sin C)
Trilinears       h(A,B,C) : h(B,C,A) : h(C,A,B), where h(A,B,C) = R*(cos A)(cos A + cos B + cos C) - s*sin A
X(5398) = 2r(r + R)*X(3) + (r2 + 4rR - s2)*X(6)    (Peter Moses, January 2, 2013)

X(5398) lies on these lines: {1, 2361}, {3, 6}, {4, 162}, {5, 1724}, {30, 1754}, {31, 517}, {36, 2003}, {46, 1399}, {47, 65}, {56, 215}, {81, 1006}, {184, 859}, {255, 942}, {283, 405}, {355, 3072}, {595, 1482}, {601, 3579}, {602, 1385}, {603, 1465}, {912, 4641}, {1060, 1708}, {1064, 2308}, {1411, 2964}, {1496, 5045}, {1718, 3336}, {1737, 5348}, {1780, 3560}, {2979, 4218}, {4216, 5012}

X(5398) = {X(371),X(372)}-harmonic conjugate of X(2245)


X(5399) = INTERSECTION OF LINES X(1)X(5) AND X(54)X(59)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = 1 - cos(A - B) - cos(A - C)
X(5399) = (4R2 - 2rR - r2 - s2)*X(1) + 4rR*X(5)    (Peter Moses, January 2, 2013)

X(5399) = {X(1), X(2594)}-harmonic conjugate of X(5396)

X(5399) lies on these lines: {1, 5}, {3, 947}, {42, 942}, {54, 59}, {55, 500}, {73, 517}, {386, 999}, {581, 3295}, {1048, 2607}, {1060, 3811}, {1870, 5174}, {3333, 5312}, {3579, 4303}, {4322, 5126}}


X(5400) =  X(1)X(5)∩X(2)X(991)

Trilinears    1 + cos(A - B) + cos(A - C) - 3 cos(B - C) : :
X(5400) = (a + b)(a + c)(b + c)*X(1) - 8abc*X(5)    (Peter Moses, January 2, 2013)

X(5400) = trilinear pole, with respect to the excentral triangle, of the Brocard axis (Randy Hutson, Dec. 31, 2012)

X(5400) lies on the hexyl-excentral ellipse and on these lines: {1, 5}, {2, 991}, {4, 3216}, {42, 3817}, {43, 1699}, {118, 2999}, {165, 2108}, {200, 5014}, {244, 2801}, {386, 3091}, {500, 3628}, {516, 899}, {581, 3090}, {946, 3293}, {970, 3030}, {1054, 1768}, {1465, 1736}, {1724, 3149}, {1754, 4383}, {2635, 3911}, {2800, 4674}, {3214, 4301}, {3634, 4300}


X(5401) = SEC(A + π/5) POINT

Trilinears    sec(A + π/5) : :
Barycentrics    siin A sec(A + π/5) : :

On the sides of ABC construct external regular pentagons ABC1C2C3, BCA1A2A3, CAB1B2B3. The Aubert lines of [ABA1B3], [BCB1C3], [CAC1A3] concur in X(5401). These lines pass through A, B, C. (Aubert lines are defined at X(45010); see also A construction of X(3381) and X(5401) using Aubert lines). For the case of external pentagons, see X(3381). (Ivan Pavlov, April 15, 2022)

X(5401) lies on the Kiepert hyperbola and these lines: {2, 3379}, {3, 3382}, {4, 3380}, {5, 3368}, {6, 3381}, {1139, 3395}, {1140, 3393}, {3370, 3394}, {3396, 3397}

X(5401) = isogonal conjugate of X(3393)
X(5401) = X(3369)-cross conjugate of X(5402)
X(5401) = X(3)-Dao conjugate of X(3393)
X(5401) = barycentric quotient X(6)/X(3393)
X(5401) = {X(5),X(3368)}-harmonic conjugate of X(5402)


X(5402) = CSC(A + π/5) POINT

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = csc(A + π/5)

X(5402) lies on the Kiepert hyperbola and these lines: {2, 3380}, {3, 3381}, {4, 3379}, {5, 3368}, {6, 3382}, {1139, 3396}, {1140, 3394}, {3370, 3393}, {3395, 3397}

X(5402) = isogonal conjugate of X(3394)


X(5403) = SEC(A - ω/2) POINT

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = sec(A - ω/2)

Let A′ be the apex of the isosceles triangle BA′C constructed outward on BC such that ∠A′BC = ∠A′CB = ω/2. Define B′ and C′ cyclically. Let Ha be the orthocenter of BA′C, and define Hb and Hc cyclically. The lines AHa, BHb, CHc concur in X(5403). (Randy Hutson, July 20, 2016)

X(5403) lies on the Kiepert hyperbola and these lines: {2, 1670}, {3, 1676}, {4, 1671}, {5, 141}, {6, 1677}, {11, 3238}, {12, 3237}, {83, 1342}, {98, 1343}, {485, 1690}, {486, 1689}, {1348, 1664}, {1349, 1665}, {2009, 3102}, {2010, 3103}

X(5403) = isogonal conjugate of X(1342)
X(5403) = circumcircle-inverse of X(34134)


X(5404) = CSC(A - ω/2) POINT

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = csc(A - ω/2)

Let B* be a point such that (angle CBB*) = ω/2, and let C* be a point such that (angle CBC*) = ω/2. Let A′ = (line BB*)∩(line CC*), and define B′ and C′ cyclically. The lines AA′, BB′, CC′ concur in X(5404). (Randy Hutson, September 5, 2014)

X(5404) lies on the Kiepert hyperbola and these lines: {2, 1671}, {3, 1677}, {4, 1670}, {5, 141}, {6, 1676}, {11, 3237}, {12, 3238}, {83, 1343}, {98, 1342}, {485, 1689}, {486, 1690}, {1348, 1665}, {1349, 1664}, {2009, 3103}, {2010, 3102}

X(5404) = isogonal conjugate of X(1343)

X(5404) = circumcircle-inverse of X(34133)

X(5405) = CENTER OF THE PAACHE-MYAKISHEV-MOSES CONIC

Trilinears    R - r csc A : :
Barycentrics   2 - cot(B/2) - cot(C/2) : 2 - cot(C/2) - cot(A/2) : 2 - cot(A/2) - cot B/2)
Barycentrics   a - 2r : b - 2r : c - 2r
X(5405) = s*X(1) - 3r*X(2)   (Peter Moses, January 2, 2013)

For the construction of this conic, see X(5393), where the associated Paache-Myakishev ellipse is introduced.

If you have The Geometer's Sketchpad, you can view X(5405), including the conic.

X(5405) lies on these lines: {1, 2}, {9, 3069}, {37, 615}, {57, 481}, {81, 3299}, {176, 5226}, {226, 482}, {491, 3879}, {492, 4357}, {590, 1100}, {591, 4643}, {641, 3666}, {940, 1124}, {946, 2048}, {1255, 3300}, {1335, 4383}, {1449, 3068}, {1586, 1785}, {1659, 5219}

X(5405) = {X(1),X(2)}-harmonic conjugate of X(5393)


X(5406) = 1st LUCAS POLAR PERSPECTOR

Trilinears        (cos A)(2 + cot A) : (cos B)(2 + cot B) : (cos C)(2 + cot C)

Let A′B′C′ be the Lucas central triangle. Let LA be the trilinear polar of A′, and define LB and LC cyclically. Let A″ = LB∩LC, and define B″ and C″ cyclically. The lines AA″, BB″, CC″ concur in X(5406), which is the {X(3), X(394)}-harmonic conjugate of X(5407). (Randy Hutson, February 9, 2013)

X(5406) lies on these lines: {2, 490}, {3, 49}, {6, 588}, {25, 9739}, {323, 6411}, {343, 488}, {372, 1583}, {493, 5062}, {1151, 1993}, {1584, 6396}, {1591, 6560}, {1592, 5420}, {1600, 6410}, {1994, 3592}, {3155, 9733}, {3311, 8910}, {3594, 5422}, {3785, 8223}, {6423, 8962}


X(5407) = 2nd LUCAS POLAR PERSPECTOR

Trilinears        (cos A)(2 - cot A) : (cos B)(2 - cot B) : (cos C)(2 - cot C)

Let A′B′C′ be the Lucas(-1) central triangle. Let LA be the trilinear polar of A′, and define LB and LC cyclically. Let A″ = LB∩LC, and define B″ and C″ cyclically. The lines AA″, BB″, CC″ concur in X(5407), which is the {X(3), X(394)}-harmonic conjugate of X(5406). (Randy Hutson, February 9, 2013)

X(5407) lies on these lines: {2, 489}, {3, 49}, {6, 589}, {25, 9738}, {323, 6412}, {343, 487}, {371, 1584}, {494, 5058}, {1152, 1993}, {1583, 6200}, {1591, 5418}, {1592, 6561}, {1599, 6409}, {1994, 3594}, {3156, 9732}, {3592, 5422}, {3785, 8222}, {6347, 9678}, {6348, 9679}, {6805, 9540}, {6806, 9541}, {8962, 9600}


X(5408) = 3rd LUCAS POLAR PERSPECTOR

Trilinears    (cos A)(1 + cot A) : (cos B)(1 + cot B) : (cos C)(1 + cot C)
Trilinears    cos A - sin A + csc A : :

Let A′B′C′ be the Lucas tangents triangle. Let LA be the trilinear polar of A′, and define LB and LC cyclically. Let A″ = LB∩LC, and define B″ and C″ cyclically. The lines AA″, BB″, CC″ concur in X(5408). The same is true if A′B′C′ is the Lucas(2) central triangle. X(5408) = {X(3), X(394)}-harmonic conjugate of X(5409). (Randy Hutson, February 9, 2013)

X(5408) lies on the conic {A, B, C, X(69), X(97)} and these lines: {2, 372}, {3, 49}, {6, 493}, {25, 9733}, {63, 3083}, {69, 1590}, {317, 492}, {323, 6200}, {371, 1599}, {486, 6504}, {490, 1586}, {494, 8770}, {511, 3155}, {615, 1592}, {1152, 1584}, {1194, 6421}, {1589, 6458}, {1591, 3070}, {1600, 6396}, {1994, 6419}, {2987, 7598}, {3069, 6806}, {3084, 5414}, {3156, 9306}, {5422, 6420}, {6337, 8222}, {6460, 6805}, {8909, 8910}, {8911, 9723}

X(5408) = X(2)-Ceva conjugate of X(5409)


X(5409) = 4th LUCAS POLAR PERSPECTOR

Trilinears    (cos A)(1 - cot A) : (cos B)(1 - cot B) : (cos C)(1 - cot C)
Trilinears    cos A + sin A - csc A : :

Let A′B′C′ be the Lucas(-1) tangents triangle. Let LA be the trilinear polar of A′, and define LB and LC cyclically. Let A″ = LB∩LC, and define B″ and C″ cyclically. The lines AA″, BB″, CC″ concur in X(5409). The same is true if A′B′C′ is the Lucas(-2) central triangle. X(5409) = {X(3), X(394)}-harmonic conjugate of X(5408). (Randy Hutson, February 9, 2013)

X(5409) lies on the conic {A, B, C, X(69), X(97)} and these lines: {2, 371}, {3, 49}, {6, 494}, {22, 8989}, {25, 9732}, {63, 2067}, {69, 1589}, {317, 491}, {323, 6396}, {372, 1600}, {485, 6504}, {489, 1585}, {493, 8770}, {511, 3156}, {590, 1591}, {1151, 1583}, {1194, 6422}, {1590, 6457}, {1592, 3071}, {1599, 6200}, {1994, 6420}, {2066, 3083}, {2987, 7599}, {3068, 6805}, {3155, 9306}, {5422, 6419}, {6337, 8223}, {6459, 6806}, {6503, 8909}

X(5409) = X(2)-Ceva conjugate of X(5408)


X(5410) = 5th LUCAS POLAR PERSPECTOR

Trilinears        (sin A)(2 - tan A) : (sin B)(2 - tan B) : (sin C)(2 - tan C)

Let A′ be the perspector of the A-Lucas circle, and define B′ and C′ cyclically. (The lines AA′, BB′, CC′ concur in X(1151).) Let LA be the polar of A′ with respect to the A-Lucas circle, and define LB and LC cyclically. Let A* = LB∩LC, B* = LC∩LA, C* = LA∩LB. The lines AA*, BB*, CC* concur in X(5410). X(5410) = {X(6), X(25)}-harmonic conjugate of X(5411). (Randy Hutson, February 10, 2013)

X(5410) lies on these lines: {4, 1131}, {6, 25}, {24, 3312}, {186, 6398}, {235, 1588}, {371, 1593}, {372, 3515}, {378, 6221}, {427, 3068}, {468, 3069}, {485, 7507}, {590, 5094}, {1151, 3516}, {1271, 3536}, {1398, 2067}, {1587, 3575}, {1594, 8976}, {1597, 6199}, {1598, 6417}, {1702, 1902}, {1885, 6459}, {2066, 7071}, {2207, 5058}, {3089, 7582}, {3092, 5198}, {3127, 8975}, {3172, 6424}, {3517, 6418}, {3518, 6428}, {3520, 6449}, {3541, 8981}, {3542, 7584}, {6353, 7586}, {7487, 7581}, {8889, 8972}


X(5411) = 6th LUCAS POLAR PERSPECTOR

Trilinears        (sin A)(2 + tan A) : (sin B)(2 + tan B) : (sin C)(2 + tan C)

Let A′ be the perspector of the A-Lucas(-1) circle, and define B′ and C′ cyclically. (The lines AA′, BB′, CC′ concur in X(1152).) Let LA be the polar of A′ with respect to the A-Lucas(-1) circle, and define LB and LC cyclically. Let A* = LB∩LC, B* = LC∩LA, C* = LA∩LB. The lines AA*, BB*, CC* concur in X(5411). X(5411) = {X(6), X(25)}-harmonic conjugate of X(5410). (Randy Hutson, February 10, 2013)

X(5411) lies on these lines: {4, 1132}, {6, 25}, {24, 3311}, {186, 6221}, {235, 1587}, {371, 3515}, {372, 1593}, {378, 6398}, {427, 3069}, {468, 3068}, {486, 7507}, {615, 5094}, {1152, 3516}, {1249, 5200}, {1270, 3535}, {1398, 6502}, {1588, 3575}, {1597, 6395}, {1598, 6418}, {1703, 1902}, {1885, 6460}, {2207, 5062}, {3089, 7581}, {3093, 5198}, {3147, 8981}, {3172, 6423}, {3517, 6417}, {3518, 6427}, {3520, 6450}, {3542, 7583}, {5414, 7071}, {6353, 7585}, {7487, 7582}, {7505, 8976}


X(5412) = 1st KENMOTU HOMOTHETIC CENTER

Trilinears    (sin A)(1 - tan A) : (sin B)(1 - tan B) : (sin C)(1 - tan C) : :
Trilinears    cos A + sin A - sec A : :

Let U, V, W be the congruent squares described at X(371). Let LA be the extended diagonal of U that does not contain X(371), and define LB and LC cyclically. Let A′ = LB∩LC, and define B′ and C′ cyclically. The triangle A′B′C′ is homothetic to the orthic triangle, and the center of homothety is X(5412). Also, A′B′C′ is homothetic to the tangential triangle at X(6), to the intangents triangle at X(2066), and to the extangents triangle at X(5415); A′B′C′ is named the 1st Kenmotu diagonals triangle at X(31). (Randy Hutson, February 9, 2013)

X(5412) lies on the conic {A, B, C, X(4), X(24)} and these lines: {3, 3093}, {4, 371}, {6, 25}, {19, 5415}, {24, 372}, {33, 2066}, {34, 2067}, {186, 6396}, {216, 3155}, {235, 3071}, {317, 491}, {378, 6200}, {393, 8576}, {403, 6565}, {427, 590}, {468, 615}, {486, 3542}, {577, 3156}, {605, 2212}, {606, 1395}, {1151, 1593}, {1152, 3515}, {1164, 3087}, {1452, 2362}, {1587, 7487}, {1588, 3089}, {1595, 8981}, {1597, 6221}, {1598, 3092}, {1829, 7969}, {1968, 6406}, {2207, 6424}, {3069, 6353}, {3070, 3575}, {3088, 9540}, {3147, 5420}, {3199, 5058}, {3312, 3517}, {3516, 6409}, {3518, 6420}, {3536, 5591}, {3541, 5418}, {3592, 5198}, {4232, 7586}, {5094, 8253}, {5417, 6419}, {6756, 7583}, {6995, 7585}, {7378, 8972}, {8577, 8882}

X(5412) = isogonal conjugate of X(11091)
X(5412) = cevapoint of X(i) and X(j) for these {i,j}: {25, 6424}, {371, 8855}
X(5412) = X(393)-Ceva conjugate of X(5413)
X(5412) = X(571)-cross conjugate of X(5413)
X(5412) = polar conjugate of X(34392)
X(5412) = {X(4),X(371)}-harmonic conjugate of X(11473)
X(5412) = {X(6), X(25)}-harmonic conjugate of X(5413)
X(5412) = X(6203)-of-orthic-triangle if ABC is acute
X(5412) = trilinear product X(i)*X(j) for these {i,j}: {19, 372}, {31, 1586}, {491, 1973}, {1096, 5409}, {1748, 8577}, {3377, 5413}


X(5413) = 2nd KENMOTU HOMOTHETIC CENTER

Trilinears    (sin A)(1 + tan A) : (sin B)(1 + tan B) : (sin C)(1 + tan C) : :
Trilinears    cos A - sin A - sec A : :

Let U′, V′, W′ be the congruent squares as described at X(371), but with two vertices each on the extended sides of triangle ABC, and having common vertex X(372). Let LA be the extended diagonal of U′ that does not contain X(372), and define LB and LC cyclically. Let A′ = LB∩LC, and define B′ and C′ cyclically. The triangle A′B′C′ is homothetic to the orthic triangle, and the center of homothety is X(5413). Also, A′B′C′ is homothetic to the tangential triangle at X(6), to the intangents triangle at X(5414), and to the extangents triangle at X(5416); A′B′C′ is named the 2nd Kenmotu diagonals triangle at X(31). (Randy Hutson, February 9, 2013)

X(5413) lies on the conic {{A, B, C, X(4), X(24)}} and these lines: {3, 3092}, {4, 372}, {6, 25}, {19, 5416}, {24, 371}, {33, 5414}, {34, 6502}, {186, 6200}, {216, 3156}, {235, 3070}, {317, 492}, {378, 6396}, {393, 5200}, {403, 6564}, {427, 615}, {468, 590}, {485, 3542}, {577, 3155}, {605, 1395}, {606, 2212}, {1151, 3515}, {1152, 1593}, {1165, 3087}, {1587, 3089}, {1588, 7487}, {1597, 6398}, {1598, 3093}, {1829, 7968}, {1968, 6291}, {2207, 6423}, {3068, 6353}, {3071, 3575}, {3147, 5418}, {3199, 5062}, {3311, 3517}, {3516, 6410}, {3518, 6419}, {3535, 5590}, {3541, 5420}, {3594, 5198}, {4232, 7585}, {5094, 8252}, {5419, 6420}, {6756, 7584}, {6995, 7586}, {8576, 8882}

X(5413) = isogonal conjugate of X(11090)
X(5413) = cevapoint of X(i) and X(j) for these {i,j}: {25, 6423}, {372, 8854}
X(5413) = X(393)-Ceva conjugate of X(5412)
X(5413) = X(571)-cross conjugate of X(5412)
X(5413) = polar conjugate of X(34391)
X(5413) = {X(4),X(372)}-harmonic conjugate of X(11472)
X(5413) = {X(6), X(25)}-harmonic conjugate of X(5412)
X(5413) = X(6204)-of-orthic-triangle if ABC is acute
X(5413) = trilinear product X(i)*X(j) for these {i,j}: {19, 371}, {31, 1585}, {158, 8911}, {492, 1973}, {1096, 5408}, {1748, 8576}, {3378, 5412}


X(5414) = 3rd KENMOTU HOMOTHETIC CENTER

Trilinears        1 - sin A + cos A : 1 - sin B + cos B : 1 - sin C + cos C

The A′B′C′ defined at X(5413) is homothetic to the intangents triangle, and the center of homothety is X(5414). Also, X(5414) = {X(6), X(55)}-harmonic conjugate of X(2066) and X(5414) = {X(3), X(1335)}-harmonic conjugate of X(2067). (Randy Hutson, February 9, 2013)

X(5414) lies on the conic {A, B, C, X(1), X(3)} and these lines: {1, 372}, {3, 1335}, {6, 31}, {11, 615}, {12, 3070}, {29, 7090}, {33, 5413}, {35, 371}, {36, 6396}, {37, 8577}, {56, 1152}, {63, 8394}, {140, 9661}, {165, 8833}, {172, 6283}, {259, 7014}, {283, 1805}, {388, 6460}, {390, 7586}, {405, 1377}, {485, 498}, {486, 1479}, {497, 3069}, {499, 5420}, {550, 9647}, {590, 5432}, {601, 3077}, {999, 6398}, {1124, 3295}, {1151, 5217}, {1378, 5687}, {1478, 6560}, {1500, 5062}, {1505, 2241}, {1587, 3085}, {1588, 4294}, {2646, 7969}, {2961, 8942}, {3057, 7968}, {3068, 5218}, {3071, 6284}, {3084, 5408}, {3297, 3303}, {3299, 3746}, {3304, 6426}, {3365, 7006}, {3390, 7005}, {3583, 6565}, {4302, 6561}, {5010, 6200}, {5204, 6410}, {5268, 8854}, {5281, 7585}, {5411, 7071}, {5563, 6454}, {6395, 6767}, {6564, 7951}, {7583, 9646}

X(5414) = isogonal conjugate of X(13390)
X(5414) = X(9)-Ceva conjugate of X(2066)
X(5414) = cevapoint of X(48) and X(606)


X(5415) = 4th KENMOTU HOMOTHETIC CENTER

Trilinears        a(2R + r + s - a) : b(2R + r + s - b) : c(2R + r + s - c)   (César Lozada, April 7, 2013; Hyacinthos #21900)
Trilinears        (sin A)(2R sin A - 2R - r - s) : (sin B)(2R sin B - 2R - r - s) : (sin C)(2R sin C - 2R - r - s)   (César Lozada, April 7, 2013)

The A′B′C′ defined at X(5412) is homothetic to the extangents triangle, and the center of homothety is X(5415). Also, X(5415) = {X(6), X(55)}-harmonic conjugate of X(5416). (Randy Hutson, February 9, 2013)

X(5415) lies on these lines: {6, 31}, {19, 5412}, {40, 371}, {65, 2067}, {590, 3925}, {1151, 5584}, {1702, 6769}, {2550, 3068}, {3070, 6253}, {6200, 7688}, {7133, 8557}


X(5416) = 5th KENMOTU HOMOTHETIC CENTER

Trilinears        a(2R + r - s + a) : b(2R + r - s + b) : c(2R + r - s + c)   (César Lozada, April 7, 2013)
Trilinears        (sin A)(2R sin A + 2R + r - s) : (sin B)(2R sin B + 2R + r - s) : (sin C)(2R sin C + 2R + r - s)   (César Lozada, April 7, 2013)

The A′B′C′ defined at X(5413) is homothetic to the extangents triangle, and the center of homothety is X(5416). Also, X(5416) = {X(6), X(55)}-harmonic conjugate of X(5415). (Randy Hutson, February 9, 2013)

X(5416) lies on these lines: {6, 31}, {19, 5413}, {40, 372}, {65, 6414}, {615, 3925}, {1152, 5584}, {1703, 6769}, {2550, 3069}, {3071, 6253}, {3553, 7133}, {6396, 7688}


X(5417) = PERSPECTOR OF 1st KENMOTU CIRCLE

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = 1/(cos A + sin A + 2 sin B sin C)

The 1st Kenmotu circle is defined at MathWorld. Let A′ be the pole of line BC with respect to the 1st Kenmotu circle, and define B′ and C′ cyclically. The lines AA′, BB′, CC′ concur in X(5417). (Randy Hutson, February 9, 2013)

X(5417) lies on the conic {A, B, C, X(2), X(1173)} and these lines: {371, 5446}, {372, 1599}, {491, 639}, {5412, 6419}, {5419, 5421}

X(5417) = isogonal conjugate of X(5418)


X(5418) = ISOGONAL CONJUGATE OF X(5417)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = cos A + sin A + 2 sin B sin C

X(5418) lies on these lines: {2, 371}, {3, 485}, {4, 6200}, {5, 1151}, {6, 140}, {10, 9557}, {15, 2046}, {16, 2045}, {20, 6564}, {25, 9683}, {30, 6409}, {33, 9631}, {54, 9676}, {55, 9661}, {56, 9646}, {69, 641}, {110, 9677}, {115, 9674}, {230, 6422}, {316, 2460}, {372, 631}, {376, 1327}, {381, 6449}, {382, 6455}, {468, 3092}, {491, 1078}, {492, 7769}, {498, 2067}, {499, 2066}, {547, 6429}, {549, 1152}, {550, 6411}, {597, 9975}, {615, 3311}, {620, 8980}, {632, 3592}, {1062, 9632}, {1124, 5433}, {1328, 5055}, {1329, 9678}, {1335, 5432}, {1377, 3035}, {1378, 4999}, {1504, 7749}, {1506, 9675}, {1579, 6676}, {1587, 3523}, {1590, 8968}, {1591, 5407}, {1656, 3071}, {1657, 6451}, {1698, 9583}, {1699, 9582}, {1702, 3624}, {2041, 3389}, {2042, 3364}, {2043, 3391}, {2044, 3366}, {2051, 9556}, {2886, 9679}, {3055, 8375}, {3069, 3525}, {3090, 6453}, {3091, 9541}, {3102, 7786}, {3147, 5413}, {3312, 5054}, {3524, 6460}, {3530, 6410}, {3533, 7582}, {3534, 6496}, {3541, 5412}, {3545, 6484}, {3628, 6425}, {3815, 6424}, {3832, 6486}, {3850, 6433}, {3851, 6445}, {3857, 6488}, {5056, 6480}, {5079, 6519}, {5254, 9600}, {5587, 9615}, {5972, 8994}, {6036, 8997}, {6289, 8414}, {6420, 7585}, {6684, 8983}, {6699, 8998}, {6813, 9993}, {7386, 8280}, {7389, 7790}, {7486, 9542}, {7494, 8854}, {8227, 9616}, {8964, 8967}

X(5418) = isogonal conjugate of X(5417)
X(5418) = {X(6),X(140}-harmonic conjugate of X(5420)


X(5419) = PERSPECTOR OF 2nd KENMOTU CIRCLE

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = 1/(cos A - sin A + 2 sin B sin C)

The 2nd Kenmotu circle has center X(372) and passes through the six contact points of the congruent squares in the construction of the 2nd Kenmotu point. Let Let A′ be the pole of line BC with respect to the 2nd Kenmotu circle, and define B′ and C′ cyclically. The lines AA′, BB′, CC′ concur in X(5419). (Randy Hutson, February 9, 2013)

X(5419) lies on the conic {A, B, C, X(2), X(1173)} and these lines: {371, 1600}, {372, 5446}, {492, 640}, {5413, 6420}, {5417, 5421}

X(5419) = isogonal conjugate of X(5420)


X(5420) = ISOGONAL CONJUGATE OF X(5419)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = cos A - sin A + 2 sin B sin C

X(5420) = {X(6),X(140}-harmonic conjugate of X(5418). (Randy Hutson, February 9, 2013)

X(5420) lies on these lines: {2, 372}, {3, 486}, {4, 6396}, {5, 1152}, {6, 140}, {15, 2045}, {16, 2046}, {20, 6565}, {30, 6410}, {69, 642}, {230, 6421}, {316, 2459}, {371, 631}, {376, 1328}, {381, 6450}, {382, 6456}, {468, 3093}, {491, 7769}, {492, 1078}, {498, 6502}, {499, 5414}, {547, 6430}, {549, 1151}, {550, 6412}, {590, 3312}, {597, 9974}, {632, 3594}, {1124, 5432}, {1327, 5055}, {1335, 5433}, {1377, 4999}, {1378, 3035}, {1505, 7749}, {1578, 6676}, {1588, 3523}, {1592, 5406}, {1656, 3070}, {1657, 6452}, {1703, 3624}, {2041, 3365}, {2042, 3390}, {2043, 3367}, {2044, 3392}, {3055, 8376}, {3068, 3525}, {3090, 6454}, {3103, 7786}, {3147, 5412}, {3311, 5054}, {3524, 6459}, {3530, 6409}, {3533, 7581}, {3534, 6497}, {3541, 5413}, {3545, 6485}, {3628, 6426}, {3815, 6423}, {3832, 6487}, {3850, 6434}, {3851, 6446}, {3857, 6489}, {5056, 6481}, {5079, 6522}, {6290, 8406}, {6395, 8976}, {6419, 7586}, {6478, 9692}, {6811, 9993}, {7386, 8281}, {7388, 7790}, {7494, 8855}

X(5420) = isogonal conjugate of X(5419)


X(5421) = INTERSECTION OF LINES X(3)X(6) AND X(5417)X(5419)

Trilinears        f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (sin A)(1 + 2 sin2B + 2 sin2C)

X(5421) lies on these lines: {2, 1232}, {3, 6}, {51, 160}, {53, 1907}, {232, 428}, {233, 9698}, {615, 8962}, {1180, 6997}, {1194, 3815}, {1634, 9822}, {1879, 5254}, {2165, 5286}, {3055, 3291}, {5417, 5419}, {5422, 9723}

X(5421) = complement of X(1232)
X(5421) = the center of the bicevian conic of X(61) and X(62)
X(5421) = {X(6),X(39)}-harmonic conjugate of X(570)


X(5422) = INTERSECTION OF LINES X(2)X(6) AND X(22)X(51)

Barycentrics   a2 + 2R2 : b2 + 2R2 : c2 + 2R2
Barycentrics   1 + 2 sin2A : :

X(5422) is the point of intersection of the following pairs of lines: (1) the line joining the center of the 1st Kenmotu circle and the perspector of the 2nd Kenmotu circle, these two points being X(371) and X(5419);
(2) the line joining the center of the 2nd Kenmotu circle and the perspector of the 1st, these being X(372) and X(5417). See X(5446).
Also, X(5422) = {X(2), X(6)}-harmonic conjugate of X(1993).   (Randy Hutson, April 8, 2013)

X(5422) lies on these lines: {2, 6}, {3, 143}, {5, 7592}, {22, 51}, {23, 3796}, {24, 569}, {25, 5012}, {52, 7509}, {54, 6642}, {83, 5392}, {110, 5020}, {154, 3066}, {155, 1199}, {184, 575}, {195, 5070}, {324, 458}, {371, 1600}, {372, 1599}, {373, 9306}, {378, 9730}, {389, 7503}, {401, 7787}, {493, 589}, {494, 588}, {511, 7485}, {567, 6644}, {568, 7514}, {576, 3917}, {611, 7191}, {613, 3920}, {1181, 3091}, {1194, 5034}, {1249, 6819}, {1351, 2979}, {1498, 3832}, {1503, 7394}, {1505, 8962}, {1583, 3312}, {1584, 3311}, {1591, 7584}, {1592, 7583}, {1614, 7529}, {1853, 5169}, {1899, 5133}, {2003, 3306}, {2052, 8745}, {2323, 3305}, {3083, 3301}, {3084, 3299}, {3148, 3398}, {3167, 5643}, {3193, 5084}, {3410, 7605}, {3592, 5407}, {3594, 5406}, {3819, 5097}, {3981, 5038}, {4193, 5707}, {5046, 5706}, {5085, 6636}, {5093, 7998}, {5395, 8796}, {5408, 6420}, {5409, 6419}, {5421, 9723}, {5449, 7569}, {5480, 7391}, {5651, 6688}, {5889, 7395}, {5890, 9818}, {6146, 7544}, {6243, 7516}, {6505, 8257}, {6776, 6997}, {6805, 7582}, {6806, 7581}, {7387, 9781}, {7506, 9707}


X(5423) = ISOTOMIC CONJUGATE OF X(479)

Trilinears    csc^2(A/2) cot^2(A/2) : :
Barycentrics    (b + c - a)3 : :

Let A′ be the point in which the A-excircle is tangent to the circle OA that passes through vertices B and C, and define B′ and C′ cyclically. The lines AA′, BB′, CC′ concur in X(5423); for the incircle version, see X(479). (Peter Moses, December 10, 2015)

A′ = -4 a^2 (a+b-c) (a-b+c) : (a-b+c)^3 (a+b+c) : (a+b-c)^3 (a+b+c) (barycentrics)

(center of circle OA) = -2 a^2 (5 a^3+3 a^2 b-a b^2+b^3+3 a^2 c+2 a b c-b^2 c-a c^2-b c^2+c^3)
: a^5+3 a^4 b+12 a^3 b^2+4 a^2 b^3-5 a b^4+b^5+3 a^4 c+2 a^3 b c+2 a^2 b^2 c+2 a b^3 c-b^4 c+2 a^3 c^2-4 a^2 b c^2+8 a b^2 c^2-2 b^3 c^2-2 a^2 c^3-2 a b c^3+2 b^2 c^3-3 a c^4+b c^4-c^5
: a^5+3 a^4 b+2 a^3 b^2-2 a^2 b^3-3 a b^4-b^5+3 a^4 c+2 a^3 b c-4 a^2 b^2 c-2 a b^3 c+b^4 c+12 a^3 c^2+2 a^2 b c^2+8 a b^2 c^2+2 b^3 c^2+4 a^2 c^3+2 a b c^3-2 b^2 c^3-5 a c^4-b c^4+c^5

(power of A wrt OA) = {((a+b+c) (a^2+2 a b+b^2+2 a c-2 b c+c^2))/(8 a)

(radius of OA) = (3 a^3+5 a^2 b+a b^2-b^3+5 a^2 c-2 a b c+b^2 c+a c^2+b c^2-c^3)/(16 S)

The radical center of the circles OA, OB, OC is X(2297). (Peter Moses, December 10, 2015)

If you have The Geometer's Sketchpad, you can view X(5423).

X(5423) lies on these lines: {2, 3677}, {7, 3263}, {8, 210}, {9, 7172}, {11, 6557}, {55, 1261}, {190, 9778}, {200, 346}, {280, 2057}, {329, 2835}, {345, 3699}, {612, 5749}, {644, 7074}, {756, 5296}, {1219, 8583}, {1260, 4578}, {1357, 8051}, {1863, 7046}, {2098, 8834}, {2325, 3158}, {2550, 3967}, {3006, 5748}, {3021, 4387}, {3452, 4901}, {3474, 4488}, {3596, 4441}, {3705, 5328}, {3710, 7080}, {3711, 6057}, {4076, 6632}, {4308, 9369}, {4847, 10005}, {5205, 5435}, {5273, 7081}, {6552, 6736}

X(5423) = isogonal conjugate of X(7023)
X(5423) = isotomic conjugate of X(479)
X(5423) = anticomplement of X(5573)
X(5423) = X(i)-Ceva conjugate of X(j) for these (i,j): (341,346), (4076,6558)
X(5423) = cevapoint of X(i) and X(j) for these {i,j}: {3022,4130}, {3900,4953}, {4081,4163}
X(5423) = crosspoint of X(i) and X(j) for these {i,j}: {346,6556}, {4076,6558}
X(5423) = crosssum of X(1106) and X(7366)
X(5423) = trilinear pole of the line X(4130)X(4163)
X(5423) = trilinear square of X(6731)
X(5423) = barycentric cube of X(8)
X(5423) = polar conjugate of isotomic conjugate of X(30681)
X(5423) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (8,8055,497), (200,4082,346), (210,3974,8), (341,1265,8), (346,6555,200), (497,4009,8055)
X(5423) = X(i)-cross conjugate of X(j) for these (i,j): (728,346), (3022,4130}, (4012,8), (4081,4163), (5574,2)
X(5423) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (8,8055,497), (200,4082,346), (210,3974,8), (341,1265,8), (346,6555,200), (497,4009,8055)
X(5423) = X(i)-isoconjugate of X(j) for these {i,j}: {1,7023}, {2,7366}, {6,738}, {7,1106}, {31,479}, {34,7053}, {56,269}, {57,1407}, {77,1398}, {222,1435}, {223,6612}, {244,7339}, {278,7099}, {279,604}, {513,6614}, {593,7147}, {603,1119}, {608,7177}, {649,4617}, {667,4626}, {757,7143}, {849,6046}, {1014,1042}, {1088,1397}, {1254,7341}, {1357,7045}, {1395,7056}, {1408,3668}, {1412,1427}, {1414,7250}, {1422,6611}, {1461,3669}, {1472,7197}, {4565,7216}, {4637,7180}


X(5424) = HATZIPOLAKIS-EULER-SCHIFFLER POINT

Trilinears   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (2a3 + 2b3 + c3 - 2a2b - 2ab2 - 2ac2 - 2bc2 - a2c - b2c - abc)(2a3 + b3 + 2c3 - 2a2c - 2ac2 - 2ab2 - 2b2c - a2b - bc2 - abc)
X(5424) = 6(r + R)*X(21) + (2r - R)*X(4867)
X(5424) = R*X(79) + 4(2r + R)*X(2646)   (Peter Moses, February 8, 2013)

Let I be the incenter and L the Euler line of triangle ABC. Let LA be the Euler line of IBC, and define LB and LC cyclically. (The four Euler lines concur in the Schiffler point, X(21).) Let OA be the circumcenter of IBC, and define OB and OC cyclically.

Continuing, let AB, AC be the orthogonal projections of OA on LB and LC, respecitively, and define BC, BA and CA, CB cyclically. Let A′ be the circumcenter of OAABAC, and define B′ and C′ cyclically. The lines AA′, BB′, CC′ concur in X(5424), and the circumcenter X(5428) of A′B′C′ lies on L.   (Antreas Hatzipolakis, February 8, 2013)

A summary of Hyacinthos discussions of centers X(5424)-X(5429) is presented at Euler Lines, Circumcircles.

X(5424) lies on the Feuerbach hyperbola and these lines: {1, 5427}, {4, 5441}, {9, 5426}, {21, 4867}, {30, 5561}, {79, 2646}, {80, 3584}, {758, 2320}, {1385, 5557}, {1389, 3746}, {3612, 5665}, {5560, 7951}


X(5425) = ISOGONAL CONJUGATE OF X(5424)

Trilinears   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 1/[(2a3 + 2b3 + c3 - 2a2b - 2ab2 - 2ac2 - 2bc2 - a2c - b2c - abc)(2a3 + b3 + 2c3 - 2a2c - 2ac2 - 2ab2 - 2b2c - a2b - bc2 - abc)]
X(5425) = (4r + 5R)*X(1) - 2r*X(3)
X(5425) = (2r + 3R)*X(21) + 2R*X(4084)   (Peter Moses, February 8, 2013)

X(5425) lies on these lines: {1, 3}, {2, 4867}, {8, 3841}, {21, 4084}, {79, 3671}, {80, 226}, {81, 759}, {100, 3919}, {191, 4018}, {515, 3982}, {519, 5249}, {758, 3219}, {956, 3894}, {958, 3901}, {993, 4880}, {1001, 3899}, {1100, 5341}, {1203, 3924}, {1210, 5443}, {1389, 5557}, {1411, 2003}, {1770, 5441}, {1835, 6198}, {2802, 3957}, {3305, 5692}, {3485, 6873}, {3584, 5719}, {3585, 3649}, {3624, 5730}, {3636, 5330}, {3830, 5561}, {3868, 5258}, {3869, 5259}, {3874, 5288}, {3881, 4861}, {3911, 5444}, {3918, 4420}, {4067, 5260}, {4511, 5883}, {4640, 5426}, {5226, 7951}, {5270, 6147}, {5357, 7052}, {5542, 7972}


X(5426) = HATZIPOLAKIS-EXCENTRAL PERSPECTOR

Trilinears   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 3a3 + b3 + c3 - a2b - a2c - 3ab2 - 3ac2 - 3b2c - 3bc2 - 3abc
X(5426) = X(1) + 2*X(21)   (Peter Moses, February 8, 2013)

The triangle A′B′C′ of circumcenters at X(5424) is perspective to the excentral triangle, and the perspector is X(5426).   (Peter Moses, February 8, 2013)

X(5426) lies on these lines: {1, 21}, {9, 5424}, {30, 1699}, {35, 3753}, {36, 3742}, {40, 5428}, {55, 5541}, {57, 5427}, {80, 6690}, {100, 3968}, {210, 5251}, {214, 5284}, {355, 10021}, {405, 5506}, {442, 3586}, {484, 3919}, {1006, 5538}, {1125, 2475}, {1420, 3649}, {1698, 1837}, {1768, 6914}, {2320, 3065}, {2646, 5259}, {3158, 3679}, {3219, 4525}, {3336, 4189}, {3337, 5267}, {3616, 4299}, {3636, 3648}, {3651, 7987}, {3683, 4867}, {3746, 3880}, {3956, 5260}, {4316, 5249}, {4539, 5302}, {4640, 5425}, {4677, 4933}, {5131, 5883}, {5535, 7508}, {5691, 6841}, {5903, 8261}, {6326, 7489}

X(5426) = {X(1),X(21)}-harmonic conjugate of X(191)

X(5427) = HATZIPOLAKIS-INTOUCH PERSPECTOR

Trilinears   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (a + b - c)(a - b + c)(2a4 - 2a3b - 2a3c - 2a2b2 - 2a2c2 - 2a2bc + 2ab3 + 2ac3 + b3c + bc3 + 2b2c2)
X(5427) = R(r + 4R)*X(7) - r(4r + 7R)*X(21)   (Peter Moses, February 8, 2013)

The triangle A′B′C′ of circumcenters at X(5424) is perspective to the intouch triangle, and the perspector is X(5427).   (Peter Moses, February 8, 2013)

X(5427) lies on these lines: {1, 5424}, {7, 21}, {11, 30}, {12, 5251}, {57, 5426}, {79, 5886}, {100, 5172}, {191, 1420}, {392, 3647}, {442, 5433}, {758, 1319}, {993, 5434}, {1317, 2078}, {1411, 1758}, {1749, 6265}, {2475, 7288}, {2771, 5126}, {3651, 5204}, {4189, 5221}, {5441, 5722}, {5902, 7508}, {6841, 7354}


X(5428) = HATZIPOLAKIS-EULER CIRCUMCENTER

Trilinears   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 2a^6 - 2a5b - 2a5c - 4a4b2 - 4a4c2 + 4a3b3 + 4a3c3 + 2a2b4 + 2a2c4 + a2b3c + a2bc3 + 4a2b2c2 + 2ab4c + 2abc4 - 2ab5 - 2ac5 - b5c - bc5 + 2b3c3
X(5428) = 3R*X(2) + (4r + 3R)*X(3)   (Peter Moses, February 8, 2013)

As a point on the Euler line, X(5428) has Shinagawa coefficients (4$aSA$ + abc, -4$aSA$ + abc).

X(5428) is the circumcenter of the triangle A′B′C′ defined at X(5424). X(5428) lies on the Euler line of ABC.    (Antreas Hatzipolakis, February 8, 2013)

X(5428) lies on these lines: {1, 5424}, {2, 3}, {36, 3649}, {40, 5426}, {58, 5453}, {79, 5444}, {191, 3576}, {214, 960}, {517, 8261}, {758, 1385}, {952, 5258}, {970, 5946}, {1837, 5010}, {3579, 3754}, {3650, 5303}, {3652, 7987}, {5690, 8715}, {7171, 7701}


X(5429) = HATZIPOLAKIS-BROCARD-EXCENTRAL PERSPECTOR

Trilinears   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 3a3 + b3 + c3 + 2a2b + 2a2c + 3abc
X(5429) = (r2 - 3s2)*X(1) + 4r(2r + 3R)*X(21)   (Peter Moses, February 8, 2013)
X(5429) = X(1) + 2 X(58)

In the construction at X(5424), if L is taken to be the Brocard axis instead of the Euler line, then the resulting triangle A′B′C′ of circumcenters is not perspective to ABC. However, it is perspective to the excentral triangle, and X(5429) is the perspector, and its center lies on the line L. The triangle is also perspective to the intouch, hexyl, Yff, and 1st and 2nd cirumperp triangles.    (Peter Moses, February 8, 2013)

For more, see Four Concurrent Lines, Circumcircles.

X(5429) lies on these lines: {1, 21}, {8, 8258}, {36, 199}, {171, 3753}, {210, 5247}, {511, 3576}, {740, 4234}, {976, 4661}, {978, 1453}, {986, 4252}, {995, 7032}, {999, 7083}, {1104, 3742}, {1125, 1330}, {1193, 4881}, {1247, 2363}, {1698, 6693}, {1757, 4134}, {1961, 5251}, {2308, 4511}, {2792, 5603}, {2938, 4221}, {3430, 7987}, {3454, 3624}, {3616, 6536}, {3880, 5255}, {5691, 7683}

X(5429) = {X(1),X(58)}-harmonic conjugate of X(1046)


X(5430) = CENTER OF THE 1st GRIGORIEV CONIC

Barycentrics   (1 + csc A/2)(csc B/2 + csc C/2) - cot2A/2

Let LA be the line parallel to line BC and tangent to the circumcircle of triangle ABC on the negative side of BC (the region that does not contain A) , and define LB and LC cyclically. Let A′ = LB∩LC, and define B′ and C′ cyclically. Let AB be the reflection of A in line A′B′, and let AC be the reflection of A in line A′C′. Let C1 be the touchpoint of the incircle of triangle ABAB and line AB, and let B2 be the touchpoint of the incircle of ACAC and line AC. Define A1, B1 and C2, A2 cyclically. Then |AB2| = |CB1|, |BA1| = |CA2|, |AC1| = |BC2|, so that by Carnot's theorem, the six points A1, A2, B1, B2, C1, C2 lie on a conic. A barycentric equation for this 1st Grigoriev conic follows:

x2 + y2 + z2 - 2 csc(A/2) yz - 2 csc(B/2) zx - 2 csc(C/2) xy = 0


(Communicated on behalf of Dmitry Grigoriev, Moscow, by Alexei Myakishev, March 28, 2013)

The perspector of the 1st Grigoriev conic is X(188).   (Randy Hutson, March 30, 2013)

If you have The Geometer's Sketchpad, you can view X(5430)

X(5430) lies on these lines: {8, 188}, {178, 6557}, {236, 3161}, {346, 7027}


X(5431) = CENTER OF THE 2nd GRIGORIEV CONIC

Barycentrics   (1 + sec A/2)(sec B/2 + sec C/2) - tan2A/2

Let LA be the line parallel to line BC and tangent to the circumcircle of triangle ABC on the positive side of BC (the region that includes A), and define LB and LC cyclically. Let A′ = LB∩LC, and define B′ and C′ cyclically. Let AB be the reflection of A in line A′B′, and let AC be the reflection of A in line A′C′. Let C1 be the touchpoint of the incircle of triangle ABAB and line AB, and let B2 be the touchpoint of the incircle of ACAC and line AC. Define A1, B1 and C2, A2 cyclically. Then |AB2| = |CB1|, |BA1| = |CA2|, |AC1| = |BC2|, so that by Carnot's theorem, the six points A1, A2, B1, B2, C1, C2 lie on a conic. A barycentric equation for this 2nd Grigoriev conic follows:

x2 + y2 + z2 - 2 sec(A/2) yz - 2 sec(B/2) zx - 2 sec(C/2) xy = 0


The perspector of the 2nd Grigoriev conic is X(5451).   (Randy Hutson, April 8, 2013)
See also X(5452).

If you have The Geometer's Sketchpad, you can view X(5431)

X(5431) lies on this line: {178, 5451}


X(5432) = INTERSECTION OF LINES X(2)X(11) AND X(3)X(12)

Barycentrics   (b + c - a)(b2 + c2 - 2a2 - 2bc)
X(5432) = R*X(1) + 3r*X(2) + r*X(3)   (Peter Moses, April 2, 2013)

The coefficients in the combo shown just above are (R, 3r, r); for comparison, the coefficients for X(5433), X(11), and X(12) are, respectively, (R, -3r, -r), (R, -3r, r), and (R, 3r, -r).

X(5432) lies on these lines: {1, 140}, {2, 11}, {3, 12}, {4, 3614}, {5, 35}, {8, 4999}, {9, 3255}, {10, 2646}, {21, 1329}, {30, 5010}, {33, 468}, {36, 495}, {46, 3649}, {56, 631}, {65, 6684}, {119, 6914}, {141, 2330}, {165, 1836}, {171, 2361}, {210, 5745}, {212, 750}, {215, 5012}, {226, 1155}, {230, 2276}, {312, 3712}, {333, 4023}, {345, 6057}, {354, 3911}, {355, 3612}, {371, 9648}, {372, 9646}, {381, 4302}, {388, 3523}, {396, 7127}, {496, 632}, {499, 3295}, {550, 3585}, {551, 5048}, {569, 9666}, {590, 5414}, {597, 8540}, {601, 7299}, {612, 7499}, {615, 2066}, {620, 3023}, {756, 7004}, {846, 2607}, {908, 4640}, {950, 3634}, {958, 5552}, {999, 5054}, {1006, 5172}, {1040, 5268}, {1058, 3533}, {1062, 7542}, {1092, 9653}, {1124, 5420}, {1125, 3057}, {1213, 2268}, {1317, 6713}, {1335, 5418}, {1361, 6711}, {1362, 6712}, {1364, 6718}, {1399, 3074}, {1479, 1656}, {1500, 7749}, {1697, 3624}, {1698, 1837}, {1788, 5703}, {1852, 5142}, {1858, 5044}, {1914, 3815}, {1995, 9673}, {2077, 6907}, {2098, 3616}, {2099, 5657}, {2320, 3036}, {2476, 6668}, {2829, 6950}, {3011, 3752}, {3022, 6710}, {3024, 5972}, {3027, 6036}, {3028, 6699}, {3053, 9596}, {3056, 3589}, {3086, 3303}, {3090, 4294}, {3158, 4863}, {3301, 8981}, {3304, 7288}, {3305, 7082}, {3318, 6717}, {3321, 7056}, {3336, 6147}, {3337, 5442}, {3340, 9588}, {3428, 6954}, {3452, 3683}, {3474, 5226}, {3475, 4860}, {3486, 9780}, {3487, 5221}, {3522, 5229}, {3524, 4293}, {3528, 9656}, {3530, 7280}, {3576, 5252}, {3580, 9637}, {3627, 4324}, {3628, 7741}, {3689, 4847}, {3699, 4126}, {3703, 7081}, {3705, 4030}, {3715, 5273}, {3761, 6390}, {3813, 3871}, {3820, 5251}, {3967, 3977}, {4187, 5248}, {4255, 5230}, {4305, 5818}, {4309, 5070}, {4316, 8703}, {4414, 4415}, {4512, 4679}, {4855, 5794}, {4870, 5183}, {4998, 6066}, {5055, 9668}, {5056, 5225}, {5067, 9670}, {5119, 5886}, {5206, 9650}, {5260, 9711}, {5261, 9657}, {5297, 7495}, {5332, 9300}, {5441, 10021}, {5584, 6988}, {5697, 5901}, {5698, 5748}, {5719, 5902}, {5840, 6980}, {5842, 6830}, {6018, 6715}, {6019, 6719}, {6020, 6720}, {6067, 6600}, {6198, 10018}, {6238, 9820}, {6253, 6796}, {6286, 8254}, {6449, 9649}, {6459, 9662}, {6565, 9660}, {6677, 9817}, {6696, 7355}, {6716, 7158}, {6883, 8069}, {6905, 7680}, {6918, 7958}, {6926, 8273}, {6949, 7681}, {7486, 9671}, {7509, 9672}, {7987, 9578}, {7988, 9580}, {8144, 10020}, {9306, 9667}


X(5433) = INTERSECTION OF LINES X(2)X(12) AND X(3)X(11)

Barycentrics   (a - b + c)(a + b - c)(b2 + c2 + 2a2 - 2bc)
X(5433) = R*X(1) - 3r*X(2) - r*X(3)   (Peter Moses, April 2, 2013)

The coefficients in the combo shown just above are (R, -3r, r); for comparison, the coefficients for X(5432), X(11), and X(12) are, respectively, (R, 3r, r), (R, -3r, r), and (R, 3r, -r).

X(5433) lies on these lines: {1, 140}, {2, 12}, {3, 11}, {4, 5204}, {5, 36}, {8, 1317}, {10, 1319}, {21, 3816}, {30, 7280}, {34, 468}, {35, 496}, {46, 5886}, {55, 631}, {57, 191}, {65, 392}, {79, 10021}, {85, 7181}, {100, 3813}, {104, 6949}, {141, 1428}, {172, 3815}, {201, 244}, {210, 6700}, {230, 2275}, {238, 1399}, {261, 7342}, {348, 1358}, {371, 9663}, {372, 9661}, {381, 4299}, {395, 2307}, {404, 2886}, {405, 1470}, {442, 5427}, {474, 3925}, {484, 5442}, {495, 632}, {497, 3523}, {498, 999}, {550, 3583}, {551, 4848}, {569, 9653}, {590, 6502}, {602, 5348}, {603, 748}, {604, 1213}, {614, 7499}, {615, 2067}, {620, 3027}, {946, 1155}, {993, 4187}, {1001, 6910}, {1015, 7749}, {1038, 5272}, {1056, 3533}, {1060, 7542}, {1092, 9666}, {1124, 5418}, {1210, 2646}, {1214, 7561}, {1335, 5420}, {1357, 6715}, {1359, 6717}, {1361, 6718}, {1362, 6710}, {1364, 6711}, {1376, 6921}, {1385, 1737}, {1387, 5697}, {1420, 1698}, {1447, 3665}, {1454, 3306}, {1466, 4423}, {1469, 3589}, {1478, 1656}, {1532, 5450}, {1770, 5122}, {1788, 2099}, {1836, 8227}, {1837, 3576}, {1852, 7501}, {1858, 9940}, {1870, 10018}, {1995, 9658}, {2093, 9624}, {2098, 5657}, {2361, 3075}, {2477, 5012}, {2594, 3216}, {2829, 6941}, {3022, 6712}, {3023, 6036}, {3024, 6699}, {3028, 5972}, {3053, 9599}, {3057, 6684}, {3085, 3304}, {3090, 4293}, {3295, 4995}, {3299, 8981}, {3303, 5218}, {3320, 6720}, {3324, 6716}, {3325, 6719}, {3336, 5443}, {3337, 6147}, {3361, 5219}, {3428, 6891}, {3476, 9780}, {3485, 5221}, {3486, 5704}, {3487, 4860}, {3522, 5225}, {3524, 4294}, {3528, 9671}, {3530, 5010}, {3612, 5722}, {3627, 4316}, {3628, 7951}, {3660, 5044}, {3671, 4870}, {3678, 5083}, {3760, 6390}, {3820, 5193}, {3825, 5267}, {3826, 7677}, {3847, 5046}, {4193, 6667}, {4301, 5183}, {4317, 5070}, {4324, 8703}, {4652, 7702}, {4861, 8256}, {4881, 5086}, {5055, 9655}, {5056, 5229}, {5067, 9657}, {5126, 9956}, {5206, 9665}, {5231, 5438}, {5274, 9670}, {5536, 5763}, {5584, 6926}, {5687, 6174}, {5841, 6971}, {5842, 6942}, {5901, 5903}, {6253, 6905}, {6285, 6696}, {6358, 6533}, {6449, 9662}, {6459, 9649}, {6565, 9647}, {6666, 8581}, {6824, 7958}, {6847, 7965}, {6883, 8071}, {6906, 7681}, {6911, 7742}, {6952, 7680}, {6988, 8273}, {7179, 7198}, {7292, 7495}, {7296, 9300}, {7352, 9820}, {7356, 8254}, {7486, 9656}, {7509, 9659}, {7753, 9341}, {7962, 9588}, {7987, 9581}, {7988, 9579}, {9306, 9652}


X(5434) = INTERSECTION OF LINES X(1)X(30) AND X(2)X(12)

Barycentrics   (a - b + c)(a + b - c)(b2 + c2 + 2a2 + 2bc)
X(5433) = R*X(1) + r*X(2) - r*X(3)   (Peter Moses, April 2, 2013)

X(5434) lies on these lines: {1, 30}, {2, 12}, {3, 4317}, {4, 3304}, {5, 3582}, {7, 528}, {8, 5221}, {11, 381}, {20, 3303}, {34, 428}, {35, 8703}, {36, 495}, {46, 3654}, {55, 376}, {57, 3679}, {65, 519}, {85, 7198}, {104, 7680}, {172, 5306}, {226, 535}, {229, 7478}, {330, 7837}, {354, 515}, {355, 3338}, {390, 8162}, {396, 7051}, {442, 8666}, {496, 3585}, {497, 3543}, {498, 5054}, {499, 3614}, {516, 5919}, {524, 1469}, {527, 8581}, {537, 4032}, {541, 3024}, {542, 3023}, {543, 3027}, {544, 1362}, {547, 7951}, {550, 3746}, {597, 1428}, {752, 1463}, {944, 6253}, {952, 5902}, {956, 3925}, {982, 5724}, {993, 5427}, {1015, 7753}, {1388, 3485}, {1398, 5064}, {1406, 5710}, {1411, 7194}, {1420, 5290}, {1470, 6174}, {1479, 3830}, {1565, 7272}, {1652, 7043}, {1653, 7026}, {1657, 4309}, {1770, 9957}, {1837, 3333}, {1870, 7576}, {2098, 4295}, {2242, 5309}, {2275, 9300}, {2475, 3813}, {2646, 4311}, {2829, 5603}, {2886, 6175}, {3057, 4292}, {3085, 3524}, {3086, 3545}, {3091, 9656}, {3146, 9670}, {3295, 3534}, {3324, 6020}, {3336, 5690}, {3339, 4677}, {3340, 4355}, {3361, 9578}, {3421, 4413}, {3475, 5731}, {3627, 4857}, {3633, 5586}, {3665, 7176}, {3748, 4304}, {3816, 5080}, {3828, 3911}, {3839, 5229}, {3849, 5194}, {3872, 5880}, {3913, 4190}, {4302, 6767}, {4312, 7962}, {4320, 7667}, {4321, 6173}, {4669, 4848}, {4846, 6580}, {5066, 7741}, {5258, 8728}, {5289, 5905}, {5691, 9845}, {5842, 7967}, {7179, 7181}

X(5434) = reflection of X(3058) in X(1)


X(5435) = 2(r + 2R)*X(1) - 3r*X(2) - 4r*X(3)

Barycentrics   (3a - b - c)(a - b + c)(a + b - c)
X(5435) = 2(r + 2R)*X(1) - 3r*X(2) - 4r*X(3)   (Peter Moses, April 3, 2013)

X(5435) lies on these lines: {1, 3523}, {2, 7}, {3, 938}, {4, 5704}, {8, 56}, {10, 3361}, {11, 3474}, {20, 1210}, {21, 1466}, {31, 9364}, {36, 5731}, {40, 9785}, {43, 1458}, {46, 962}, {55, 7677}, {65, 3616}, {77, 2999}, {78, 1467}, {88, 278}, {100, 1617}, {109, 9083}, {140, 3487}, {145, 1420}, {165, 390}, {171, 1471}, {174, 7002}, {175, 5405}, {176, 5393}, {190, 1997}, {208, 4200}, {223, 1443}, {238, 9316}, {241, 2275}, {269, 8051}, {273, 7490}, {279, 3008}, {333, 1014}, {354, 5218}, {376, 5122}, {388, 9780}, {452, 4652}, {479, 658}, {496, 6361}, {497, 1155}, {498, 3337}, {499, 3336}, {516, 5274}, {517, 4345}, {604, 3684}, {614, 4318}, {631, 942}, {651, 1407}, {673, 2898}, {910, 5838}, {912, 6970}, {940, 5933}, {950, 3522}, {978, 1042}, {999, 5657}, {1000, 3654}, {1038, 5262}, {1058, 3579}, {1071, 6927}, {1106, 5247}, {1125, 3339}, {1214, 4850}, {1319, 3241}, {1403, 8299}, {1442, 5256}, {1532, 2096}, {1656, 5714}, {1698, 4298}, {1707, 5121}, {1722, 4320}, {1728, 6953}, {1737, 4293}, {1750, 8544}, {1836, 9779}, {1876, 6353}, {1892, 8889}, {1999, 4460}, {2099, 5298}, {2263, 5272}, {2295, 5228}, {3052, 3756}, {3085, 3338}, {3091, 4292}, {3144, 7103}, {3146, 9581}, {3149, 9799}, {3210, 4552}, {3216, 4306}, {3333, 6684}, {3340, 3622}, {3434, 9352}, {3475, 4860}, {3485, 5221}, {3486, 5204}, {3526, 6147}, {3624, 3671}, {3634, 5290}, {3660, 3873}, {3673, 7397}, {3679, 4315}, {3740, 8581}, {3816, 5698}, {3817, 4312}, {3828, 5726}, {3832, 9579}, {3868, 6921}, {3913, 9797}, {3916, 5084}, {3947, 4355}, {4032, 4699}, {4190, 5175}, {4208, 5705}, {4220, 5807}, {4302, 5131}, {4305, 7280}, {4307, 9746}, {4321, 5686}, {4327, 5268}, {4384, 7176}, {4423, 8543}, {4430, 5083}, {4488, 6557}, {4662, 9850}, {4899, 6555}, {4911, 7402}, {4998, 6632}, {5022, 6554}, {5054, 5719}, {5056, 9612}, {5126, 7967}, {5129, 9843}, {5205, 5423}, {5287, 7269}, {5439, 6857}, {5444, 5902}, {5556, 7173}, {5658, 5729}, {5687, 6764}, {5691, 7319}, {5709, 6926}, {5734, 5903}, {5758, 6891}, {5768, 6905}, {5770, 6911}, {5804, 6906}, {5809, 7580}, {5811, 6944}, {5825, 5927}, {6223, 6848}, {6350, 7011}, {6654, 9358}, {6734, 6904}, {6738, 7987}, {6964, 7330}, {6988, 9940}, {7191, 8270}, {7678, 7965}

X(5435) = {X(8),X(56)}-harmonic conjugate of X(4308)


X(5436) = (r + 2R)*X(1) + 6R*X(2) + 2r*X(3)

Barycentrics   a(3a3 + b3 + c3 - a2b - a2c - 3ab2 -3ac2 - 6abc -5b2c - 5bc2)
X(5436) = (r + 2R)*X(1) + 6R*X(2) + 2r*X(3)   (Peter Moses, April 3, 2013)

X(5436) lies on these lines: {1, 6}, {2, 950}, {3, 5437}, {4, 1125}, {10, 3158}, {20, 142}, {21, 57}, {34, 4183}, {40, 1006}, {55, 1706}, {65, 4512}, {78, 5047}, {84, 3560}, {165, 3812}, {200, 3983}, {226, 452}, {329, 3622}, {382, 3824}, {442, 3586}, {443, 4304}, {515, 6846}, {551, 3487}, {631, 9843}, {936, 2900}, {938, 5745}, {942, 3928}, {943, 3680}, {946, 6987}, {968, 3924}, {976, 7322}, {988, 5573}, {993, 3333}, {997, 3646}, {1005, 5253}, {1012, 8726}, {1043, 4384}, {1210, 6857}, {1260, 3303}, {1385, 1490}, {1451, 2328}, {1621, 1697}, {1698, 3419}, {1708, 3340}, {2136, 3295}, {2478, 5219}, {2550, 4314}, {2646, 4423}, {2647, 7273}, {2654, 7070}, {2975, 4666}, {3306, 4189}, {3339, 4640}, {3361, 3742}, {3452, 5129}, {3523, 6692}, {3671, 5698}, {3811, 4015}, {3822, 6990}, {3825, 6829}, {3868, 3929}, {3870, 5260}, {4292, 6173}, {4301, 5759}, {4308, 8232}, {4428, 5836}, {4659, 7283}, {4678, 4917}, {5177, 5550}, {5218, 8582}, {5249, 6872}, {5257, 5802}, {5443, 9612}, {5587, 6832}, {5691, 8226}, {5705, 5722}, {5715, 5886}, {5812, 5901}, {6765, 9708}, {6920, 9845}, {6936, 9624}, {6988, 7682}, {7330, 7489}, {7580, 7987}, {7675, 9859}


X(5437) = (r + 2R)*X(1) + 6R*X(2) - 2r*X(3)

Barycentrics   a(b2 + c2 - a2 - 6bc)
X(5437) = (r + 2R)*X(1) + 6R*X(2) - 2r*X(3)   (Peter Moses, April 3, 2013)

X(5437) lies on these lines: {1, 474}, {2, 7}, {3, 5436}, {4, 9841}, {5, 84}, {10, 1056}, {37, 9574}, {38, 7322}, {40, 631}, {46, 3624}, {65, 8583}, {85, 738}, {88, 4606}, {100, 4666}, {140, 5709}, {165, 1001}, {171, 5272}, {173, 7028}, {200, 354}, {210, 4860}, {236, 258}, {244, 612}, {281, 1435}, {312, 4659}, {377, 9581}, {381, 7171}, {388, 7091}, {392, 2093}, {404, 3601}, {443, 1210}, {518, 8580}, {549, 3587}, {614, 750}, {936, 942}, {940, 1449}, {946, 6926}, {950, 6904}, {958, 3361}, {960, 3339}, {982, 5268}, {997, 5883}, {999, 9623}, {1054, 8299}, {1155, 4423}, {1329, 5290}, {1375, 5834}, {1420, 5253}, {1490, 6918}, {1519, 6833}, {1656, 3824}, {1697, 3616}, {1698, 3338}, {1699, 3816}, {1709, 3838}, {1768, 6667}, {1995, 7293}, {2098, 3922}, {2478, 9579}, {2551, 4298}, {3149, 8726}, {3182, 7532}, {3189, 6744}, {3208, 5308}, {3220, 5020}, {3247, 3666}, {3304, 3698}, {3359, 5886}, {3475, 6745}, {3487, 6700}, {3576, 3833}, {3589, 7289}, {3600, 5795}, {3740, 5223}, {3754, 7982}, {3763, 5227}, {3772, 4859}, {3784, 5943}, {3825, 6845}, {3873, 9342}, {3920, 9335}, {3925, 5231}, {3980, 4871}, {4035, 4869}, {4187, 9612}, {4208, 5704}, {4292, 5084}, {4415, 4862}, {4454, 8055}, {4640, 8167}, {4652, 5047}, {4850, 5287}, {5044, 5708}, {5045, 6765}, {5119, 5444}, {5123, 5726}, {5128, 5250}, {5284, 9352}, {5285, 7484}, {5535, 6681}, {5587, 6854}, {5705, 8728}, {5715, 6922}, {5737, 6706}, {6223, 9842}, {6245, 6864}, {6260, 6964}, {6668, 6763}, {6701, 7701}, {6705, 6846}, {6916, 7682}, {7521, 7713}


X(5438) = (r + 2R)*X(1) - 6R*X(2) + 2r*X(3)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (a + b + c)2(b + c - a) - 4a(b2 + c2 - a2)
Barycentrics   a(3a3 + b3 + c3 - a2b - a2c - 3ab2 - 3ac2 + 2abc + 3b2c + 3bc2)
X(5438) = (r + 2R)*X(1) - 6R*X(2) + 2r*X(3)   (Peter Moses, April 3, 2013)

X(5438) lies on these lines: {1, 474}, {2, 950}, {3, 9}, {4, 6700}, {8, 1420}, {10, 631}, {20, 3452}, {21, 7308}, {40, 997}, {44, 8951}, {55, 8583}, {56, 200}, {57, 78}, {63, 4188}, {72, 3928}, {80, 1698}, {100, 1697}, {140, 5705}, {142, 5703}, {165, 960}, {210, 5204}, {214, 6264}, {226, 6904}, {377, 5219}, {386, 1449}, {388, 6745}, {452, 5316}, {480, 4321}, {515, 6926}, {518, 3361}, {549, 5791}, {728, 9310}, {908, 4190}, {938, 6692}, {958, 7987}, {975, 3247}, {976, 3677}, {978, 7290}, {988, 5293}, {999, 6765}, {1058, 1125}, {1193, 5269}, {1260, 1466}, {1319, 4853}, {1329, 5691}, {1377, 9583}, {1385, 9623}, {1453, 3216}, {1496, 3939}, {1702, 9679}, {1743, 4252}, {1788, 6737}, {1861, 7521}, {2093, 5730}, {2270, 3430}, {2551, 4297}, {2646, 4413}, {2886, 3624}, {3146, 5328}, {3149, 6282}, {3218, 3984}, {3243, 3333}, {3304, 3689}, {3305, 4189}, {3340, 4511}, {3359, 7971}, {3421, 4311}, {3476, 6736}, {3486, 8582}, {3487, 6173}, {3488, 9843}, {3523, 5745}, {3586, 4187}, {3617, 4881}, {3623, 4917}, {3632, 8256}, {3646, 5248}, {3679, 5445}, {3740, 5234}, {3814, 6845}, {3869, 5128}, {3870, 5253}, {3876, 3929}, {3927, 5122}, {4304, 5084}, {4386, 9575}, {4512, 5217}, {4847, 7288}, {5096, 5227}, {5231, 5433}, {5289, 7991}, {5552, 9578}, {5587, 6833}, {5709, 6924}, {5719, 5832}, {5731, 5795}, {5735, 5763}, {6734, 6921}, {6854, 8227}, {7091, 8828}


X(5439) = (r + 2R)*X(1) + 3R*X(2) - r*X(3)

Barycentrics   a(b3 + c3 - a2b - a2c - 4abc - 3b2c - 3bc2)
X(5439) = (r + 2R)*X(1) + 3R*X(2) - r*X(3)   (Peter Moses, April 3, 2013)

X(5439) lies on these lines: {1, 474}, {2, 72}, {3, 3306}, {4, 9776}, {5, 1071}, {7, 5084}, {8, 4002}, {10, 354}, {20, 5806}, {37, 3670}, {46, 1001}, {57, 405}, {63, 5708}, {65, 392}, {142, 442}, {145, 5049}, {210, 3634}, {226, 4187}, {355, 6854}, {377, 5722}, {388, 3660}, {406, 1876}, {443, 938}, {498, 5570}, {517, 631}, {518, 1698}, {519, 3698}, {551, 3057}, {614, 5711}, {750, 5266}, {908, 6147}, {912, 1656}, {956, 3333}, {958, 3338}, {960, 3624}, {971, 3091}, {986, 6051}, {1155, 5248}, {1214, 1393}, {1279, 5264}, {1385, 5253}, {1426, 5136}, {1439, 7532}, {1479, 5880}, {1621, 3579}, {1699, 9943}, {1788, 5173}, {1829, 7521}, {1871, 7543}, {1898, 7173}, {2476, 3824}, {3090, 5777}, {3218, 5047}, {3244, 3918}, {3295, 4666}, {3305, 3927}, {3336, 4640}, {3337, 5251}, {3488, 6904}, {3576, 7686}, {3617, 3889}, {3622, 9957}, {3625, 3968}, {3626, 3892}, {3635, 3893}, {3636, 3922}, {3720, 3931}, {3740, 4533}, {3748, 8715}, {3811, 4413}, {3828, 3983}, {3838, 7741}, {3869, 5550}, {3870, 9709}, {3872, 7373}, {3873, 3921}, {3884, 3919}, {3894, 4539}, {3897, 5126}, {3947, 8581}, {4189, 5122}, {4359, 5295}, {4420, 9342}, {4423, 5221}, {5302, 6763}, {5435, 6857}, {5603, 6926}, {5704, 6856}, {5714, 6919}, {5730, 8583}, {5768, 6864}, {5770, 6887}, {5787, 6835}, {5804, 6916}, {5805, 6836}, {5812, 6947}, {5885, 5887}, {5886, 6833}, {6001, 8227}, {6173, 9612}, {6245, 8226}, {6259, 6957}, {6734, 8728}, {6845, 9955}, {7580, 8726}, {8100, 8126}, {9581, 9844}, {9779, 9961}


X(5440) = (r + 2R)*X(1) - 3R*X(2) + r*X(3)

Barycentrics   a(b + c - 2a)(b2 + c2 - a2)
X(5440) = (r + 2R)*X(1) - 3R*X(2) + r*X(3)   (Peter Moses, April 3, 2013)

X(5440) lies on these lines: {1, 474}, {2, 3419}, {3, 63}, {4, 5748}, {8, 631}, {10, 2646}, {20, 5658}, {21, 5044}, {30, 908}, {35, 960}, {36, 518}, {40, 5730}, {44, 2251}, {46, 4018}, {48, 3694}, {55, 392}, {56, 3555}, {80, 5123}, {100, 517}, {101, 2751}, {109, 2756}, {140, 6734}, {149, 7743}, {200, 956}, {210, 993}, {214, 519}, {238, 5529}, {306, 7536}, {318, 7531}, {329, 376}, {355, 5552}, {404, 942}, {405, 936}, {443, 5703}, {484, 4867}, {498, 5794}, {515, 6745}, {521, 656}, {551, 3748}, {572, 3965}, {758, 1155}, {914, 6699}, {944, 6926}, {950, 4187}, {952, 6735}, {958, 3612}, {971, 6909}, {995, 3744}, {999, 3870}, {1012, 5720}, {1018, 6603}, {1055, 3930}, {1104, 3216}, {1125, 3925}, {1149, 3722}, {1193, 5266}, {1375, 3912}, {1386, 5313}, {1420, 6765}, {1437, 1792}, {1455, 4551}, {1737, 3035}, {2057, 5534}, {2077, 2932}, {2551, 4305}, {2802, 5048}, {2975, 4420}, {3057, 8715}, {3086, 3189}, {3090, 5175}, {3218, 5122}, {3421, 5731}, {3434, 5886}, {3436, 6899}, {3452, 4304}, {3487, 6904}, {3524, 5744}, {3579, 3869}, {3583, 5087}, {3616, 5082}, {3617, 3897}, {3666, 4256}, {3678, 5267}, {3740, 5251}, {3868, 4188}, {3871, 9957}, {3876, 4189}, {3921, 9708}, {3935, 4881}, {3957, 5049}, {3991, 9310}, {4002, 9709}, {4257, 4641}, {4313, 5084}, {4421, 5119}, {4539, 5220}, {4640, 5010}, {4662, 5258}, {4694, 4864}, {4702, 4975}, {4880, 5131}, {5045, 5253}, {5086, 6852}, {5174, 7543}, {5176, 6224}, {5249, 5719}, {5728, 8257}, {5761, 6885}, {5777, 6906}, {5787, 6890}, {5791, 6910}, {5806, 6915}, {5812, 6934}, {5882, 6736}, {5904, 7280}, {6282, 7580}, {6684, 6737}, {6900, 9955}, {6940, 9940}

X(5440) = isogonal conjugate of X(36125)
X(5440) = isotomic conjugate of isogonal conjugate of X(23202)
X(5440) = isotomic conjugate of polar conjugate of X(44)
X(5440) = X(19)-isoconjugate of X(88)
X(5440) = crossdifference of every pair of points on the line X(19)X(4394)
X(5440) = inner-Garcia-to-ABC similarity image of X(11)


X(5441) = (2r + 3R)*X(1) - 6r*X(2) + 6r*X(3)

Barycentrics   b4 + c4 - 3a4 + a3b + a3c + 2a2b2 + 2a2c2 + a2bc - ab3 - ac3 + ab2c + abc2 - 2b2c2
X(5441) = (2r + 3R)*X(1) - 6r*X(2) + 6r*X(3)   (Peter Moses, April 3, 2013)

X(5441) lies on these lines: {1, 30}, {3, 5442}, {4, 5424}, {8, 3647}, {10, 21}, {11, 5499}, {20, 5902}, {36, 950}, {65, 4324}, {145, 758}, {191, 2136}, {354, 4325}, {442, 3586}, {515, 3746}, {517, 4330}, {548, 5131}, {550, 3336}, {942, 4316}, {944, 4309}, {952, 3065}, {1125, 6175}, {1385, 4857}, {1478, 4313}, {1479, 2475}, {1697, 7701}, {1770, 5425}, {1837, 5010}, {2646, 3583}, {2771, 3057}, {3486, 4302}, {3488, 4299}, {3534, 5221}, {3601, 6841}, {3633, 3650}, {3884, 6224}, {4004, 8261}, {4297, 5563}, {5427, 5722}, {5432, 10021}, {5691, 7680}, {5692, 6872}


X(5442) = (2r + 3R)*X(1) - 6r*X(2) - 6r*X(3)

Barycentrics   a4 + b4 + c4 + a3b + a3c - 4a2b2 - 4a2c2 - ab3 - ac3 + ab2c + abc2 - 2b2c2
X(5442) = (2r + 3R)*X(1) - 6r*X(2) - 6r*X(3)   (Peter Moses, April 3, 2013)

X(5442) lies on these lines: {1, 549}, {2, 79}, {3, 5441}, {5, 5131}, {10, 36}, {35, 3911}, {40, 6713}, {46, 3624}, {65, 5444}, {80, 7280}, {140, 3336}, {484, 5433}, {499, 6361}, {631, 5902}, {1145, 3632}, {1155, 9955}, {3035, 6763}, {3337, 5432}, {3579, 3582}, {3585, 5122}, {3616, 3884}, {4325, 9956}, {5054, 5221}, {5559, 5657}, {5563, 6684}, {5692, 6921}, {5697, 7288}, {7951, 8728}


X(5443) = (2r + R)*X(1) + 6r*X(2) - 2r*X(3)

Barycentrics   a4 + b4 + c4 - a3b - a3c - 2a2b2 - 2a2c2 + a2bc + ab3 + ac3 - ab2c - abc2 - 2b2c2
X(5443) = (2r + R)*X(1) + 6r*X(2) - 2r*X(3)   (Peter Moses, April 3, 2013)

X(5443) is the QA-P7 center of quadrangle ABCX(1); see QA-Nine-point Center Homothetic Center.

X(5443) lies on these lines: {1, 5}, {2, 3754}, {3, 5444}, {10, 7504}, {17, 7052}, {21, 36}, {35, 946}, {46, 3624}, {56, 7489}, {140, 484}, {191, 4999}, {214, 2475}, {226, 5563}, {388, 6965}, {451, 1845}, {497, 6900}, {498, 5603}, {499, 3485}, {908, 5258}, {942, 3582}, {1210, 5425}, {1319, 5270}, {1385, 3585}, {1388, 9654}, {1389, 5559}, {1478, 3616}, {1479, 4313}, {1656, 2099}, {1699, 3612}, {1749, 3337}, {1836, 7280}, {2646, 3583}, {2800, 6952}, {3057, 3584}, {3085, 6979}, {3086, 6884}, {3245, 6684}, {3336, 5433}, {3467, 5557}, {3576, 7491}, {3746, 6915}, {3817, 7548}, {4295, 5550}, {4305, 9779}, {4317, 5714}, {4867, 6734}, {5436, 9612}

X(5443) = {X(1),X(5)}-harmonic conjugate of X(80)


X(5444) = (2r + R)*X(1) + 6r*X(2) + 2r*X(3)

Barycentrics   3a4 + b4 + c4 - a3b - a3c - 4a2b2 - 4a2c2 + a2bc + ab3 + ac3 - ab2c - abc2 - 2b2c2
X(5444) = (2r + R)*X(1) + 6r*X(2) + 2r*X(3)   (Peter Moses, April 3, 2013)

X(5444) lies on these lines: {1, 140}, {2, 80}, {3, 5443}, {35, 404}, {36, 226}, {65, 5442}, {79, 5428}, {90, 3646}, {442, 3586}, {484, 549}, {498, 3476}, {499, 3488}, {631, 5903}, {952, 5326}, {1319, 3584}, {1387, 4995}, {1479, 5550}, {2099, 5054}, {3487, 5557}, {3576, 6882}, {3616, 3754}, {3653, 5252}, {3822, 4881}, {3911, 5425}, {4324, 9955}, {4870, 5122}, {5010, 5886}, {5119, 5437}, {5298, 5719}, {5435, 5902}


X(5445) = (2r + R)*X(1) - 6r*X(2) - 2r*X(3)

Barycentrics   a4 + b4 + c4 + a3b + a3c - 2a2b2 - 2a2c2 + a2bc - ab3 - ac3 + ab2c + abc2 - 2b2c2
X(5445) = (2r + R)*X(1) - 6r*X(2) - 2r*X(3)   (Peter Moses, April 3, 2013)

X(5445) lies on these lines: {1, 140}, {2, 3754}, {3, 80}, {5, 484}, {8, 214}, {9, 46}, {10, 36}, {12, 3336}, {35, 950}, {40, 6882}, {201, 1772}, {355, 7280}, {495, 3337}, {498, 1788}, {499, 5657}, {942, 3584}, {946, 3245}, {1125, 5330}, {1155, 3585}, {1210, 3746}, {1478, 9780}, {1727, 6907}, {1749, 5499}, {1837, 5010}, {1838, 8756}, {2099, 3526}, {2800, 6949}, {3057, 3582}, {3579, 3583}, {3679, 5438}, {3813, 5541}, {3828, 4292}, {3911, 5563}, {3916, 5123}, {4299, 5818}, {4325, 5122}, {5046, 6702}, {5119, 9588}, {5131, 7354}, {5183, 9955}, {5204, 5790}, {5288, 6735}, {5552, 5904}, {5557, 5708}, {5660, 5693}, {5901, 7294}, {7742, 9709}


X(5446) =  INTERSECTION OF LINES X(371)X(5417) AND X(372)X(5419)

Trilinears    2R2cos A - a2cos(B - C) : 2R2cos B - b2cos(C - A) : 2R2cos C - c2cos(A - B)   (Randy Hutson, April 2013)
Trilinears    cos(2A) cos(B - C) - 2 cos B cos C : cos(2B) cos(C - A) - 2 cos C cos A : cos(2C) cos(A - B) - 2 cos A cos B    (César Lozada, April 10, 2013; Hyacinthos #21922)
Barycentrics    a^2[a^2b^2c^2 SA - 2 S^2(S^2 + SB SC)] : :

Continuing the discussion at X(5422), the point X(5446) lies on the following pairs of lines: (1) the line joining the center of the 1st Kenmotu circle and its perspector, these two points being X(371) and X(5417);
(2) the line joining the center of the 2nd Kenmotu circle and its perspector, these two points being X(372) and X(5419).
Also, X(5446) is the complement of X(3) with respect to the orthic triangle.   (Randy Hutson, April 8, 2013)

X(5446) lies on these lines: {2, 5447}, {3, 51}, {4, 52}, {5, 141}, {6, 7387}, {20, 3567}, {22, 569}, {23, 54}, {25, 1147}, {26, 578}, {30, 143}, {49, 1495}, {113, 6152}, {131, 134}, {140, 5943}, {155, 1351}, {184, 7517}, {185, 382}, {193, 9936}, {235, 5448}, {343, 7403}, {371, 5417}, {372, 5419}, {373, 3526}, {381, 5562}, {394, 7529}, {427, 5449}, {428, 539}, {546, 1154}, {550, 5946}, {567, 2937}, {576, 2393}, {631, 5640}, {632, 6688}, {970, 6914}, {1092, 7506}, {1112, 3575}, {1209, 5133}, {1350, 7393}, {1593, 7689}, {1614, 1994}, {1656, 3917}, {1885, 6746}, {2979, 3090}, {3089, 5654}, {3091, 5891}, {3098, 7516}, {3146, 5890}, {3292, 7545}, {3543, 6241}, {3547, 9967}, {3560, 5752}, {3574, 10024}, {3627, 6000}, {3628, 3819}, {3845, 5876}, {3853, 5663}, {5056, 7999}, {5067, 7998}, {5070, 5650}, {5093, 6467}, {5102, 9973}, {6146, 7553}, {6193, 6995}, {6676, 6689}, {7713, 9928}, {7718, 9933}

X(5446) = midpoint of X(4) and X(52)
X(5446) = reflection of X(i) in X(j) for these (i,j): (389, 143), (1216,5)
X(5446) = anticomplement of X(5447)

X(5446) = X(946)-of-orthic-triangle if ABC is acute

X(5447) =  COMPLEMENT OF X(5446)

Trilinears        (cos A)(3 - cos (2B) - cos(2C)) : (cos B)(3 - cos (2C) - cos(2A)) : (cos C)(3 - cos (2A) - cos(2B))   (César Lozada, April 10, 2013; Hyacinthos #21922)

Let A′B′C′ be the tangential triangle of triangle ABC. Let OA be the circle with center A′ that is tangent to line BC. Define OB and OC cyclically. Then X(5447) is the radical center of the three circles.   (Randy Hutson, April 8, 2013)

X(5447) lies on these lines: {2, 5446}, {3, 49}, {4, 7998}, {5, 3819}, {20, 5891}, {26, 3098}, {51, 3526}, {52, 631}, {68, 7386}, {140, 143}, {389, 549}, {548, 6000}, {550, 5907}, {569, 7485}, {578, 7516}, {632, 5943}, {858, 1209}, {1154, 3530}, {1350, 6642}, {1368, 5449}, {1498, 8717}, {1656, 5650}, {3060, 3525}, {3523, 9730}, {3524, 5889}, {3533, 5640}, {3546, 9967}, {5054, 6243}, {5448, 6823}, {5651, 7517}, {5654, 7400}, {5876, 8703}, {6643, 9927}, {6689, 7499}

X(5447) = complement of X(5446)
X(5447) = midpoint of X(3) and X(1216)

X(5447) = {X(3),X(49)}-harmonic conjugate of X(22352)

X(5448) =  1st HATZIPOLAKIS-MOSES POINT

Trilinears    (cos A)(2 + 2 cos(2B) + 2 cos(2C) + cos(2B - 2C))   (César Lozada, April 15, 2013; Hyacinthos #21954)
Barycentrics    (b2 + c2 - a2)(b8 + c8 + 2a6b2 + 2a6c2 - 3a4b4 - 3a4c4 + 4a4b2c2 - 4b6c2 - 4b2c6 + 6b4c4)
X(5448) = X(3) + 2X(4) + X(155) = 3X(2) + 2X(3) - X(68)

Let A′B′C′ be the pedal triangle of the orthocenter, X(4), and let A″B″C″ be the circumcevian triangle of X(4) with respect to A′B′C′. Let RA be the radical axis of the circles (B″, |B′C″|) and (C″,|C′B″|), and define RB and RC cyclically. The lines RA, RB, RC concur in X(5448). For figures, see Concurrent Radical Axes.   (Antreas Hatzipolakis, April 10, 2013)

Let A′B′C′ be the orthic triangle. Let (A) be the circle centered at A′ with radius a/2, and define (B), (C) cyclically. X(5448) is the radical center of circles (A), (B), (C). (Randy Hutson, January 29, 2018)

X(5448) lies on these lines: {2, 7689}, {3, 1568}, {4, 110}, {5, 389}, {30, 5893}, {52, 403}, {68, 1173}, {155, 195}, {185, 2072}, {235, 5446}, {525, 7764}, {541, 3357}, {912, 6583}, {1204, 6640}, {1533, 5073}, {1614, 3153}, {1699, 9928}, {2929, 6642}, {3060, 6242}, {3167, 3843}, {3546, 4846}, {3564, 3850}, {3818, 7564}, {3832, 6193}, {3855, 9936}, {5447, 6823}, {5476, 8548}, {5562, 10024}, {6238, 7951}, {6689, 7503}, {7352, 7741}, {7552, 7691}

X(5448) = midpoint of X(4) and X(1147)
X(5448) = complement of X(7689)


X(5449) =  2nd HATZIPOLAKIS-MOSES POINT

Trilinears        cos A cos(2B - 2C) : cos B cos(2C - 2A) : cos C cos(2A - 2B)   (César Lozada, April 14, 2013; Hyacinthos #21951)
Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b2 + c2 - a2)(b8 + c8 + a4b4 + a4c4 - 2a2b6 - 2a2c6 + 2a2b4c2 + 2a2b2c4 - 4b6c2 - 4b2c6 + 6b4c4)
Barycentrics   g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = SA[a4(S2 - SA2) - 8S2SBSC]
Barycentrics   h(A,B,C) : h(B,C,A) : h(C,A,B), where h(A,B,C) = b4SB(S2 - SB2) + c4SC(S2 - SC2)
Barycentrics   sin 4B + sin 4C : sin 4C + sin 4A : sin 4A + sin 4B    (Randy Hutson, August 26, 2014)
X(5449) = 3X(2) + X(68) = 3X(2) - X(1147)

Let A′B′C′ be the pedal triangle of the circumcenter, X(3), and let A″B″C″ be the circumcevian triangle of X(3) with respect to A′B′C′. Let RA be the radical axis of the circles (B′, |B′C″|) and (C′,|C′B″|), and define RB and RC cyclically. The lines RA, RB, RC concur in X(5449). The midpoint of X(5448) and X(5449) is X(5). For figures, see Concurrent Radical Axes.   (Antreas Hatzipolakis, April 10, 2013)

Let D = X(68); then X(5449) is the centroid of ABCD. (Randy Hutson, August 25, 2014)

Let NANBNC be the reflection triangle of X(5). Let OA be the circumcenter of ANBNC, and define OB and OC cyclically. X(5449) is the orthocenter of OAOBOC. (Randy Hutson, June 7, 2019)

X(5449) lies on these lines: {2, 54}, {3, 125}, {4, 7689}, {5, 389}, {30, 6696}, {51, 5576}, {52, 1594}, {69, 8538}, {113, 7722}, {115, 8571}, {136, 847}, {155, 1656}, {156, 542}, {184, 6639}, {185, 10024}, {343, 1216}, {427, 5446}, {511, 6697}, {568, 3574}, {575, 3564}, {912, 3812}, {1092, 6640}, {1368, 5447}, {1614, 3448}, {1698, 9928}, {1853, 7387}, {1899, 3549}, {2072, 5562}, {3090, 5643}, {3091, 7693}, {3167, 5070}, {3616, 9933}, {3624, 9896}, {5020, 9908}, {5067, 9936}, {5169, 9781}, {5422, 7569}, {5889, 7577}, {5892, 7399}, {6146, 7542}, {6238, 7741}, {7352, 7951}, {7393, 9937}, {7514, 9932}, {7552, 9140}, {7706, 9786}, {7846, 9923}, {8253, 8909}

X(5449) = midpoint of X(68) and X(1147)
X(5449) = complement of X(1147)
X(5449) = X(6796)-of-orthic-triangle if ABC is acute


X(5450) =  3rd HATZIPOLAKIS-MOSES POINT

Barycentrics    a(a6 - a5b - a5c - 2a4b2 - 2a4c2 + 4a4bc + 2a3b3 + 2a3c3 - a3b2c - a3bc2 + a2b4 + a2c4 - 3a2b3c - 3a2bc3 + 4a2b2c2 + 2ab4c + 2abc4 - ab3c2 - ab2c3 - ab5 - ac5 - b5c - bc5 + 2b3c3) : :
X(5450) = R*X(1) + (2r - R)X(104)
X(5450) = (r - R)*X(3) + R*X(10)
X(5450) = (2r + 3R)*X(21) + R*X(84)
X(5450) = 4r*X(3) + R*X(8) - R*X(20)

Let A′B′C′ be the circumcevian triangle of X(1). Let RA be the radical axis of the circles (B, |BC′|) and (C,|CB′|), and define RB and RC cyclically. The lines RA, RB, RC concur in X(5450). For figures, see Concurrent Radical Axes. See also X(1147).    (Antreas Hatzipolakis, April 10, 2013)

Let M be the isogonal conjugate of the trilinear polar of X(57) with respect to the circumcevian triangle of X(1). Then M is a conic, and its center is X(5450). (Angel Montesdeoca, August 9, 2019)

X(5450) lies on these lines: {1, 104}, {2, 6256}, {3, 10}, {4, 36}, {5, 2829}, {8, 2077}, {21, 84}, {30, 3829}, {35, 944}, {40, 2975}, {48, 1765}, {55, 5882}, {56, 946}, {100, 5881}, {318, 1309}, {388, 6935}, {404, 5587}, {405, 6260}, {411, 5303}, {498, 6977}, {517, 8666}, {519, 8668}, {550, 5842}, {631, 5251}, {950, 8071}, {952, 8715}, {995, 3073}, {997, 7330}, {999, 3671}, {1006, 1490}, {1071, 2646}, {1125, 3560}, {1210, 1470}, {1385, 5248}, {1457, 1777}, {1478, 6833}, {1479, 6938}, {1482, 4084}, {1532, 5433}, {1621, 7971}, {1698, 6940}, {1699, 7704}, {2096, 3485}, {3072, 4257}, {3149, 5204}, {3436, 6966}, {3522, 7688}, {3585, 6830}, {3624, 6920}, {3746, 7967}, {3814, 6958}, {3822, 6862}, {3825, 6929}, {3885, 6264}, {4189, 5731}, {4231, 5345}, {4293, 6847}, {4305, 5768}, {4325, 6845}, {4511, 5693}, {4999, 6907}, {5080, 6972}, {5126, 9856}, {5229, 6956}, {5253, 6912}, {5258, 5657}, {5288, 5537}, {5538, 6763}, {5563, 5603}, {5691, 6905}, {6259, 7489}, {6681, 6959}, {6831, 7354}, {6946, 7989}, {6952, 7951}, {7677, 8544}

X(5450) = midpoint of X(1) and X(1158)


X(5451) =  PERSPECTOR OF 2nd GRIGORIEV CONIC

Barycentrics   f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = 1/(sec(B/2) sec(C/2) + sec(A/2))    (Paul Yiu, Hacinthos #21935, April 12, 2013)
Barycentrics   g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = 1/(cos(B/2) cos(C/2) + cos(A/2))    (Paul Yiu, Hacinthos #21935, April 12, 2013)

The 1st and 2nd Grigoriev conics are presented at X(5430) and X(5431). Their perspectors are X(188) and X(5451), respectively,    (Randy Hutson, April 2013)

X(5451) lies on this line: {178, 5431}


X(5452) = CENTER OF THE PRIVALOV CONIC

Trilinears    cos2(A/2)[-sin A cos2(A/2) + sin B cos2(B/2) + sin C cos2(C/2)] : : (Randy Hutson, April 19, 2013)

Barycentrics   a2(b + c - a)[a3 - a2b - a2c + ab2 + ac2 - (b + c)(b - c)2]

Let A′B′C′ be the anticomplementary triangle of triangle ABC. Let A″ be the reflection of A′ in the perpendicular bisector of segtment BC, and define B″ and C″ cyclically. Let A1 be the touchpoint of the incircle of A″BC and line BC, and let A2 be the touchpoint of the incircle of A′BC and line BC. Define the points B1, B2, C1, C2 cyclically. Then |AC2| = |BC1|, |BA1| = |CA2|, |CB1| = |AB2|, so that by Carnot's theorem, the six points A1, A2, B1, B2, C1, C2 lie on a conic, named in honor of Alexander Privalov. A barycentric equation for the Privalov conic follows:

x2 + y2 + z2 + f(a,b,c)yz + f(b,c,a)zx + f(c,a,b)xy = 0, where f(a,b,c) = 2[(b - c)2 + a2]/[(b - c)2 - a2],

or, equivalently, by

x2 + y2 + z2 - g(A,B,C)yz - g(B,C,A)zx - g(C,A,B)xy = 0, where g(A,B,C) = tan(B/2) tan(C/2) [cot2(B/2) + cot2(C/2)]. (Dmitry Grigoriev, April 15, 2013.)

The Privalov conic is the bicevian conic of X(7) and X(8) - that is, the conic through the vertices of the intouch and extouch triangles. Its center X(5452) is also the center of the conic through A, B, C, X(101), X(294), X(651), X(666), which is the isogonal conjugate of the Gergonne line. Also, X(5452) = crossdifference of every pair of points on the polar of X(6) with respect to the incircle. See also X(5545).    (Randy Hutson, April 19, 2013)

As a line L varies through the set of all lines that pass through X(55), the locus of the trilinear pole of L is a circumconic, and its center is X(5452). (Randy Hutson, April 19, 2013)

Let L be a line tangent to the incircle. Let P and U be the circumcircle intercepts of L. Let X be the crossdifference of P and U. As L varies, X traces the circumellipse centered at X(5452). This ellipse shares a major axis with, and is homothetic to, the Privalov conic. Therefore, the Privalov conic is an ellipse for every triangle ABC. (Randy Hutson, July 20, 2016)

Let A′B′C′ be the orthic triangle. Let La be the Gergonne line of triangle AB′C′, and define Lb and Lc cyclically. Let A″ = Lb∩Lc, and define B″ and C″ cyclically. Triangle A″B″C″ is inversely similar to ABC, with similicenter X(5452). (Randy Hutson, July 31 2018)

Let P be a point on the circumcircle. Let A′B′C′ be the anticevian triangle of P. A′B′C′ is perspective to the unary cofactor triangle of the intangents triangle for all P. As P varies, the perspector traces the circumconic centered at X(5452). (Randy Hutson, July 11, 2019)

For another conic with center X(5452), see X(175) and X(46417.

If you have The Geometer's Sketchpad, you can view X(5452)

X(5452) lies on these lines: {2, 1814}, {6, 354}, {9, 1040}, {33, 210}, {55, 2195}, {212, 8012}, {218, 226}, {219, 3686}, {294, 497}, {650, 1376}, {651, 7056}, {666, 6063}, {1212, 7124}, {2238, 2911}

X(5452) = X(2)-Ceva conjugate of X(55)


X(5453) =  CENTER OF HATZIPOLAKIS CIRCLE

Trilinears   f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = 2 + 2 cos A + cos(B - C) + 4 sin(3A/2) cos(B/2 - C/2)   (César Lozada, April 17, 2013)

Let A′B′C′ be the cevian triangle of I (the incenter, X(1)). Let NA be the nine-point center of triangle IB′C′, and define NB and NC cyclically. The points I, NA, NB, NC are concyclic, and their circle, described by Antreas Hatzipolakis, April 17, 2013.

X(5453) lies on these lines: {1, 30}, {3, 81}, {5, 581}, {21, 323}, {55, 6097}, {58, 5428}, {73, 5719}, {140, 3216}, {155, 6914}, {186, 2906}, {386, 549}, {511, 1385}, {550, 991}, {1064, 5901}, {1154, 2646}, {1442, 6356}, {1834, 5499}, {1962, 5492}, {2771, 3743}, {3945, 6869}

X(5453) = midpoint of X(1) and X(500)


X(5454) =  1st MORLEY-KIRIKAMI POINT

Trilinears    f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = ((-f(2A/3) + f(4A/3) + f(2B/3) - f(4B/3))(h(C/3 + π/6)(2f(C/3)g(A/3) + g(B/3)) + (2 + f(C/3)g(A/3)g(B/3))g(A/3 + 2π/3) + (f(2A/3) - f(4A/3) - f(2C/3) + f(4C/3)(h(B/3 + π/6)(2f(B/3)g(A/3) + g(C/3)) + (2 + f(B/3)g(A/3)g(C/3))g(A/3 + 2π/3)), where f = cos, g = sec, h = csc    (Peter Moses, April 26, 2013)
Trilinears    (4*a*g(A)+3*b*g(B)+3*c*g(C))*f(A)+(b*f(B)+c*f(C))*g(A) : :,
 where f(A)=cos(A/3)+2*cos(B/3)*cos(C/3) and g(A)= sec((A+2*π)/3) (César Lozada, March 3, 2022)

Let DEF be the 1st Morley triangle of triangle ABC. The Newton lines of the quadrilaterals AEDF, BFED, CDFE concur in X(5454).   (Seiichi Kirikami, April 26, 2013)

If you have The Geometer's Sketchpad, you can view X(5454).

X(5454) lies on these lines: {356, 1134}, {357, 3280}


X(5455) =  2nd MORLEY-KIRIKAMI POINT

Barycentrics   f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (4 sin A)g(A,B,C) + (sin B)g(B,C,A) + (sin C)g(C,A,B), where g(A,B,C) = cos(A/3) + 2 cos(B/3) cos(C/3)    (Peter Moses, April 26, 2013)

Let DEF be the 1st Morley triangle of triangle ABC. Let LA be the line of the centroid of AEF and the centroid of BCD, and define LB and LC cyclically. The lines LA, LB, LC concur in X(5455).   (Seiichi Kirikami, April 26, 2013)

If you have The Geometer's Sketchpad, you can view X(5455).

X(5455) lies on this line: {2, 356}


X(5456) =  3rd MORLEY-KIRIKAMI POINT

Barycentrics   sin(2A/3) : sin(2B/3) : sin(2C/3)    (Peter Moses, May 14, 2013)

Let DEF be the 1st Morley triangle of triangle ABC, and let D1E1F1 be the 1st Morley adjunct triangle (defined at MathWorld). Let D2 = DD1∩BC, and define E2 and F2 cyclically. The lines AD2, BE2, CF2 concur in X(5456).    (Seiichi Kirikami, April 26, 2013)

Let DEF be the 1st Morley triangle. Let D' be the trilinear pole of line EF, and define E', F' cyclically. Let D" be the trilinear pole of line E'F', and define E", F" cyclically. The lines AD", BE", CF" concur in X(5456). (Randy Hutson, September 29, 2014)

If you have The Geometer's Sketchpad, you can view X(5456).

X(5456) lies on these lines: {356, 3605}, {3274, 3602}


X(5457) =  4th MORLEY-KIRIKAMI POINT

Trilinears   f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = 1/(cos A + cos(A/3))    (Peter Moses, April 26, 2013)
Trilinears   g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A/3)/sin(4A/3)    (Randy Hutson, August 9, 2014)

Let DEF be the 1st Morley triangle of triangle ABC, and let D3 be the reflection of D in line BC, and define E3 and F3 cyclically. The lines AD3, BE3, CF3 concur in X(5457).    (Seiichi Kirikami, April 26, 2013)

X(5457) is the Hofstadter -1/3 point; see X(359). (Randy Hutson, August 9, 2014)

If you have The Geometer's Sketchpad, you can view X(5457) and X(5458).

X(5457) lies on this line: {357, 5628}

X(5457) = isogonal conjugate of X(6123)


X(5458) =  5th MORLEY-KIRIKAMI POINT

Trilinears   1/(4 cos A + sec(A/3)) : :    (Peter Moses, April 26, 2013)
Trilinears   g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin 2A/3)/sin(5A/3)    (Randy Hutson, August 9, 2014)

Let DEF be the 1st Morley triangle of triangle ABC, and let D1E1F1 be the 1st Morley adjunct triangle (defined at MathWorld). Let D4 be the reflection of D1 in line BC, and define E4 and F4 cyclically. The lines AD4, BE4, CF4 concur in X(5458).    (Seiichi Kirikami, April 26, 2013)

X(5458) is the Hofstadter -2/3 point; see X(359). (Randy Hutson, August 9, 2014)

D4 is the BCD-isogonal conjugate of A, and cyclically for E4 and F4(Randy Hutson, January 29, 2015

X(5458) lies on these lines: {}


X(5459) =  MIDPOINT OF X(2) AND X(13)

Barycentrics    4a csc(A + π/3) + b csc(B + π/3) + c csc(C + π/3) : :    (Randy Hutson, April 25, 2013)

X(5459) is the center of the equilateral triangle formed by the nine-point centers of the triangles BCF, CAF, ABF, where F is the Fermat point, X(13). Also, X(5459) is the center of the circle through X(2), X(13), and the previously mentioned nine-point centers, and X(5459) = {X(5),X(597)}-harmonic conjugate of X(5460). (Randy Hutson, April 25, 2013)

The circle just defined is here given the name 1st Hutson circle. The 2nd Hutson circle and Hutson-Parry circles are defined at X(5460) and X(5466); see also X(8371). (CK, October 31, 2015)

X(5459) lies on these lines: {2, 13}, {5, 542}, {14, 9166}, {17, 671}, {30, 5478}, {61, 5469}, {115, 396}, {148, 9114}, {395, 5472}, {524, 623}, {543, 619}, {599, 635}, {630, 2482}, {3524, 5473}, {3545, 6770}, {3642, 9763}, {5055, 5617}, {5318, 6671}, {5476, 7685}, {8371, 9194}

X(5459) = reflection of X(5460) in X(5461)
X(5459) = complement of X(5463)
X(5459) = radical center of the polar circles of triangles BCX(13), CAX(13), ABX(13)
X(5459) = radical trace of 1st Hutson and Hutson-Parry circles


X(5460) =  MIDPOINT OF X(2) AND X(14)

Barycentrics    4a csc(A - π/3) + b csc(B - π/3) + c csc(C - π/3) : :    (Randy Hutson, April 25, 2013)

X(5460) is the center of the equilateral triangle formed by the nine-point centers of the triangles BCF', CAF', ABF', where F' = X(14). Also, X(5460) is the center of the circle through X(2), X(14), and the previously mentioned nine-point centers. (Randy Hutson, April 25, 2013)

The circle just described is here given the name 2nd Hutson circle. The 1st Hutson and Hutson-Parry circles are defined at X(5459) and X(5466); see also X(8371). (CK, October 31, 2015)

X(5460) lies on these lines: {2, 14}, {5, 542}, {13, 9166}, {18, 671}, {30, 5479}, {62, 5470}, {115, 395}, {148, 9116}, {396, 5471}, {524, 624}, {543, 618}, {599, 636}, {629, 2482}, {3524, 5474}, {3545, 6773}, {3643, 9761}, {5055, 5613}, {5321, 6672}, {5476, 7684}, {8371, 9195}

X(5460) = reflection of X(5459) in X(5461)
X(5460) = complement of X(5464)
X(5460) = {X(5),X(597)}-harmonic conjugate of X(5459)
X(5460) = radical center of the polar circles of triangles BCX(14), CAX(14), ABX(14)
X(5460) = radical trace of 2nd Hutson and Hutson-Parry circles


X(5461) =  MIDPOINT OF X(5459) AND X(5460)

Barycentrics    4(b2 - c2)2 + (a2 - b2)2 + (a2 - c2 )2 : :    (Randy Hutson, April 25, 2013)

X(5461) is the center of the rectangle having vertices X(2), X(115), X(125), and X(5465). (Paul Yiu, Anopolis #170, April 25, 2013)

X(5461) lies on these lines: {2, 99}, {3, 9880}, {5, 542}, {6, 8176}, {30, 6036}, {98, 3545}, {114, 5055}, {125, 5465}, {187, 8352}, {230, 3849}, {316, 8859}, {376, 9754}, {381, 2794}, {523, 9165}, {524, 625}, {530, 6670}, {531, 6669}, {538, 2023}, {547, 2782}, {598, 7806}, {599, 626}, {690, 9183}, {754, 9478}, {1153, 3054}, {1506, 7827}, {1656, 8724}, {1698, 9881}, {1992, 3767}, {1995, 3455}, {2796, 3634}, {3090, 7902}, {3363, 7804}, {3589, 9830}, {3616, 9884}, {3618, 8593}, {3624, 9875}, {3934, 5969}, {5020, 9876}, {5025, 7810}, {5054, 6321}, {5071, 6054}, {5077, 5569}, {5182, 7808}, {5215, 8598}, {5463, 5470}, {5464, 5469}, {6680, 8370}, {6704, 8367}, {6781, 8597}, {7610, 7761}, {7746, 7830}, {7749, 7833}, {7755, 7812}, {7798, 9770}, {7801, 7887}, {7846, 9878}, {7861, 8359}, {7886, 8369}

X(5461) = midpoint of X(i) and X(j) for these (i,j): (2,115), (125,5465)
X(5461) = complement of X(2482)


X(5462) =  INTERSECTION OF LINES X(2)X(52) AND X(3)X(51)

Trilinears   2R2cos A + a2cos(B - C) : 2R2cos B + b2cos(C - A) : 2R2cos C + a2cos(A - B)
X(5462) = 3X(2) + X(52)

X(5462) = (X(i),X(j))-harmonic conjugate of X(k) for these (i,j,k): (2,52,1216), (3,51,5446), (24,5422,569).   (Randy Hutson, April 24, 2013)

X(5462) lies on these lines: {2, 52}, {3, 51}, {4, 4846}, {5, 389}, {6, 1147}, {20, 9781}, {24, 569}, {26, 182}, {30, 9729}, {54, 6153}, {68, 7401}, {110, 1199}, {125, 5576}, {140, 143}, {155, 5020}, {184, 7506}, {185, 381}, {195, 3292}, {343, 7405}, {373, 568}, {468, 6746}, {539, 9827}, {546, 5893}, {570, 3133}, {575, 2393}, {578, 6644}, {631, 3060}, {632, 3819}, {973, 6689}, {1112, 6699}, {1154, 3628}, {1181, 3066}, {1209, 3580}, {1843, 3517}, {1899, 7528}, {1995, 7592}, {2070, 2918}, {2072, 3574}, {2807, 9955}, {2979, 3525}, {3090, 5889}, {3091, 5890}, {3518, 5012}, {3526, 3917}, {3533, 7998}, {3564, 9822}, {3618, 9967}, {3796, 9714}, {3832, 6241}, {3850, 5663}, {5092, 7525}, {5643, 7550}, {5752, 6883}, {6237, 9816}, {6238, 9817}, {6677, 9820}, {7689, 9786}, {8548, 9813}, {9815, 9927}

X(5462) = midpoint of X(i) and X(j) for these (i,j): (5,389), (140,143)
X(5462) = complement of X(1216)
X(5462) = centroid of {A,B,C,X(52)}


X(5463) =  REFLECTION OF X(13) IN X(2)

Barycentrics    f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = sin A sec(A - π/6) - 2 sin B sec(B - π/6) - 2 sin C sec(C - π/6)    (Peter Moses, May 3, 2013)

Each of the following sets of 4 points are concyclic: {X(13), X(15), X(5463), X(5464)}, {X(14), X(16), X(5463), X(5464)}, {X(2), X(110), X(5463), X(5464)}, {X(3), X(15), X(110), X(5464)}, {X(3), X(16), X(110), X(5463)}. Moreover, the line X(13)X(5463) is tangent to both of the circles of {X(13), X(14), X(15)} and {X(14), X(15), X(5463)}; likewise, the line X(14)X(5464) is tangent to both of the circles of {X(13), X(14), X(16)} and {X(13), X(16), X(5464). (Dao Thanh Oai, ADGEOM #1237, April 7, 2014). X(5463) is the center of the equilateral antipedal triangle of X(13), and X(5463) = (X(3), X(599))-harmonic conjugate of X(5464).    (Randy Hutson, May 2, 2013)

The circle {{X(2), X(110), X(5463), X(5464)}} has center X(1649) and passes through X(2770). It is tangent to the Euler line at X(2) and is the reflection in the Euler line of the circle {{X(2), X(13), X(14), X(111), X(476)}}.    (Randy Hutson, August 26, 2014)

Let NANBNC and N′AN′BN′C be the inner and outer Napoleon triangles, resp. Let A′ be the reflection of NA in line N′BN′C, and define B′ and C′ cyclically. Triangle A′B′C′ is equilateral, the reflection of N′AN′BN′C in X(618), and X(5463) is its center. (Randy Hutson, January 17, 2020)

X(5463) lies on these lines: {2, 13}, {3, 67}, {6, 9115}, {14, 543}, {15, 524}, {18, 671}, {30, 5473}, {61, 1992}, {62, 597}, {99, 298}, {299, 7771}, {395, 6772}, {396, 9112}, {519, 7975}, {620, 6778}, {627, 8591}, {2770, 9203}, {2796, 5699}, {3104, 5969}, {3106, 7757}, {3524, 6770}, {3545, 5478}, {5054, 6771}, {5461, 5470}, {5476, 5615}, {5569, 9763}, {5978, 8592}, {6054, 9749}, {6670, 9166}, {6782, 9741}, {7840, 8291}, {7865, 9982}, {9168, 9205}, {9830, 9886}

X(5463) = midpoint of X(2) and X(616)
X(5463) = reflection of X(2) in X(618)
X(5463) = reflection of X(5464) in X(2482)
X(5463) = anticomplement of X(5459)
X(5463) = Thomson-isogonal-conjugate-of-X(15)


X(5464) =  REFLECTION OF X(14) IN X(2)

Barycentrics    f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = sin A sec(A + π/6) - 2 sin B sec(B + π/6) - 2 sin C sec(C + π/6)    (Peter Moses, May 3, 2013)

Each of the following sets of 4 points are concyclic: {X(13), X(15), X(5463), X(5464)}, {X(14), X(16), X(5463), X(5464)}, {X(2), X(110), X(5463), X(5464)}, {X(3), X(15), X(110), X(5464)}, {X(3), X(16), X(110), X(5463)}. Moreover, the line X(13)X(5463) is tangent to both of the circles of {X(13), X(14), X(15)} and {X(14), X(15), X(5463):; likewise, the line X(14)X(5464) is tangent to both of the circles of {X(13), X(14), X(16)} and {X(13), X(16), X(5464). (Dao Thanh Oai, ADGEOM #1237, April 7, 2014).

X(5464) is the center of the equilateral antipedal triangle of X(14), and X(5464) = (X(3), X(599))-harmonic conjugate of X(5463).    (Randy Hutson, May 2, 2013)

Let NANBNC and N′AN′BN′C be the inner and outer Napoleon triangles, resp. Let A″ be the reflection of N′A in line NBNC, and define B″ and C″ cyclically. Triangle A″B″C″ is equilateral, the reflection of NANBNC in X(619), and X(5464) is its center. (Randy Hutson, January 17, 2020)

X(5464) lies on these lines: {2, 14}, {3, 67}, {6, 9117}, {13, 543}, {16, 524}, {17, 671}, {30, 5474}, {61, 597}, {62, 1992}, {99, 299}, {298, 7771}, {395, 9113}, {396, 6775}, {519, 7974}, {620, 6777}, {628, 8591}, {2770, 9202}, {2796, 5700}, {3105, 5969}, {3107, 7757}, {3524, 6773}, {3545, 5479}, {5054, 6774}, {5461, 5469}, {5476, 5611}, {5569, 9761}, {5979, 8592}, {6054, 9750}, {6669, 9166}, {6783, 9741}, {7840, 8292}, {7865, 9981}, {9168, 9204}, {9830, 9885}

X(5464) = midpoint of X(2) and X(617)
X(5464) = reflection of X(2) in X(619)
X(5464) = reflection of X(5463) in X(2482)
X(5464) = anticomplement of X(5460)
X(5464) = Thomson-isogonal-conjugate-of-X(16)


X(5465) =  ORTHOGONAL PROJECTION OF X(2) ON THE FERMAT AXIS

Barycentrics    2*a^10-4*(b^2+c^2)*a^8+4*(2*b^4-b^2*c^2+2*c^4)*a^6-(b^2+c^2)*(7*b^4-10*b^2*c^2+7*c^4)*a^4-(b^8+c^8-2*b^2*c^2*(7*b^4-12*b^2*c^2+7*c^4))*a^2+(b^4-c^4)*(b^2-c^2)*(b^2-2*c^2)*(2*b^2-c^2) : : (Paul Yiu, Anopolis #170, April 25, 2013)

X(5465) is the point, other than X(2), of intersection of the circle defined at X(5459) and the circle defined at X(5460).    (Randy Hutson, May 2, 2013)

X(5465) is the fourth vertex of a rectangle determined by three vertices X(2), X(115), and X(125); the center of this rectangle is X(5461). (Paul Yiu, Anopolis #170, April 25, 2013)

X(5465) lies on the circle O(2,6) (with diameter X(2)X(6)) and these lines: {2, 690}, {6, 13}, {30, 9181}, {110, 671}, {125, 5461}, {541, 6055}, {543, 1316}, {2482, 5972}, {2780, 3111}, {6593, 9830}, {9140, 9166}

X(5465) = midpoint of X(110) and X(671)
X(5465) = reflection of X(125) and X(5461)
X(5465) = complement of X(11006)


X(5466) =  TRILINEAR POLE OF LINE X(115)X(523)

Trilinears   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc(b2 - c2)/(b2 + c2 - 2a2)

Let L be the line tangent at X(13) to the circle defined at X(5459), and let L′ be the line tangent to X(14) to the circle defined at X(5460). Then X(5466) = L∩L′. Also, on the circle passing through X(2), X(13), X(14), X(111), and X(476), the antipode of X(2) is X(5466).    (Randy Hutson, May 3 2013)

The circle just described is here given the name Hutson-Parry circle. (CK, October 31, 2015). The circle is mentioned briefly in TCCT, page 228.

In the plane of a triangle ABC, let
Γ = circumcircle;
D = line tangent to $Gamma; at A;
Ta = D∩BC;
Oab = center of the circle through Ta that is tangent to Γ at B;
Oac = center of the circle through Ta that is tangent to Γ at C;
Ab = orthogonal projection of Oab onto AC;
Ac = orthogonal projection of Oac onto AB;
A' = AbAc∩BC, and define B' and C' cyclically.
The lines AA', BB', CC' concur in X(5466). See X(5466) (Angel Montesdeoca, August 21, 2022)

X(5466) lies on the Kiepert hyperbola and these lines: {2, 523}, {4, 1499}, {10, 4024}, {13, 9201}, {14, 9200}, {76, 850}, {83, 5643}, {98, 111}, {115, 9180}, {262, 5996}, {321, 4036}, {351, 8587}, {476, 691}, {512, 598}, {525, 5485}, {647, 7607}, {671, 690}, {685, 4240}, {868, 2394}, {879, 9154}, {892, 5468}, {895, 2986}, {1916, 9148}, {2799, 5503}, {3268, 8781}, {3288, 7708}, {5067, 8151}, {7612, 9209}, {9123, 9189}, {9125, 9131}

X(5466) = isogonal conjugate of X(5467)
X(5466) = isotomic conjugate of X(5468)
X(5466) = pole wrt polar circle of trilinear polar of X(4235)
X(5466) = X(48)-isoconjugate (polar conjugate) of X(4235)
X(5466) = barycentric product X(111)*X(850)


X(5467) =  ISOGONAL CONJUGATE OF X(5466)

Trilinears   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b2 + c2 - 2a2)/(b2 - c2)

X(5467) = {X(1576),X(4558)}-harmonic conjugate of X(1634)   (Peter Moses, May 7, 2013)

X(5467) lies on these lines: {3, 6}, {23, 5968}, {110, 351}, {112, 1296}, {250, 4230}, {523, 2407}, {524, 5967}, {691, 9178}, {895, 9142}, {1649, 5468}, {1989, 6321}, {2709, 2715}, {2794, 3014}, {2854, 5191}, {3292, 9717}, {4436, 4612}, {5994, 9203}, {5995, 9202}, {6036, 6128}, {6593, 9155}

X(5467) = midpoint of X(2407) and X(4226)
X(5467) = crossdifference of every pair of points on line X(115)X(523)
X(5467) = X(111)-isoconjugate of X(1577)


X(5468) =  ISOTOMIC CONJUGATE OF X(5466)

Trilinears   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc(b2 + c2 - 2a2)/(b2 - c2)

X(5468) is the unique point on line X(2)X(6) whose trilinear polar is parallel to line X(2)X(6). (Randy Hutson, March 21, 2019)

X(5468) lies on these lines: {2, 6}, {99, 110}, {126, 5477}, {316, 9141}, {511, 7417}, {691, 6082}, {805, 9150}, {877, 4240}, {892, 5466}, {1316, 6090}, {1649, 5467}, {2418, 2434}, {2502, 5969}, {2709, 9080}, {2715, 2858}, {3111, 7771}, {3266, 3292}, {4590, 9170}, {4615, 6548}, {5642, 7664}, {6390, 9717}

X(5468) = isogonal conjugate of X(9178)
X(5468) = crossdifference of every pair of points on line X(512)X(3124)
X(5468) = trilinear pole of line X(187)X(524)
X(5468) = {X(110),X(4563)}-harmonic conjugate of X(4576)


X(5469) =  {X(14),X(115)}-HARMONIC CONJUGATE OF X(13)

Trilinears   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = csc(A + π/3)[a csc(A - π/3) + b csc(B - π/3) + c csc(C - π/3)] + 2 csc(A - π/3)[a csc(A + π/3) + b csc(B + π/3) + c csc(C + π/3)]
X(5469) = X(13) + 2*X(14)

Let A′B′C′ be the antipedal triangle of X(13), let A″ be the nine-point center of the triangle BCX(14), and define B″ and C″ cyclically. Then X(5469) is the homothetic center of A′B′C′ and A″B″C″.   (Randy Hutson, May 3, 2013)

X(5469) = reflection of X(5470) in X(115)   (Randy Hutson, May 3, 2013)
X(5469) = {X(14),X(115)}-harmonic conjugate of X(13)   (Peter Moses, May 7, 2013)

X(5469) lies on these lines: {2, 5982}, {6, 13}, {18, 671}, {61, 5459}, {98, 5479}, {99, 6670}, {148, 618}, {395, 6779}, {531, 9166}, {617, 6669}, {5461, 5464}, {5473, 6321}, {5474, 6036}, {5478, 6773}


X(5470) =  {X(13),X(115)}-HARMONIC CONJUGATE OF X(14)

Trilinears   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = csc(A - π/3)[a csc(A + π/3) + b csc(B + π/3) + c csc(C + π/3)] + 2 csc(A + π/3)[a csc(A - π/3) + b csc(B - π/3) + c csc(C - π/3)]
X(5470) = 2*X(13) + X(14)

Let A′B′C′ be the antipedal triangle of X(14), let A″ be the nine-point center of the triangle BCX(13), and define B″ and C″ cyclically. Then X(5470) is the homothetic center of A′B′C′ and A″B″C″.   (Randy Hutson, May 3, 2013)

X(5470) = reflection of X(5469) in X(115)   (Randy Hutson, May 3, 2013)
X(5470) = {X(13),X(115)}-harmonic conjugate of X(14)   (Peter Moses, May 7, 2013)

X(5470) lies on these lines: {2, 5983}, {6, 13}, {17, 671}, {62, 5460}, {98, 5478}, {99, 6669}, {148, 619}, {396, 6780}, {530, 9166}, {616, 6670}, {5461, 5463}, {5473, 6036}, {5474, 6321}, {5479, 6770}


X(5471) =  {X(6),X(14)}-HARMONIC CONJUGATE OF X(115)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 4S2 + a2(2a2 - b2 - c2) - (12)1/2a2S

Let A′B′C′ be the pedal triangle of X(15), let A″ be the nine-point center of the triangle BCX(14), and define B″ and C″ cyclically. Then X(5471) is the homothetic center of A′B′C′ and A″B″C″.   (Peter Moses, May 7, 2013)

Let U be the pedal circle of X(14) (and of X(16). Then X(5471) is the U-inverse of X(187). (Randy Hutson, January 29,2105)

X(5471) lies on these lines: {2, 9117}, {5, 6783}, {6, 13}, {15, 6774}, {16, 6781}, {18, 7749}, {39, 398}, {61, 1506}, {62, 7747}, {187, 395}, {230, 6114}, {233, 2903}, {302, 620}, {396, 5460}, {543, 8595}, {590, 6303}, {615, 6307}, {1569, 3106}, {2482, 9761}, {2549, 5334}, {2782, 6782}, {3815, 6109}, {5318, 5479}, {5339, 7748}, {6775, 7737}

X(5471) = isogonal conjugate (and isotomic conjugate) of X(16) w.r.t to the pedal triangle of X(16)
X(5471) = X(14)-antipedal-to-X(16)-pedal similarity image of X(14)
X(5471) = {X(i), X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6,5474,5472), (115,5477,5472)
X(5471) = X(14)-antipedal-to-X(16)-pedal similarity image of X(14)


X(5472) =  {X(6),X(13)}-HARMONIC CONJUGATE OF X(115)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 4S2 + a2(2a2 - b2 - c2) + (12)1/2a2S

Let A′B′C′ be the pedal triangle of X(16), let A″ be the nine-point center of the triangle BCX(13), and define B″ and C″ cyclically. Then X(5472) is the homothetic center of A′B′C′ and A″B″C″.   (Peter Moses, May 7, 2013)

Let V be the pedal circle of X(13) (and of X(15). Then X(5472) is the V-inverse of X(187). (Randy Hutson, January 29,2105)

X(5472) lies on these lines: {2, 9115}, {5, 6782}, {6, 13}, {15, 6781}, {16, 6771}, {17, 7749}, {39, 397}, {61, 7747}, {62, 1506}, {187, 396}, {230, 6115}, {233, 2902}, {303, 620}, {395, 5459}, {543, 8594}, {590, 6302}, {615, 6306}, {1569, 3107}, {2482, 9763}, {2549, 5335}, {2782, 6783}, {3815, 6108}, {5321, 5478}, {5340, 7748}, {6772, 7737}

X(5472) = isogonal conjugate (and isotomic conjugate) of X(15) w.r.t. the pedal triangle of X(15)
X(5472) = X(13)-antipedal-to-X(15)-pedal similarity image of X(13)
X(5472) = {X(i), X(j)}-harmonic conjugate of X(k) for these (i,j,k): (6,5475,5471), (115,5477,5471)
X(5472) = X(13)-antipedal-to-X(15)-pedal similarity image of X(13)


X(5473) =  INTERSECTION OF LINES X(3)X(13) AND X(4)X(618)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 31/2a2(a4 - 3b4 - 3c4 + 2a2b2 + 2a2c2 - 2b2c2) + 4(area ABC)(7a4 - 2b4 - 2c4 - 5a2b2 - 5a2c2 + 4b2c2)    (Peter Moses, May 12, 2013)

X(5473) lies on these lines: {2, 5478}, {3, 13}, {4, 618}, {15, 9112}, {16, 2549}, {20, 616}, {30, 5463}, {62, 9607}, {165, 9901}, {376, 530}, {477, 9203}, {511, 6779}, {517, 7975}, {542, 1350}, {631, 6669}, {3098, 9982}, {3524, 5459}, {5469, 6321}, {5470, 6036}, {5979, 9749}

X(5473) = reflection of X(13) in X(3)
X(5473) = anticomplement of X(5478)
X(5473) = isogonal conjugate (and isotomic conjugate) of X(13) wrt the antipedal triangle of X(13)
X(5473) = {X(1350), X(3534)}-harmonic conjugate of X(5474)


X(5474) =  INTERSECTION OF LINES X(3)X(14) AND X(4)X(619)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 31/2a2(a4 - 3b4 - 3c4 + 2a2b2 + 2a2c2 - 2b2c2) - 4(area ABC)(7a4 - 2b4 - 2c4 - 5a2b2 - 5a2c2 + 4b2c2)    (Peter Moses, May 12, 2013)

X(5474) is the isogonal conjugate (and isotomic conjugate) of X(14) with respect to the antipedal triangle of X(14).   (Randy Hutson, May 7, 2013)

X(5474) lies on these lines: {2, 5479}, {3, 14}, {4, 619}, {15, 2549}, {16, 9113}, {20, 617}, {30, 5464}, {61, 9607}, {165, 9900}, {376, 531}, {477, 9202}, {511, 6780}, {517, 7974}, {542, 1350}, {631, 6670}, {3098, 9981}, {3524, 5460}, {5469, 6036}, {5470, 6321}, {5978, 9750}

X(5474) = reflection of X(14) in X(3)
X(5474) = anticomplement of X(5479)
X(5474) = {X(1350), X(3534)}-harmonic conjugate of X(5473)


X(5475) =  INTERSECTION OF LINES X(2)X(187) AND X(4)X(39)

Barycentrics    a4 + a2(b2 + c2) - (b2 - c2)2    (Peter Moses, May 12, 2013)
Barycentrics    (SA + SW) (SB + SC) + 4 SB SC : :
X(5475) = cot2ω*X(6) + 3*X(381)

X(5475) is the {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (5471,5472,6), (13,14,5476), and X(5475) is the inverse-in-Kiepert-hyperbola of X(5476).    (Randy Hutson, May 7, 2013)

X(5475) is the {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (4,2548,39), (6,115,5309), (6,381,115), (3767,5007,5346) (Peter Moses, May 12, 2013)

X(5475) lies on these lines: {1, 9650}, {2, 187}, {3, 1506}, {4, 39}, {5, 32}, {6, 13}, {11, 2242}, {12, 2241}, {30, 574}, {51, 5167}, {69, 7845}, {76, 7759}, {83, 3407}, {99, 7777}, {112, 7577}, {140, 5206}, {141, 7818}, {148, 7757}, {156, 9697}, {172, 7741}, {183, 754}, {194, 7858}, {233, 1609}, {315, 3934}, {325, 3734}, {376, 8589}, {382, 5013}, {384, 3788}, {385, 7812}, {427, 9515}, {485, 5058}, {486, 5062}, {524, 3363}, {538, 7774}, {546, 5254}, {547, 3054}, {549, 3055}, {566, 7574}, {590, 9675}, {620, 1003}, {626, 7770}, {1015, 1478}, {1078, 7823}, {1194, 7394}, {1196, 6997}, {1285, 5071}, {1316, 5099}, {1352, 5052}, {1384, 5055}, {1479, 1500}, {1503, 5034}, {1504, 3071}, {1505, 3070}, {1569, 6321}, {1572, 5587}, {1594, 1968}, {1596, 5065}, {1656, 3053}, {1699, 9620}, {1914, 7951}, {1975, 7764}, {1992, 7615}, {1995, 9745}, {2088, 7706}, {2207, 7507}, {2275, 3585}, {2276, 3583}, {2458, 5103}, {2896, 7860}, {3066, 6388}, {3087, 6623}, {3091, 3767}, {3096, 7885}, {3314, 7809}, {3329, 7790}, {3526, 5023}, {3545, 5008}, {3552, 7769}, {3589, 5033}, {3814, 4386}, {3830, 5024}, {3832, 5041}, {3839, 7739}, {3843, 7765}, {3845, 9300}, {3850, 5305}, {3851, 6287}, {3853, 9606}, {3855, 5319}, {3861, 9607}, {3933, 7903}, {4045, 7841}, {4193, 5277}, {5028, 5480}, {5046, 5283}, {5054, 5210}, {5066, 5306}, {5640, 6787}, {5691, 9619}, {5913, 8585}, {6292, 7784}, {6655, 7786}, {6656, 7808}, {6658, 7782}, {6680, 7887}, {6683, 7791}, {7517, 9700}, {7526, 9608}, {7530, 9609}, {7533, 9465}, {7547, 8743}, {7622, 8598}, {7750, 7815}, {7751, 7762}, {7754, 7838}, {7760, 7921}, {7763, 7816}, {7768, 7900}, {7776, 7794}, {7778, 7820}, {7787, 7828}, {7789, 7888}, {7792, 7844}, {7795, 7821}, {7796, 7941}, {7797, 7878}, {7800, 7873}, {7802, 7824}, {7803, 7861}, {7807, 7862}, {7813, 9766}, {7814, 7836}, {7819, 7867}, {7829, 7851}, {7832, 7912}, {7846, 7901}, {7859, 7933}, {7866, 7889}, {7876, 7911}, {7892, 7899}, {7935, 8362}, {8035, 8036}, {9115, 9761}, {9117, 9763}

X(5475) = reflection of X(574) in X(3815)


X(5476) =  MIDPOINT OF X(6) AND X(381)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a6 + b6 + c6 - 4a4b2 - 4a4c2 + 2a2b4 + 2a2c4 - 6a2b2c2 - b4c2 - b2c4    (Peter Moses, May 12, 2013)

Let A′ be the intersection, other than X(4), of the A-altitude and the orthocentroidal circle, and define B′ and C′ cyclically. The triangle A′B′C′, introduced here as the orthocentroidal triangle, is inversely similar to ABC, with center X(6) of similitude. If, in that definition, X(4) replaced by X(2) and A-altitude by A-median, the resulting triangle is the 4th Brocard triangle. Regarding a point X as a function of a triangle, X(A′B′C′) - that is, X of A′B′C′ - is the reflection of X(ABC) in the centroid of the pedal triangle of X. X(5476) = X(182) of the orthocentroidal triangle, and X(5476) = X(182) of the 4th Brocard triangle. Also, X(5476) = inverse-in-Kiepert-hyperbola of X(5475), and X(5476) = {X(13),X(14)}-harmonic conjugate of X(5475).    (Randy Hutson, May 7, 2013)

The vertices of the orthocentroidal triangle are given by Peter Moses (June 17, 2014): A′ = a2 : a2 + b2 - c2 : a2 - b2 + c2
B′ = b2 - c2 + a2 : b2 : b2 + c2 - a2
C′ = c2 + a2 - b2 : c2 - a2 + b2 : c2

The orthocentroidal triangle is the circumsymmedial triangle of the 4th Brocard triangle. (Randy Hutson, November 22, 2014)

Another construction of the orthocentroidal triangle: Let NaNbNc and Na'Nb'Nc' be the inner and outer Napoleon triangles, resp. Then A′ = NbNc'∩NcNb', and B′ and C′ are constructed cyclically; i.e, A′B′C′ is the cross-triangle of the inner and outer Napoleon triangles. Also, A′ is the center of inverse similitude of ABC and the A-altimedial triangle, and cyclically for B′ and C′. (Randy Hutson, December 10, 2016)

X(5476) lies on these lines: {2, 51}, {4, 575}, {5, 524}, {6, 13}, {30, 182}, {67, 7579}, {69, 5071}, {141, 547}, {376, 3618}, {403, 8541}, {546, 8550}, {549, 3098}, {569, 7540}, {599, 1351}, {1350, 5054}, {1352, 1992}, {1469, 3582}, {1503, 3845}, {1974, 7576}, {1995, 5642}, {2030, 7737}, {2781, 5946}, {3056, 3584}, {3066, 5972}, {3090, 7922}, {3091, 5032}, {3095, 7801}, {3329, 9993}, {3534, 5085}, {3564, 5066}, {3574, 9977}, {3830, 5050}, {3839, 6776}, {4663, 9955}, {5038, 7748}, {5039, 5306}, {5093, 5965}, {5107, 7603}, {5169, 9140}, {5171, 8359}, {5448, 8548}, {5459, 7685}, {5460, 7684}, {5463, 5615}, {5464, 5611}, {5569, 7606}, {5654, 8681}, {6032, 6792}, {6791, 9745}, {7533, 9143}, {7552, 9781}, {7951, 8540}, {8369, 9737}, {8538, 10024}, {9760, 9763}, {9761, 9762}, {9771, 10011}

X(5476) = centroid of reflection triangle of X(182)


X(5477) =  REFLECTION OF X(115) IN X(6)

Barycentrics    b2 - c2)2(a2 - b2 - c2) + 2a2[(a2 - b2)2 + (a2 - c2)2] : :

X(5477) lies on these lines: {6, 13}, {30, 5107}, {39, 8550}, {69, 620}, {98, 5034}, {99, 193}, {110, 6388}, {111, 9143}, {114, 230}, {126, 5468}, {147, 5304}, {187, 524}, {511, 1569}, {543, 1992}, {575, 1506}, {576, 7747}, {597, 7603}, {599, 9167}, {671, 5032}, {690, 5095}, {1353, 2782}, {1384, 8724}, {1503, 1570}, {1648, 5642}, {1691, 5965}, {2458, 4027}, {2502, 6791}, {2549, 2794}, {2796, 4856}, {3618, 6722}, {3629, 5969}, {3815, 6055}, {5038, 9698}, {5050, 6036}, {5093, 6321}, {6054, 7735}, {7837, 8289}, {8584, 9830}

X(5477) = {X(5471), X(5472)}-harmonic conjugate of X(115)    (Randy Hutson, May 7, 2013)


X(5478) =  MIDPOINT OF X(4) AND X(13)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 31/2(3a4b2 + 3a4c2 - 2a2b4 - 2a2c4 + 4a2b2c2 + b4c2 + b2c4 - b6 - c6) + 4(area ABC)(4a4 - 5b4 - 5c4 + a2b2 + a2c2 + 10b2c2)    (Peter Moses, May 12, 2013)

New pair of equilateral triangles (Vu Thanh Tung, November 25, 2019):

Let A0B0C0 be the orthic triangle of ABC. Let A15 = X(15)-of-A0B0C0, and define B15 and C15 cyclically, so that . A15B15C15 is the 3rd isodynamic-Dao equilateral triangle of ABC.

Let A′15 be the point, other than A, in which the line AA15 meets the circle {{A,B0,C0}}, and define B′15 and C′15 cyclically. The triangle A′15B′15C′15 is here named the Vu-Dao-X(15)-isodynamic equilateral triangle.

If X(15) is replaced by X(16) in the above construction, the resulting triangle, A′16B′16C′16, is here named the Vu-Dao-X(16)-isodynamic equilateral triangle. The centers of the two equilateral triangles are X(5478) and X(5479), respectively, and the diameters of the circumcircles of the two triangles are the segments X(4)X(13) and X(4)X(14), respectively.

Barycentrics and properties (Peter Moses, November 27, 2019):

A′15 = -2*(a^2*(a^4 + a^2*b^2 - 2*b^4 + a^2*c^2 + 4*b^2*c^2 - 2*c^4) + 2*Sqrt[3]*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*S), (a^2 - b^2 - c^2)*(Sqrt[3]*a^2 + 2*S)*(Sqrt[3]*(a^2 + b^2 - c^2) + 2*S), (a^2 - b^2 - c^2)*(Sqrt[3]*a^2 + 2*S)*(Sqrt[3]*(a^2 - b^2 + c^2) + 2*S) : :

A′16 = -2*(a^2*(a^4 + a^2*b^2 - 2*b^4 + a^2*c^2 + 4*b^2*c^2 - 2*c^4) + 2*Sqrt[3]*(a^2 + b^2 - c^2)*(a^2 - b^2 + c^2)*S), (a^2 - b^2 - c^2)*(Sqrt[3]*a^2 + 2*S)*(Sqrt[3]*(a^2 + b^2 - c^2) + 2*S), (a^2 - b^2 - c^2)*(Sqrt[3]*a^2 + 2*S)*(Sqrt[3]*(a^2 - b^2 + c^2) - 2*S) : :

With perspector X(13), the triangle A′15B′15C′15 is perspective to the following triangles: ABC, outer Fermat (TCCT p178), 1st isodynamic-Dao equilateral (see X(16802)), 3st isodynamic-Dao equilateral (see X(31683)), 1st half-diamonds triangle (see X(33338)), and 2nd Lemoine-Dao equilateral triangle (see X(16940)).

X(5478) lies on these lines: {2, 5473}, {3, 6669}, {4, 13}, {5, 618}, {30, 5459}, {98, 5470}, {107, 473}, {115, 5318}, {381, 530}, {383, 6115}, {531, 9880}, {542, 1353}, {616, 3091}, {624, 3734}, {1080, 6108}, {1598, 9916}, {1699, 9901}, {2043, 6306}, {2044, 6302}, {3545, 5463}, {5321, 5472}, {5334, 9112}, {5469, 6773}, {5603, 7975}, {5613, 6321}, {6201, 6268}, {6202, 6270}, {9982, 9993}

X(5478) = midpoint of X(4) and X(13)
X(5478) = complement of X(5473)
X(5478) = X(13)-of-Euler-triangle
X(5478) = center of circle {{A′15, B′15, C′15, X(4), X(13), X(16179)}}
X(5478) = {X(3845),X(5480)}-harmonic conjugate of X(5479)


X(5479) =  MIDPOINT OF X(4) AND X(14)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 31/2(3a4b2 + 3a4c2 - 2a2b4 - 2a2c4 + 4a2b2c2 + b4c2 + b2c4 - b6 - c6) - 4(area ABC)(4a4 - 5b4 - 5c4 + a2b2 + a2c2 + 10b2c2)    (Peter Moses, May 12, 2013)

See X(5478).

X(5479) lies on these lines: {2, 5474}, {3, 6670}, {4, 14}, {5, 619}, {30, 5460}, {98, 5469}, {107, 472}, {115, 5321}, {381, 531}, {383, 6109}, {530, 9880}, {542, 1353}, {617, 3091}, {623, 3734}, {1080, 6114}, {1598, 9915}, {1699, 9900}, {2043, 6303}, {2044, 6307}, {3545, 5464}, {5318, 5471}, {5335, 9113}, {5470, 6770}, {5603, 7974}, {5617, 6321}, {6201, 6269}, {6202, 6271}, {9981, 9993}

X(5479) = midpoint of X(4) and X(14)
X(5479) = complement of X(5474)
X(5479) = X(14)-of-Euler-triangle
X(5479) = {X(3845),X(5480)}-harmonic conjugate of X(5478)


X(5480) =  MIDPOINT OF X(4) AND X(6)

Trilinears   sin A tan ω + 2 cos B cos C : sin B tan ω + 2 cos C cos A : sin C tan ω + 2 cos A cos B
Trilinears   cos B cos(C - ω) + cos C cos(B - ω) : cos C cos(A - ω) + cos A cos(C - ω) : cos A cos(B - ω) + cos B cos(A - ω)
Barycentrics    3 a^4 (b^2 + c^2) - (2 a^2 + b^2 + c^2) (b^2 - c^2)^2 : :

Let O′ denote the orthosymmedial circle, introduced here as the circle having segment X(4)X(6) as diameter, so that X(5480) is the center of O′. Note that O′∩(Euler line) = {X(4), X(1316)} and O′∩(Brocard circle) = {X(6), X(1316)}; X(5480) = X(6) of Euler triangle; X(5480) = {X(5478),X(5479)}-harmonic conjugate of X(3845); The orthosymmedial circle is the inverse-in-polar-circle of the line X(297)X(525).    (Randy Hutson, August 26, 2014)

X(5480) lies on these lines: {2, 1350}, {3, 3589}, {4, 6}, {5, 141}, {11, 1469}, {12, 3056}, {20, 3618}, {30, 182}, {51, 125}, {52, 7403}, {66, 3527}, {69, 3091}, {86, 7385}, {98, 5306}, {113, 2854}, {114, 5969}, {115, 5052}, {118, 2810}, {119, 9024}, {140, 3098}, {154, 6995}, {159, 1598}, {184, 428}, {185, 1907}, {193, 3832}, {206, 578}, {230, 5017}, {235, 1843}, {262, 1513}, {265, 9970}, {323, 7533}, {343, 3060}, {355, 5846}, {381, 524}, {382, 5050}, {383, 396}, {389, 1595}, {394, 6997}, {395, 1080}, {403, 6403}, {515, 1386}, {516, 4085}, {518, 946}, {542, 1353}, {546, 576}, {550, 5092}, {567, 7540}, {569, 7553}, {575, 3627}, {590, 6813}, {599, 3545}, {611, 1479}, {613, 1478}, {615, 6811}, {674, 7680}, {698, 3095}, {732, 6248}, {858, 5640}, {966, 7407}, {1213, 7380}, {1368, 5943}, {1428, 7354}, {1482, 9053}, {1593, 5894}, {1594, 9781}, {1596, 2393}, {1692, 7747}, {1699, 3751}, {1848, 1864}, {1853, 7378}, {1861, 2262}, {1890, 2182}, {1899, 5064}, {1906, 6467}, {1974, 3575}, {1992, 3839}, {1993, 7394}, {2051, 4260}, {2330, 6284}, {2550, 5782}, {2552, 8115}, {2553, 8116}, {3054, 5104}, {3068, 7000}, {3069, 7374}, {3088, 6696}, {3089, 7716}, {3090, 3763}, {3146, 7864}, {3242, 5603}, {3313, 7399}, {3416, 5587}, {3531, 5486}, {3580, 5169}, {3619, 5056}, {3620, 5068}, {3630, 3850}, {3631, 3851}, {3656, 9041}, {3796, 7500}, {3827, 7686}, {3843, 5093}, {3858, 5965}, {4026, 6210}, {4259, 6831}, {4265, 6905}, {4549, 9818}, {5028, 5475}, {5034, 7748}, {5039, 5305}, {5096, 6906}, {5188, 8362}, {5422, 7391}, {5718, 8229}, {5805, 5845}, {5999, 7792}, {6393, 7752}, {6747, 6755}, {6800, 7519}, {7496, 7605}, {7681, 8679}, {7735, 9748}, {8359, 8722}, {8721, 9605}, {9019, 9967}, {9300, 9744}, {9830, 9880}

X(5480) = isogonal conjugate of X(5481)
X(5480) = complement of X(1350)
X(5480) = crosspoint of X(4) and X(262)
X(5480) = crosssum of X(3) and X(182)
X(5480) = inverse-in-Jerabek-hyperbola of X(51)
X(5480) = Johnson-to-Ehrmann-mid similarity image of X(6)
X(5480) = X(1001)-of-orthic-triangle if ABC is acute
X(5480) = {X(34221),X(34222)}-harmonic conjugate of X(51)


X(5481) =  ISOGONAL CONJUGATE OF X(5480)

Trilinears   1/(sin A tan ω + 2 cos B cos C) : 1/(sin B tan ω + 2 cos C cos A) : 1/(sin C tan ω + 2 cos A cos B)
Trilinears   1/(cos B cos(C - ω) + cos C cos(B - ω)) : 1/(cos C cos(A - ω) + cos A cos(C - ω)) : 1/(cos A cos(B - ω) + cos B cos(A - ω))

X(5481) lies on the hyperbola {A,B,C,X(2),X(3)} and these lines: {2, 1629}, {216, 1297}, {394, 5012}, {1073, 7484}, {1078, 3523}

X(5481) = isogonal conjugate of X(5480)
X(5481) = cevapoint of X(3) and X(182)


X(5482) =  1st HATZIPOLAKIS-MONTESDEOCA POINT

Barycentrics    f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a5b2 + a5c2 - 2a5b2c2 + a3b3 + a3c3 + a3b2c + a3bc2 + a2b4 + a2c4 - 3a2b3c - 3a2bc3 - ab5 - ac5 - ab4c - abc4 - bc(b2 - c2)2    (Angel Montesdeoca, May 13, 2013)
X(5482) = 3*X(549) - X(970)
X(5482) = (R - 2r)*X(140) - R*X(143)

Let ABC be a triangle and let A′B′C′ be the cevian triangle of the incenter, X(1). Let R be the radical center of the circles (A′, |A′B|, {B′,|B′C|), (C′, |C′A|), and let S be the radical center of the circles (A′,|A′C|), (B′,|B′A|), (C′,|C′B|). X(5482) is the midpoint of the segment RS.    (Antreas Hatzipolakis, May 4, 2013)

X(5482) is the {X(3),X(1764)}-harmonic conjugate of X(3579)   (Peter Moses, May 13, 2013)

For the construction and generalizations, see Hechos Geométricos en el Triángulo.

X(5482) lies on these lines: {1, 3}, {140, 143}, {549, 970}, {631, 5752}, {916, 6705}, {3819, 6675}, {3834, 9955}, {3917, 7483}{1,3}, {140,143}, {549,970}


X(5483) =  CENTER OF HUTSON ELLIPSE

Barycentrics    f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(a5 + b5 + c5 + a4b + a4c - 2a3b2 - 2a3c2 - 2a2b3 - 2a2c3 - 3a2b2c - 3a2bc2 + ab4 + ac4 - 2ab3c -2abc3 - 3ab2c2 - b3c2 - b2c3)    (Peter Moses, May 17, 2013)
X(5483) = 4(r + R)*X(226) - (2r + R)*X(1029)

Let A′B′C′ be the cevian triangle of the incenter. Let AB = (reflection of A′ in BB′), and define BC and CA cyclically. Let AC = (reflection of A′ in CC′), and define BA and CB cyclically. The ellipse passing through the points AB, AC, BC, BA, CA, CB is here introduced as the Hutson Ellipse, and X(5483) is its center. (Antreas Hatzipolakis, May 17, 2013)

X(5483) lies on these lines: {1, 5180}, {81, 593}, {226, 1029}, {3920, 5988}


X(5484) =  INTERSECTION OF LINES X(2)X(12) AND X(8)X(38)

Barycentrics    f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a4 - b4 - c4 - a3b - a3c - 2a2b2 - 2a2c2 + a2bc - ab3 - ac3 - 3a2bc - 3abc2 - b3c - bc3    (Peter Moses, May 18, 2013)
X(5484) = 3X(2) - 2*X(1220)

Let A′B′C′ be the cevian triangle of point X. Let AB = (reflection of A′ in BB′), and define BC and CA cyclically. Let AC = (reflection of A′ in CC′), and define BA and CB cyclically. Let HA = (orthocenter of A′ABAC), and define HB and HC cyclically. The orthocentric triangle of X is here introduced as the (central) triangle HAHBHC.   (Antreas Hatzipolakis, May 17, 2013)

For X = X(1), the orthocentric triangle HAHBHC is perspective to the anticomplementary triangle, and X(5484) is the perspector.    (Peter Moses, May 17, 2013)

Also, HAHBHC is perspective to ABC at X(10).    (Randy Hutson, May 18, 2013)

X(5484) is the crosspoint of X(1) and X(8) with respect to the extraversion triangle of X(8).    (Randy Hutson, August 26, 2014)

X(5484) lies on these lines: {1, 1330}, {2, 12}, {8, 38}, {10, 1054}, {69, 145}, {519, 2891}, {1469, 3869}, {1626, 4189}, {2345, 9597}, {3622, 5712}, {3662, 4327}, {5263, 7354}

X(5484) = anticomplement of X(1220)


X(5485) =  KIRIKAMI-EULER IMAGE OF THE CENTROID

Barycentrics   1/(5a2 - b2 - c2) : 1/(5b2 - c2 - a2) : 1/(5c2 - a2 - b2)    (Seichii Kirikami, May 21, 2013)

Let P be a point in the plane of triangle ABC. Let HA be the orthocenter of triangle PBC, and define HB and HC cyclically. The Euler lines of the triangles AHBHC, BHCHA, CHAHB concur in the Kirikami-Euler image of P. Let P be given by barycentrics p : q : r. Then Q is given by

Q = g(a,b,c,p,q,r) : g(b,c,a,q,r,p) : g(c,a,b,r,p,q), where g(a,b,c,p,q,r) = p/[(a2 - b2 - c2)p2 + (a2 - b2 + c2)pq + (a2 + b2 - c2)pr + 2a2qr]

If P = X(2), then Q = X(5485).   (Seichii Kirikami, May 20, 2013)

The Kirikami-Euler image K(P) of a point P is related to the mapping H(P) called "pedal antipodal perspector", defined in Hyacinthos #20403 and #20405, November 2011, by Randy Hutson, with general coordinates given in #20404 by Francisco Javier. X(5485) = H(X(i)) for I = 6 and I = 187. In general, K(P) = H(P′) = H(P*), where P′ denotes the isogonal conjugate of P, and P* = (inverse-in-circumcircle of P′); for example, K(X(1)) = X(8), K(X(3)) = X(68), and K(X(6)) = X(5486).    (Randy Hutson, May 22, 2013)

If you have The Geometer's Sketchpad, you can view X(5485).

X(5485) lies on the Kiepert hyperbola and these lines: {2, 2418}, {4, 524}, {10, 4419}, {30, 3424}, {69, 671}, {98, 376}, {115, 5503}, {262, 538}, {459, 5523}, {525, 5466}, {598, 1992}, {631, 1153}, {1327, 5861}, {1328, 5860}, {2799, 9180}, {2996, 7841}, {3090, 7608}, {3524, 7610}, {3533, 7619}, {3590, 7389}, {3591, 7388}, {3855, 7775}, {5032, 5395}, {8587, 8591}, {8781, 9166}

X(5485) = isogonal conjugate of X(1384)
X(5485) = isotomic conjugate of X(1992)
X(5485) = pole wrt polar circle of trilinear polar of X(4232)
X(5485) = X(48)-isoconjugate (polar conjugate) of X(4232)


X(5486) =  KIRIKAMI-EULER IMAGE OF X(6)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 1/(b4 + c4 - a4 - 4b2c2)

Using the notation at X(5485) for Kirikami-Euler image and pedal antipodal perspector, X(5486) = K(X(6)) = H(X(2)) = H(X(23)). Also, X(5485) is the trilinear pole of the line X(647)X(690).   (Randy Hutson, May 22, 2013)

X(5486) lies on the Jerabek hyperbola and these lines: {2, 895}, {3, 524}, {4, 2393}, {6, 468}, {66, 6467}, {67, 1899}, {68, 8681}, {69, 3266}, {71, 4062}, {72, 9004}, {74, 6776}, {125, 5505}, {140, 8548}, {141, 6391}, {182, 5504}, {184, 1177}, {193, 1176}, {248, 5063}, {265, 1352}, {511, 4846}, {523, 2549}, {879, 8675}, {1173, 3542}, {1503, 3426}, {1992, 7493}, {2435, 9007}, {3521, 9019}, {3531, 5480}, {9145, 9516}

X(5486) = isogonal conjugate of X(1995)


X(5487) =  KIRIKAMI-EULER IMAGE OF X(17)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 1/(7a2 - b2 - c2 + (12)1/2S)

X(5487) lies on these lines: {13, 633}, {14, 627}, {3620, 5488}

X(5487) = isotomic conjugate of anticomplement of X(34540)

X(5488) =  KIRIKAMI-EULER IMAGE OF X(18)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 1/(7a2 - b2 - c2 - (12)1/2S)

X(5488) lies on these lines: {13, 628}, {14, 634}, {3620, 5487}

X(5488) = isotomic conjugate of anticomplement of X(34541)

X(5489) =  KIRIKAMI-EULER IMAGE OF X(125)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b2 - c2)3(b2 + c2 - a2)2

X(5489) lies on these lines: {3, 525}, {4, 523}, {39, 647}, {140, 5664}, {520, 5562}, {669, 2353}, {684, 6334}, {690, 9409}, {826, 3574}, {868, 6070}, {2409, 5502}, {3265, 3926}

X(5489) = crossdifference of every pair of pints on line X(23)X(232)


X(5490) =  KIRIKAMI-EULER IMAGE OF X(485)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 1/(S + a2)

X(5490) lies on these lines: {2, 493}, {4, 488}, {10, 5391}, {69, 485}, {76, 5590}, {83, 3069}, {98, 637}, {99, 6568}, {141, 5491}, {486, 641}, {487, 7612}, {491, 3316}, {1131, 1270}, {1132, 3593}, {1271, 3590}, {6504, 8223}

X(5490) = pole wrt polar circle of trilinear polar of X(5200)
X(5490) = X(48)-isoconjugate (polar conjugate) of X(5200)


X(5491) =  KIRIKAMI-EULER IMAGE OF X(486)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 1/(S - a2)

X(5491) lies on these lines: {2, 494}, {4, 487}, {10, 1267}, {69, 486}, {76, 5591}, {83, 3068}, {98, 638}, {99, 6569}, {141, 5490}, {485, 642}, {488, 7612}, {492, 3317}, {1131, 3595}, {1132, 1271}, {1270, 3591}, {6504, 8222}

X(5490) = pole wrt polar circle of trilinear polar of X(5200)
X(5490) = X(48)-isoconjugate (polar conjugate) of X(5200)


X(5492) =  ORTHOCENTER OF ORTHOCENTRIC TRIANGLE OF X(1)

Barycentrics   a(a4b2 + a4c2 - 2a3b2c - 2a3bc2 - 2a2b4 -2a2c4 - a2b3c - a2bc3 + 2ab4c + 2abc4 - 2ab3c2 - 2ab2c3 + b6 + c6 + b5c + bc5 - b4c2 - b2c4 - 2b3c3)
X(5492) = X(500) - 2*X(3743)
X(5492) = 3*X(1962) - 2*X(5453)

Let T be the orthocentric triangle HAHBHC of X(1), as defined at X(5484). X(5492) is the orthocenter of T, and T is perspective to the Fuhrmann triangle with perspector X(1), and T is perspective to the anticomplementary triangle, with perspector X(5484).    (Peter Moses, May 17, 2013)

T is similar to the incentral triangle, with center of similitude I, the incenter. Let A″B″C″ be the antipedal triangle of X(1) with repect to the incentral triangle. X(5492) is the nine-point center of A″B″C″. (The triangle A″B″C″ is also the triangle formed by the lines LA, LB, LC, where LA is the polar of A with respect to the circle BCI, and LB and LC are defined cyclically.)    (Randy Hutson, May 18, 2013)

X(5492) lies on these lines: {1, 399}, {3, 846}, {5, 3120}, {30, 2292}, {58, 3652}, {355, 2783}, {381, 986}, {405, 7986}, {500, 3743}, {774, 6147}, {1725, 3649}, {1772, 3614}, {1962, 5453}, {3670, 9955}, {3724, 6097}

X(5492) = reflection of X(3743) in X(500)


X(5493) =  CENTER OF CIRCLE BISECTING THE EXCIRCLES

Barycentrics   b4 + c4 - 4a4 - 3a3b - 3a3c + 3a2b2 + 3a2c2 + 6a2bc + 3ab3 + 3ac3 - 3ab2c - 3abc2 - 2b2c2
X(5493) = 3*X(1) + 3*X(2) - 8*X(3)
X(5493) = 3*X(1) - 6*X(3) + X(4)
X(5493) = 2*X(4) - 3*X(10)

X(5493) is the center of the circle Y that bisects each of the three excircles of ABC. Let J be the radius of Y; then 4J2 = r2 + 16rR + 64R2 - 7s2.    (Paul Yiu, Francisco Javier, AdvPlGeom, May 17, 2013)

X(5493) lies on these lines: {1, 3522}, {2, 9589}, {3, 551}, {4, 9}, {8, 5059}, {20, 519}, {30, 4669}, {55, 3671}, {56, 4342}, {65, 4314}, {140, 946}, {144, 4882}, {165, 962}, {355, 5073}, {376, 7982}, {382, 3654}, {390, 3339}, {411, 5537}, {484, 1210}, {497, 5128}, {515, 1657}, {517, 550}, {527, 3913}, {553, 3303}, {595, 9441}, {758, 7957}, {1656, 3817}, {1697, 3474}, {1698, 5068}, {1699, 3634}, {1770, 5270}, {1788, 9580}, {1836, 3947}, {2093, 4294}, {2951, 5850}, {3057, 4315}, {3091, 3828}, {3146, 3679}, {3295, 5542}, {3361, 9785}, {3428, 5267}, {3516, 8193}, {3517, 9911}, {3524, 9624}, {3529, 5881}, {3533, 8227}, {3543, 4745}, {3555, 5918}, {3600, 7320}, {3626, 5691}, {3635, 5731}, {3636, 7987}, {3663, 5255}, {3746, 7411}, {3811, 7994}, {3854, 9780}, {3858, 9956}, {3878, 9858}, {3931, 4349}, {3962, 6154}, {4015, 5927}, {4067, 6001}, {4192, 9569}, {4229, 4658}, {4292, 5119}, {4304, 5903}, {4311, 5697}, {4356, 5711}, {4525, 5693}, {4848, 5183}, {4866, 6172}, {5248, 5584}, {5325, 9710}, {5904, 9961}, {6766, 9841}, {7580, 8715}

X(5493) = reflection of X(i) in X(j) for these (i,j): (10,40), (946,3579), (962,1125), (3244,4297), (3543,4745), (4301,3)
X(5493) = complement of X(9589)


X(5494) =  2nd HATZIPOLAKIS-MONTESDEOCA POINT

Barycentrics    f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a[a9 - a8(b + c) - a7( b - c)2 + a6(2b3 - b2c - bc2 + 2c3) - a5(3b4 + b3c - 7b2c2 + bc3 + 3c4) + 4a4bc(b - c)2(b + c) + a3(b2 - c2)2(5b2 - 4bc + 5c2) - a2(b - c)2(2b5 + 5b4c + b3c2 + b2c3 + 5bc4 + 2c5) - a(b2 - c2)2(2b4 - 3b3c + 5b2c2 - 3bc3 + 2c4) + (b - c)4(b + c)3(b2 + c2)]    (Angel Montesdeoca, May 25, 2013)
X(5494) = (2r + R)*X(110) - 4(r + R)X(1385)
X(5494) = 2R*X(65) + (2r + R)*X(74)

Let ABC be a triangle and let A′B′C′ be the cevian triangle of the incenter, X(1). Let AB be the reflection of A′ in line BB′, and define BC and CA cyclically. Let AC be the reflection of A′ in line CC′, and define BA and CB cyclically. Let L be the Euler line of ABC, let LA be the Euler line of AABAC, and define LB and LC cyclically. Let MA be the reflection of LA in AA′, and define MB and MC cyclically. The lines MA, MB, MC concur in X(5494). Moreover, the four Euler lines L, LA, LB, LC are parallel, concurring in X(30).    (Antreas Hatzipolakis, May 25, 2013)

For the construction and discussion, see

Hechos Geométricos en el Triángulo.

X(5494) lies on these lines: {1,2779}, {21,104}, {36,1725}, {65,74}, {125,860}


X(5495) =  3rd HATZIPOLAKIS-MONTESDEOCA POINT

Barycentrics    f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2[a7(b + c) - a6(b2 + c2) - a5(3b3 + 2b2c + 2bc2 + 3c3) + a4(3b4 - b3c + 4b2c2 - bc3 + 3c4) + a3(3b5 + b4c + 2b3c2 + 2b2c3 + bc4 + 3c5) - a2(3b6 - 2b5c - 2bc5 + 3c6) - a(b7 - b4c3 - b3c4 + c7) + (b2 - c2)2(b4 - b3c - bc3 - b2c2 + c4)]    (Angel Montesdeoca, May 28, 2013)

Let ABC be a triangle and let A′B′C′ be the cevian triangle of the incenter, X(1). Let LA be the line through A′ perpendicular to line AA′, and define LB add LC cyclically. Let

UA = reflection of LA in AA′
UB = reflection of LA in BB′
UC = reflection of LA in CC′

VA = reflection of LB in AA′
VB = reflection of LB in BB′
VC = reflection of LB in CC′

WA = reflection of LC in AA′
WB = reflection of LC in BB′
WC = reflection of LC in CC′

TA = triangle formed by the lines in UA, UB, UC
TB = triangle formed by the lines in VA, VB, VC
TC = triangle formed by the lines in WA, WB, WC

OA = circumcenter of TA, OB = circumcenter of TA, OC = circumcenter of TA, O = X(3) = circumcenter of ABC. The points O, OA, OB, OC are concyclic. The center of their circle is X(5495).    (Antreas Hatzipolakis, May 28, 2013)

For the construction and discussion, see Concyclic Circumcenters.

X(5495) lies on these lines: {1, 30}, {3, 143}, {511, 6097}, {6102, 7416}


X(5496) =  4th HATZIPOLAKIS-MONTESDEOCA POINT

Barycentrics    f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b + c)[a5 - 2a3(b2 + c2) - a2bc(b + c) + a(b4 - b2c2 + c4) + bc(b + c)(b - c)2]    (Angel Montesdeoca, May 29, 2013)

Let ABC be a triangle and let A′B′C′ be the cevian triangle of the incenter, X(1). Let LA be the line through A′ perpendicular to line AA′, and define LB add LC cyclically. Using the notation at X(5495), let MAB be the line parallel to UB through B′, and let MAC be the line parallel to UC through C′. Let A″ = MAB∩MAC, and define B″ and C″ cyclically. Let OA = circumcenter of A″B′C′, and define OB and OC cyclically. Then the points X(1), OA, OB, OC are concyclic, and the center of their circle is X(5496).    (Antreas Hatzipolakis, May 29, 2013)

For a discussion, see Concurrent Circles.

X(5496) lies on these lines: {1, 21}, {3191, 3678}, {3682, 3841}, {3724, 5903}, {4511, 4647}, {6757, 7073}


X(5497) =  5th HATZIPOLAKIS-MONTESDEOCA POINT

Barycentrics    a[a^6 - a^5(b + c) - a^4(b + c)^2 + a^3(2b^3 + b^2c + bc^2 + 2c^3) - a^2(b^4 - b^3c - 3b^2c^2 - bc^3 + c^4) - a(b^5 + b^4c + bc^4 + c^5) + (b^2 - c^2)^2(b^2 + c^2)] : :

Let ABC be a triangle and let A′B′C′ be the cevian triangle of the incenter, X(1). The circles OA, OB, OC defined at X(5496) concur in X(5497).    (Antreas Hatzipolakis, May 29, 2013)

For a discussion, see Hechos Geométricos en el Triángulo.

X(5497) lies on these lines: {1, 149}, {37, 101}, {1283, 2292}, {1331, 1780}, {3326, 9629}


X(5498) =  6th HATZIPOLAKIS-MONTESDEOCA POINT

Barycentrics    f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 2a10 - 5a8(b2 + c2) + 2a6(b4 + 5b2c2 + c4) + a4(4b6 - 5b4c2 - 5b2c4 + 4c6) - a2(b2 - c2)2(4b4 + 5b2c2 + 4c4) + (b2 - c2)sup>4(b2 + c2)    (Angel Montesdeoca, May 30, 2013)

Let ABC be a triangle, let NA be the nine-point center of the triangle BCO, where O = X(3), and define NB and NC cyclically. The nine-point center of the triangle NANBNC is X(5498), which lies on the Euler line of ABC.   (Antreas Hatzipolakis, May 30, 2013)

X(5498) lies on this line: {2,3}


X(5499) =  7th HATZIPOLAKIS-MONTESDEOCA POINT

Barycentrics    (b^2+4*b*c+c^2)*a^5-(b+c)*(b^2+c^2)*a^4-(2*b^4+2*c^4+3*b*c*(b^2+c^2))*a^3+2*(b^3-c^3)*(b^2-c^2)*a^2+(b^2-c^2)*(b-c)*(b^3+c^3)*a-(b^2-c^2)^3*(b-c) : :

Let IA be the A-excenter of a triangle ABC and let NA be the nine-point center of IABC. Define NB and NC cyclically. The circumcenter of NANBNC is X(5499), which lies on the Euler line of ABC.    (Antreas Hatzipolakis, May 30, 2013)

Let A′B′C′ be the Feuerbach triangle, and let A″ be the reflection of X(11) in line B′C′; define B″ and C″ cyclically. Then A″, B″, C″ are collinear, and their line, X(12)X(79) is here named the Feuerbach line. X(5499) is the point of intersection of the Feuerbach line and the Euler line.   (Randy Hutson, August 26, 2014)

X(5499) lies on these lines: {2, 3}, {10, 2771}, {11, 5441}, {12, 79}, {119, 3652}, {495, 3649}, {758, 5690}, {1329, 3647}, {1385, 1484}, {1698, 7701}, {1749, 5445}, {1834, 5453}, {3579, 3822}, {3884, 6701}, {9943, 9956}


X(5500) =  8th HATZIPOLAKIS-MONTESDEOCA POINT

Barycentrics    2*a^22-15*(b^2+c^2)*a^20+6*(8*b^4+13*b^2*c^2+8*c^4)*a^18-(b^2+c^2)*(81*b^4+71*b^2*c^2+81*c^4)*a^16+(b^4+c^4)*(64*b^4+111*b^2*c^2+64*c^4)*a^14+(b^2+c^2)*(14*b^8+14*c^8+3*(5*b^4+7*b^2*c^2+5*c^4)*b^2*c^2)*a^12-(84*b^12+84*c^12+(67*b^8+67*c^8+8*(7*b^4+6*b^2*c^2+7*c^4)*b^2*c^2)*b^2*c^2)*a^10+(b^2+c^2)*(82*b^12+82*c^12-(105*b^8+105*c^8-(74*b^4-93*b^2*c^2+74*c^4)*b^2*c^2)*b^2*c^2)*a^8-(b^2-c^2)^2*(34*b^12+34*c^12+(11*b^8+11*c^8-5*(6*b^4+7*b^2*c^2+6*c^4)*b^2*c^2)*b^2*c^2)*a^6+(b^4-c^4)*(b^2-c^2)^3*(b^8+c^8-(3*b^4+19*b^2*c^2+3*c^4)*b^2*c^2)*a^4+(b^2-c^2)^6*(b^4+c^4)*(4*b^4+5*b^2*c^2+4*c^4)*a^2-(b^2-c^2)^8*(b^2+c^2)*(b^4+c^4) : :    (Angel Montesdeoca, May 30, 2013)

Let A′B′C′ be the antipedal triangle of the nine-point center, N = X(5) of a triangle ABC. Let NA be the nine-point center of NB′C′, and define NB and NC cyclically. The nine-point center of NANBNC is X(5500), which lies on the Euler line of ABC.    (Antreas Hatzipolakis, May 30, 2013)

X(5500) lies on this line: (2,3}

X(5500) = reflection of X(5) in X(10286)

X(5501) =  9th HATZIPOLAKIS-MONTESDEOCA POINT

Barycentrics    2*a^16-9*(b^2+c^2)*a^14+(13*b^4+18*b^2*c^2+13*c^4)*a^12+(b^2+c^2)*(b^4+c^4)*a^10-(25*b^8+25*c^8+2*b^2*c^2*(5*b^4+4*b^2*c^2+5*c^4))*a^8+(b^2+c^2)*(33*b^8+33*c^8-b^2*c^2*(64*b^4-53*b^2*c^2+64*c^4))*a^6-(b^2-c^2)^2*(21*b^8+21*c^8-5*b^2*c^2*(4*b^4+5*b^2*c^2+4*c^4))*a^4+(b^4-c^4)*(b^2-c^2)^3*(7*b^4-20*b^2*c^2+7*c^4)*a^2-(b^4-4*b^2*c^2+c^4)*(b^2-c^2)^6 : :

As a point on the Euler line, X(5501) has Shinagawa coefficients (18E2 + 128EF + 192F2 + 64S2, -54E2 - 128EF - 64F2 + 320S2).

Let N be a the nine-point center of triangle ABC. Let NA be the nine-point center of NBC, and define NB and NC cyclically. The circumcenter of NANBNC is X(5501), which lies on the Euler line of ABC.    (Antreas Hatzipolakis, June 2, 2013)

See For a discussion, see Hechos Geométricos en el Triángulo.

X(5501) lies on these lines: X(5501) lies on these lines: {2, 3}, {137, 8254}, {1154, 31879}, {6150, 23280}, {6592, 31376}, {10095, 20327}, {13372, 23281}, {13856, 15425}, {14140, 15307}, {20414, 32551}, {21230, 24573}, {24385, 36842}, {25150, 34598}, {25340, 32423}, {34597, 34768}

X(5501) = midpoint of X(i) and X(j) for these {i, j}: {3, 20120}, {4, 14142}, {5, 10285}, {10095, 20327}, {10205, 28237}, {20030, 36837}, {20414, 32551}
X(5501) = reflection of X(i) in X(j) for these (i, j): (2, 25403), (3, 15327), (4, 25404), (5, 15957), (546, 19940), (10126, 3628), (10289, 13469), (13856, 15425)
X(5501) = complement of X(10205)
X(5501) = anticomplement of the anticomplement of X(12056)
X(5501) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i, j, k): (3628, 27090, 140), (10289, 13469, 547)


X(5502) =  10th HATZIPOLAKIS-MONTESDEOCA POINT

Barycentrics    f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(a2 - b2)[a2 - c2)(a6 - a4(b2 + c2) + a2(a2 -b2)(a2 - c2) + 3(b2 - c2)2(b2 + c2)]    (Angel Montesdeoca, June 3, 2013)

Let L be the Euler line of a triangle ABC. Let LA be the reflection of L in line BC, and define LB and LC cyclically. Let A′ = L∩BC, and define B′ and C′ cyclically. The circles whose diameters are the segments AA′, BB′, CC′ are coaxial. Let D be their coaxial axis (the line X(4)X(74)); let DA be the reflection of D in line BC, and define DB and DC cyclically. Let HA = LB∩DC, and define HB and HC cyclically. Let MA = LC∩DB, and define MB and MC cyclically. The triangles HAHBHC and MAMBMC are perspective, and their perspector is X(5502).    (Antreas Hatzipolakis, June 3, 2013)

For a discussion, see Hechos Geométricos en el Triángulo.

X(5502) lies on these lines: {3,64}, {110, 351}


X(5503) =  KIRIKAMI CONCURRENT CIRCLES IMAGE OF THE CENTROID

Barycentrics    1/(4a4 + b4 + c4 - 4b2c2 - a2b2 - a2c2)    (Seichii Kirikami, June 2, 2013)

Let P be a point in the plane of triangle ABC. Let HA be the orthocenter of triangle PBC, and define HB and HC cyclically. Let OA be the circle of the points A, HB, HC, and define OB and OC cyclically. The circles OA, OB, OC concur in a point Q, the Kirikami concurrent circles image of P. Let P be given by barycentrics p : q : r. Then Q given by

Q = g(a,b,c,p,q,r) : g(b,c,a,q,r,p) : g(c,a,b,r,p,q), where g(a,b,c,p,q,r) = p/(2 a^4 q r(p+q) (p+r)+a^2 p (c^2 q (p+q-3 r) (p+r)+b^2 (p+q) r (p-3 q+r))-p (b^4 (p+q) (p-q-r) r-c^4 q (p+r) (-p+q+r)+b^2 c^2 (p^2 (q+r)+2 q r (q+r)+p (q^2+r^2)))) .

If P = X(2), then Q = X(5503).   (Seichii Kirikami, June 2, 2013)

If P is on the circumcircle, then Q(P) = P. This follows from the fact that the denominators of g(a,b,c,p,q,r) and g(b,c,a,q,r,p} are polynomial multiples of a2qr + b2rp+c2pq.    (Seichii Kirikami, July 27, 2013)

If you have The Geometer's Sketchpad, you can view X(5503).

X(5503) lies on these lines: {4,543}, {98,524}, {99,598}, {115,5485}, {325,671}, {542,3424}, {2799,5466}, {3407,5182}

X(5503) = reflection of X(5485) in X(115)
X(5503) = isotomic conjugate of X(22329)


X(5504) =  KIRIKAMI CONCURRENT CIRCLES IMAGE OF X(3)

Trilinears    (cos A)/(1 + cos 2B + cos 2C) : :
Barycentrics   g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = a2(b2 + c2 - a2)/[a4(b2 + c2) + (b2 - c2)2(b2 + c2) - 2a2(b4 - b2c2 + c4)]    (Seichii Kirikami, June 2, 2013)

See X(5503) for the definition of Kirikami concurrent circles image Q of a point P and X(5509) for an occurrence of X(5504) as a point of concurrence given by the Hatzipolakis-Moses Theorem.

If P = X(3), then Q = X(5504).    (Seichii Kirikami, June 2, 2013)

Let A′B′C′ be the tangential triangle. Let LA be the line through A′ parallel to the Euler line, and define LB and LC cyclically. Let RA be the reflection of LA in BC, and define RB and RC cyclically. The lines RA, RB, RC concur in X(5504); see X(399). (Randy Hutson, August 17, 2014)

Continuing, let A″ be the reflection of A′ in line BC, and define B″ and C″ cyclically. The circumcircles of AB″C″, BC″A″, CA″B″ concur in X(5504). Morevoer, X(5504) is the antigonal image of X(68), the trilinear pole of line X(577)X(647), and the X(92)-isoconjugate of X(3003). (Randy Hutson, August 17, 2014)

X(5504) lies on the Jerabek hyperbola and these lines: {3,974}, {4,110}, {6,1511}, {20,3047}, {49,3521}, {64,155}, {66,542}, {67,3564}, {68,125}, {70,3448}, {74,323}, {182,5486}, {184,4846}, {265,2072}, {290,1236}, {399,3167}, {511,1177}, {1069,3024}, {1986,1993}, {2850,3657}, {3028,3157}, {3431,5012}

X(5504) = reflection of X(i) in X(j) for these (i,j): (110,1147), (68,125), (2931, 1511)
X(5504) = isogonal conjugate of X(403)


X(5505) =  KIRIKAMI CONCURRENT CIRCLES IMAGE OF X(6)

Barycentrics    a2/[4a6 - a4(b2 + c2) + (b2 - c2)2(b2 + c2) - 2a2(2b4 - 3b2c2 + 2c4)]    (Seichii Kirikami, June 2, 2013)

If P = X(6), then Q = X(5505).   (Seichii Kirikami, June 2, 2013)

X(5505) lies on these lines: {3,2854}, {72,3908}, {74,2393}, {125,5486}, {265,524}, {323,895}, {542,4846}, {1177,1495}, {2781,3426}

X(5505) = reflection of X(5486) in X(125)


X(5506) =  WOLK PERSPECTOR

Barycentrics    a(a3 - b3 - c3 + a2b + a2c - ab2 - ac2 - 5abc - 5b2c - 5bc2)
X(5506) = R*X(1) + 2(r + 7R)*X(3305)
X(5506) = 12R*X(2) + (2r + 3R)*X(191)
X(5506) = 12R*X(5) + (2r + 3R)*X(40)

Let I be the incenter of a triangle ABC. Let NA be the nine-point center of IBC, and define NB and NC cyclically. The triangle NANBNC is X(5501)is both similar to and perspective to the excentral triangle of ABC. The perspector is X(5506).    (Barry Wolk, June 1, 2013)

X(5506) lies on these lines: {1,748}, {2,191}, {5,40}, {9,583}, {10,149}, {140,1768}, {405,5426}, {411,2951}, {484,3634}, {1006,1490}, {1045,3216}, {1385,5251}, {2136,3679}, {2950,5316}, {3219,3337}, {3647,5131}, {3740,3746}, {5044,5259}

X(5506) = X(1173)-of-excentral-triangle


X(5507) = 5th HATZIPOLAKIS-YIU POINT

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(bc - 2S)[abc(b + c - a) + 2(b2 + c2 - a2)S]

Let OA be the circle with center A and radius R, the circumradius of triangle ABC. Let BA be the point where OA meets line AB nearest to B. Define CB and AC cyclically. Let CA be the point where OA meets line AC nearest to C. Define AB and BC cyclically. X(5507) is the radical center of the circles ABACA, BCBAB, CACBC. If "nearest to" is changed to "farthest from" in the construction, the resulting point is X(600). See also X(600). (Peter Moses, June 19, 2013)

If you have The Geometer's Sketchpad, you can view X(5507).

X(5507) lies on this line: {600, 4640}


X(5508) =  KIRIKAMI CONCURRENT CIRCLES IMAGE (2nd KIND) OF X(31)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a/[a6 - a4(b2 + c2) + a3(b3 + c3) - a(b5 + c5) + b3c3]    (Seichii Kirikami, July 2, 2013)

Let P be a point in the plane of triangle ABC. Let HA be the orthocenter of triangle PBC, and define HB and HC cyclically. The circumcircles of HABC, HBCA, HCAB concur in a point Q, the Kirikami concurrent circles image (2nd kind) of P; see X(5503). Let P be given by barycentrics p : q : r. Then Q is given by

Q = g(a,b,c,p,q,r) : g(b,c,a,q,r,p) : g(c,a,b,r,p,q), where g(a,b,c,p,q,r) = p/[(a2 - b2 - c2)p2 + a2qr + (a2 - b2)pq + (a2 - c2)pr].

If P = X(31), then Q = X(5508).   (Seichii Kirikami, July 2, 2013)

The barycentrics for Q show that "concurrent circles image (2nd kind)" is the same as "antigonal image".    (Randy Hutson, July 15, 2013)

If you have The Geometer's Sketchpad, you can view X(5508).

X(5508) lies on these lines: {31, 5509}, {815, 2887}


X(5509) =  KIRIKAMI SIX-CIRCLES-IMAGE OF X(31)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b - c)2(a3 - b2c - bc2)(a2(b2 + c2 + bc) - b4 - c4 - b3c - bc3)    (Seichii Kirikami, July 2, 2013)

The Kirikami six circles image of P is simply the center of the rectangular hyperbola {{A, B, C, X(4), P}}.

Let P be a point in the plane of triangle ABC. Let HA be the orthocenter of triangle PBC, and define HB and HC cyclically. The nine-point circles of the six triangles HABC, HBCA, HCAB, AHBHC, BHCHA, CHAHB concur in a point, Q = Q(P), the Kirikami six-circles-image of P. Let P be given by barycentrics p : q : r. Then Q(P) is given by

Q = h(a,b,c,p,q,r) : h(b,c,a,q,r,p) : h(c,a,b,r,p,q), where h(a,b,c,p,q,r) = p[(a2 - b2 + c2)q - (a2 + b2 - c2)r][(pr + qr)b2 - (pq + rq)c2].

The point Q lies on the nine-point circle of ABC. If P = X(31), then Q = X(5509). If P = X(1), then Q = X(11); if P = X(2), then Q = X(115); if P = X(3), then Q = X(125).    (Seichii Kirikami, July 2, 2013)

Q maps each right circumhyperbola onto its center. Special cases: Q maps the Feuerbach hyperbola onto X(11), the Kiepert hyperbola onto X(115), and the Jerabek hyperbola onto X(125).    (Peter Moses, July 7, 2013)

The Kirikami six-circles-image, Q(P), of a point P is also the point of concurrence of the nine-point circles of BCP, CAP, ABP (these being the same as the nine-point circles of BCHA, CAHB, ABHC). Also, Q(P) is the center of the rectangular circumhyperbola passing through P, and Q(P) lies on the cevian circle of P.    (Randy Hutson, July 15, 2013)

The Kirikami six-circles-image of P is also the QA-P2 center (Euler-Poncelet Point) of the quadrangle ABCP; see Encyclopedia of Quadri-Figures.

If you have The Geometer's Sketchpad, you can view X(5509).

The Kirikami six circles configuration led to a conjecture by Antreas Hatzipolakis (July 5, 2013), proved by Peter Moses, and stated here as the Hatzipolakis-Moses Theorem: Suppose that P and P* are an isogonal conjugate pair of points in the plane of triangle ABC. Let HA be the orthocenter of triangle PBC, and define HB and HC cyclically. Let H'A be the orthocenter of triangle P*BC, and define H'B and H'C cyclically. Then circumcircles of HAHBHC concur and the circumcircles of H'AH'BH'C concur.

The known proof of the theorem depends on a Mathematica program that runs for several minutes. Barycentrics for most choices of P are too long to be included here. An exception is P = X(3), for which P* = X(4) and the two points of concurrence are H(3) = X(265) and H(4) = X(5504).

See Hyacinthos #21992.

Let P′ be the isogonal conjugate of P. Then the Kirikami-six-circles image of P is the orthopole of line X(3)P′, which is also the crosssum of the circumcircle intercepts of line X(3)P′. (Randy Hutson, March 29, 2020)

X(5509) lies on these lines: {2,185}, {31,5508}, {115,3271}

X(5509) = crosssum of circumcircle intercepts of line X(3)X(75)
X(5509) = orthopole of line X(3)X(75)
X(5509) = center of hyperbola {{A,B,C,X(4),X(31)}}


X(5510) =  KIRIKAMI SIX-CIRCLES-IMAGE OF X(106)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (3a - b - c)(b - c)2(a2b + a2c - 3abc - b3 + 2b2c + 2bc2 - c3)    (Peter Moses, July 10, 2013)

Kirikami six-circles-images are introduced at X(5509).

X(5510) is the homothetic center of the cyclic quadrilateral ABCX(106) and the congruent quadrilateral formed by the orthocenters of vertices taken 3 at a time; also, X(5510) is the anticenter of ABCX(106)    (Randy Hutson, July 15, 2013)

Let A′B′C′ be the orthic triangle. Let LA be the Nagel line of AB′C′, and define LB and LC cyclically. Let A″ = LB∩LC, and define B″ and C″ cyclically. The lines A′A″, B′B″, C′C″ concur in X(5510). Also, X(5510) = X(3)-of-A″B″C″. See X(8054). (Randy Hutson, August 12, 2015)

X(5510) lies on these lines: {2, 1293}, {4, 106}, {5, 121}, {11, 1357}, {113, 2842}, {114, 2796}, {115, 2789}, {116, 2821}, {117, 2841}, {118, 2810}, {119, 946}, {120, 3817}, {124, 2815}, {125, 2776}, {132, 2844}, {133, 2839}, {1054, 1699}, {2051, 3030}, {2886, 3038}, {3667, 3756}

X(5510) = midpoint of X(4) and X(106)
X(5510) = reflection of X(121) in X(5)
X(5510) = complement of X(1293)
X(5510) = crosssum of circumcircle intercepts of line X(3)X(519)
X(5510) = orthopole of line X(3)X(519)
X(5510) = center of hyperbola {{A,B,C,X(4),X(106)}}
X(5510) = X(106)-of-Euler-triangle
X(5510) = polar-circle-inverse of X(32704)


X(5511) =  KIRIKAMI SIX-CIRCLES-IMAGE OF X(105)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b - c)2(a2 + b2 + c2 - 2ab - 2ac)(a3 - a2b - a2c + ab2 + ac2 - b3 + b2c + bc2 - c3)    (Peter Moses, July 10, 2013)

Kirikami six-circles-images are introduced at X(5509).

X(5511) is the homothetic center of the cyclic quadrilateral ABCX(105) and the congruent quadrilateral formed by the orthocenters of vertices taken 3 at a time; also, X(5511) is the anticenter of ABCX(105)    (Randy Hutson, July 15, 2013)

X(5511) = X(105)-of-Euler-triangle (Randy Hutson, August 17, 2014)

X(5511) = reflection of X(120) in X(5)
X(5511) = midpoint of X(4) and X(105)
X(5511) = complement of X(1292)

X(5511) lies on these lines: {2, 1292}, {4, 105}, {5, 120}, {11, 1111}, {12, 3021}, {113, 2836}, {114, 2795}, {115, 2788}, {116, 2820}, {117, 2835}, {118, 946}, {119, 381}, {124, 2814}, {125, 2775}, {132, 2838}, {133, 2833}, {1596, 2834}, {2051, 3034}, {2886, 3039}, {3309, 4904}

X(5511) = crosssum of circumcircle intercepts of line X(3)X(518)
X(5511) = orthopole of line X(3)X(518)
X(5511) = center of hyperbola {{A,B,C,X(4),X(105)}}


X(5512) =  KIRIKAMI SIX-CIRCLES-IMAGE OF X(111)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b2 - c2)2(b2 + c2 -5a2)(b4 + c4 - a4 - 4b2c2)    (Peter Moses, July 10, 2013)

Kirikami six-circles-images are introduced at X(5509).

X(5512) is the homothetic center of the cyclic quadrilateral ABCX(111) and the congruent quadrilateral formed by the orthocenters of vertices taken 3 at a time; also, X(5512) is the anticenter of ABCX(111)    (Randy Hutson, July 15, 2013)

Let A′B′C′ be the orthic triangle. Let La be line X(2)X(6) of triangle AB′C′, and define Lb and Lc cyclically. Let A″ = Lb∩Lc, and define B″ and C″ cyclically. The lines A′A″, B′B″, C′C″ concur in X(5512), which is X(3)-of-A″B″C″. (Randy Hutson, July 31 2018)

X(5512) lies on these lines: {2, 1296}, {4, 111}, {5, 126}, {11, 2830}, {54, 3048}, {113, 2854}, {114, 381}, {115, 2793}, {116, 2824}, {117, 2852}, {118, 2813}, {119, 2805}, {124, 2819}, {125, 2780}, {132, 1596}, {133, 2847}, {1499, 2686}

X(5512) = X(111)-of-Euler-triangle
X(5512) = reflection of X(126) in X(5)
X(5512) = midpoint of X(4) and X(111)
X(5512) = complement of X(1296)
X(5512) = X(14074)-of-orthic-triangle if ABC is acute
X(5512) = crosssum of circumcircle intercepts of line X(3)X(524)
X(5512) = orthopole of line X(3)X(524)
X(5512) = center of hyperbola {{A,B,C,X(4),X(111)}}

X(5513) =  KIRIKAMI SIX-CIRCLES-IMAGE OF X(190)

Barycentrics   (b3 + c3 - ab2 - ac2)(b3 + c3 + 2a3 - a2b - a2c - b2c - bc2) : :    (Peter Moses, July 10, 2013)

Kirikami six-circles-images are introduced at X(5509).

Let O* be the inverter (defined at X(5577)) of the circumcircle and nine-point circle. X(5513) is the inverse-in-O* of X(101). (Randy Hutson, August 17, 2014)

X(5513) lies on the nine-point circle, the Yff contact circle, and these lines: {2, 101}, {9, 124}, {11, 37}, {115, 3136}, {118, 4120}, {125, 1213}, {127, 440}, {427, 5190}, {430, 5139}, {3259, 4370}, {3690, 5509}

X(5513) = complement of X(675)
X(5513) = X(2)-Ceva conjugate of X(3011)
X(5513) = crosssum of circumcircle intercepts of line X(3)X(649)
X(5513) = orthopole of line X(3)X(649)
X(5513) = center of hyperbola {{A,B,C,X(4),X(190)}}
X(5513) = perspector of the circumconic centered at X(3011)

X(5514) =  KIRIKAMI SIX-CIRCLES-IMAGE OF X(40)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b - c)2(b + c - a)2(b3 + c3 - a3 - a2b - a2c + ab2 + ac2 + 2abc - b2c - bc2)    (Peter Moses, July 10, 2013)

Kirikami six-circles-images are introduced at X(5509).

X(5514) is the point of intersection, other than X(11), of the nine-point circle and the Mandart circle.    (Randy Hutson, July 15, 2013)

X(5514) is the center of the hyperbola {A,B,C,X(4),X(40)}, and X(5514) = X(972)-of-Euler-triangle. (Randy Hutson, August 17, 2014)

X(5514) = midpoint of X(4) and X(972)
X(5514) = complement of X(934)

X(5514) lies on these lines: {2, 934}, {4, 972}, {9, 119}, {10, 118}, {11, 1146}, {12, 208}, {117, 374}, {120, 1329}, {3814, 5199}

X(5514) = Spieker-radical-circle-inverse of X(34457)
X(5514) = crosssum of the circumcircle intercepts of line X(3)X(9)
X(5514) = orthopole of line X(3)X(9)
X(5514) = point of concurrence of cevian circles of vertices of anticevian triangle of X(8)


X(5515) =  KIRIKAMI SIX-CIRCLES-IMAGE OF X(75)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b - c)2(a2 + b2 + c2 + ab + ac + bc)(a2 + b2 + c2 + 2bc)    (Peter Moses, July 10, 2013)

Kirikami six-circles-images are introduced at X(5509).

X(5515) lies on these lines: {2, 835}, {116, 244}, {117, 5230}, {118, 2999}, {121, 1054}, {124, 3120}, {125, 1086}, {127, 2968}

X(5515) = X(2)-Ceva conjugate of X(6590)
X(5515) = polar-circle-inverse of X(32691)
X(5515) = crosssum of circumcircle intercepts of line X(3)X(31)
X(5515) = orthopole of line X(3)X(31)
X(5515) = center of hyperbola {{A,B,C,X(4),X(75)}}


X(5516) =  KIRIKAMI SIX-CIRCLES-IMAGE OF X(145)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b + c - 2a)(b + c - 3a)(b - c)2(b2 + c2 + ab + ac - 4bc)    (Peter Moses, July 10, 2013)

Kirikami six-circles-images are introduced at X(5509).

X(5516) lies on these lines: {120, 5121}, {121, 519}, {1647, 3259}, {3667, 3756}

X(5516) = complement of X(6079)
X(5516) = crosspoint of X(519) and X(3667)
X(5516) = crosssum of X(106) and X(1293)
X(5516) = orthopole of line X(3)X(106)
X(5516) = center of hyperbola {{A,B,C,X(4),X(145)}}


X(5517) =  KIRIKAMI SIX-CIRCLES-IMAGE OF X(81)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b - c)2(a2 + b2 + c2 + 2bc)(a3 - b3 - c3 + a2b + a2c - ab2 - ac2 - 2abc - b2c - bc2)    (Peter Moses, July 10, 2013)

Kirikami six-circles-images are introduced at X(5509).

X(5517) lies on these lines: {2, 1310}, {11, 3125}, {120, 1698}, {123, 1146}

X(5517) = crosssum of circumcircle intercepts of line X(3)X(37)
X(5517) = orthopole of line X(3)X(37)
X(5517) = center of hyperbola {{A,B,C,X(4),X(81)}}


X(5518) =  KIRIKAMI SIX-CIRCLES-IMAGE OF X(291)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b - c)2(ab + ac - bc)(a2b + a2c - ab2 - ac2 - abc + b2c + bc2)    (Peter Moses, July 10, 2013)

Kirikami six-circles-images are introduced at X(5509).

X(5518) is the touchpoint, other than X(11), of the line through X(1086) tangent to the nine-point circle.    (Randy Hutson, July 15, 2013)

X(5518) lies on these lines: {2, 932}, {12, 85}, {121, 3822}

X(5518) = complement of X(932)

X(5518) = crosssum of circumcircle intercepts of line X(3)X(238)
X(5518) = orthopole of line X(3)X(238)
X(5518) = center of hyperbola {{A,B,C,X(4),X(291)}}

X(5519) =  KIRIKAMI SIX-CIRCLES-IMAGE OF X(218)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b - c)2(a2 + b2 + c2 - 2ab - 2ac)(b2 + c2 - ab - ac)(2a2 + b2 + c2 - ab - ac - 2bc)   (Peter Moses, July 10, 2013)

Kirikami six-circles-images are introduced at X(5509).

X(5519) lies on these lines: {120, 518}, {1566, 3323}, {3309, 4904}

X(5519) = complement of X(6078)
X(5519) = crosspoint of X(518) and X(3309)
X(5519) = crosssum of X(105) and X(1292)
X(5519) = orthopole of line X(3)X(105)
X(5519) = center of hyperbola {{A,B,C,X(4),X(218)}}


X(5520) =  KIRIKAMI SIX-CIRCLES-IMAGE OF X(267)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b - c)2(a3 + b3 + c3 - a2b - a2c - ab2 - ac2 - abc + b2c + bc2)(a4 - b4 - c4 + a2bc - ab2c - abc2 + 2b2c2)    (Peter Moses, July 10, 2013)

Kirikami six-circles-images are introduced at X(5509).

X(5520) is the touchpoint, other than X(11), of the line through X(867) tangent to the nine-point circle. Also, X(5520) is the reflection of X(11) in the Euler line.    (Randy Hutson, July 15, 2013)

Let O* be the inverter (defined at X(5577)) of the circumcircle and nine-point circle. X(5520) is the inverse-in-O* of X(2752). Also, X(5520) = inverse-in-polar-circle of X(2766). (Randy Hutson, August 17, 2014)

X(5520) lies on these lines: {2, 1290}, {4, 2687}, {11, 523}, {12, 2222}, {30, 119}, {113, 517}, {115, 650}, {116, 4369}, {120, 858}, {125, 513}, {1325, 5080}, {1560, 5089}, {1985, 2453}, {2074, 5172}, {3139, 3258}, {3140, 5099}

X(5520) = complement of X(1290)
X(5520) = inverse-in-Stevanovic-circle of X(115)
X(5520) = crosssum of circumcircle intercepts of line X(3)X(191)
X(5520) = orthopole of line X(3)X(191)
X(5520) = center of hyperbola {{A,B,C,X(4),X(267)}}


X(5521) =  KIRIKAMI SIX-CIRCLES-IMAGE OF X(19)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b - c)2(a2 - b2 + c2)(a2 + b2 - c2)(a3 + b3 + c3 - a2b - a2c - ab2 - a2c - 2abc + b2c + bc2)    (Peter Moses, July 10, 2013)

Kirikami six-circles-images are introduced at X(5509).

X(5521) lies on these lines: {4, 100}, {11, 2969}, {113, 1829}, {117, 1828}, {118, 1824}, {120, 427}, {121, 1883}, {122, 3139}, {123, 867}, {127, 3140}, {403, 5146}, {431, 1842}, {1560, 1841}

X(5521) = midpoint of X(4) and X(915)
X(5521) = X(2)-Ceva conjugate of X(6591)
X(5521) = crosssum of circumcircle intercepts of line X(3)X(63)
X(5521) = inverse-in-polar-circle of X(100)
X(5521) = center of the hyperbola {A,B,C,X(4),X(19)}
X(5521) = X(915)-of-Euler-triangle
X(5521) = orthopole of line X(3)X(63)


X(5522) =  KIRIKAMI SIX-CIRCLES-IMAGE OF X(95)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b2 - c2)2(a4 + b4 + c4 - 2a2b2 - 2a2c2 - 4b2c2)(3a4 + b4 + c4 - 4a2b2 - 4a2c2 - 2b2c2)    (Peter Moses, July 10, 2013)

Kirikami six-circles-images are introduced at X(5509).

X(5522) lies on these lines: {113, 3091}, {132, 5064}, {133, 1906}, {2970, 5139}

X(5522) = crosssum of circumcircle intercepts of line X(3)X(51)
X(5522) = orthopole of line X(3)X(51)
X(5522) = center of hyperbola {{A,B,C,X(4),X(95)}}


X(5523) =  ORTHOASSOCIATE (BUREK CONCURRENT CIRCLES IMAGE) OF X(6)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (a2 + b2 - c2)(a2 - b2 + c2)(b6 + c6 - a4b2 - a4c2 + 2a2b2c2 - b4c2 - b2c4)    (Peter Moses, June 15, 2013)

Let P be a point in the plane of a triangle ABC with orthocenter H. Let DEF be the orthic triangle of ABC. The circumcircles of APD, BPE, CPF concur in two points, P and Q. The point Q = Q(P) is the orthoassociate, or Burek concurrent circles image, of P. Examples: Q(X(1)) = X(1785), Q(X(2)) = X(468), Q(X(3)) = X(403), Q(X(4)) = X(4), Q(X(5)) = X(186).    (Dominic Burek, July 15, 2013)

The mapping Q is included as an orthoassociate of P in Bernard Gibert's paper, "Orthocorrespondence and Orthopivotal Cubics," Forum Geometricorum 3 (2003) 1-27. If P is given by barycentrics p : q : r, then Q is given by

Q = g(a,b,c,p,q,r) : g(b,c,a,q,r,p) : g(c,a,b,r,p,q), where g(a,b,c,p,q,r) = SBSC[(pq + pr)SA - q2SB - r2SC].

If you have The Geometer's Sketchpad, you can view X(5523) and X(5523) generalized. The latter has a movable point P.

X(5523) lies on these lines: {4,6}, {24,3767}, {30,112}, {39,1594}, {111,468}, {115,232}, {186,230}, {297,525}, {316,648}, {378,2549}, {382,3172}, {427,1180}, {459,5485}, {858,1560}, {1300,2715}, {1783,5080}, {3575,5305},

X(5523) = reflection of X(112) in the orthic axis
X(5523) = isogonal conjugate of complement of X(34163)
X(5523) = anticomplementary-circle-inverse of X(36851)
X(5523) = inverse-in-polar-circle of X(6)
X(5523) = radical trace of the polar circle and the orthosymmedial circle
X(5523) = pole with respect to the polar circle of the line X(6)X(525)
X(5523) = X(48)-isoconjugate of X(2373)
X(5523) = {5024,5094}
X(5523) = inverse-in-circle-O(PU(4)) of X(111)


X(5524) =  GIBERT-BUREK-MOSES CONCURRENT CIRCLES IMAGE OF X(2)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(a2 + b2 + c2 + 3bc - 3ab -3ac)    (Peter Moses, June 16, 2013)

Let P be a point in the plane of a triangle ABC with orthocenter H. Let DEF be the excentral triangle of ABC. The circumcircles of APD, BPE, CPF concur in two points, P and Q. The point Q = Q(P) is the Gibert-Burek-Moses concurrent circles image of P. The points X(1), P, Q(P) are collinear, and circumcenters of APD, BPE, CPF are collinear. Let L denote the line of the circumcenters; then Q is the reflection of P in L. Examples: Q(X(3)) = X(484), Q(X(4)) = X(3465), Q(X(15)) = X(1276), Q(X(16)) = X(1277), Q(X(20)) = X(5018).    (Peter Moses, June 16, 2013)

The appearance of (i,j) in the following list means that Q(X(i)) = X(j):
(36, 40), (46, 2077), (74, 3464), (100,1054), (105,1282), (109, 1768), (165, 1155), (759, 2948), (1381, 2449), (1382, 2448)    (Randy Hutson, July 19, 2013)

Let O denote the imaginary circle with center X(1) and squared radius -4rR. Then Q(P) is the O-inverse of P; see Bernard Gibert's "Antiorthocorrespondents of Circumconics," Forum Geometricorum 3 (2003) 231-249. Accordingly, if U is an arbitrary circle, then Q(U) is a circle; here "circle" includes lines, regarded as circles of infinite radius. Examples: Q(circumcircle) = Bevan circle; Q(Euler line) is a circle with center X(3737); Q(antiorthic axis) is a circle with center X(3476); If P is a point on the circumcircle, then Q(P) is the Brisse transform of P with respect to the tangential triangle of the excentral triangle of ABC. (This paragraph is based on notes received from Bernard Gibert and Randy Hutson, July 17-19, 2013.)

Let P be given by barycentrics p : q : r. Then Q is given by

Q = g(a,b,c,p,q,r) : g(b,c,a,q,r,p) : g(c,a,b,r,p,q), where g(a,b,c,p,q,r) = a[bcp2 - caq2 - abr2 + (a - b - c)(aqr - bpr - cpq)]    (Peter Moses, June 16, 2013)

If you have The Geometer's Sketchpad, you can view X(5524) and X(5524) generalized. The latter has a movable point P.

X(5524) lies on these lines: X(5524) lies on these lines: {1, 2}, {44, 3684}, {100, 896}, {111, 2748}, {171, 4663}, {210, 846}, {238, 3689}, {518, 1054}, {740, 3699}, {984, 3711}, {1051, 3745}, {1155, 1282}, {3667, 4724}, {3740, 3750}, {3956, 4653}, {3994, 4767}, {4009, 4693}, {4551, 5018}, {4557, 5143}


X(5525) =  GIBERT-BUREK-MOSES CONCURRENT CIRCLES IMAGE OF X(6)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(a3 - b3 - c3 - a2b - a2c + ab2 + ac2 + 3abc - b2c - bc2)    (Peter Moses, June 16, 2013)

Gibert-Burek-Moses concurrent circles images are introduced at X(5524).

X(5525) lies on these lines: {1,6}, {35,3991}, {36,3693}, {46,728}, {101,2752}, {111,2748}, {169,3632}, {191,1334}, {346,4293}, {484,1018}, {644,758}, {1759,3208}, {1781,2321}, {2082,3633}, {3065,4876}, {3218,3912}, {3309,4790}, {3336,3501}, {3950,4304}


X(5526) =  GIBERT-BUREK-MOSES CONCURRENT CIRCLES IMAGE OF X(9)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(a2 + b2 + c2 - 2ab - 2ac + bc)    (Peter Moses, June 16, 2013)

Gibert-Burek-Moses concurrent circles images are introduced at X(5524).

X(5526) lies on these lines: {1,6}, {35,41}, {36,101}, {71,2301}, {80,294}, {115,2238}, {187,1017}, {484,910}, {517,2348}, {519,644}, {573,3217}, {645,5209}, {650,1734}, {651,1323}, {739,2748}, {902,1110}, {908,3008}, {1018,3684}, {1334,3746}, {1783,1785}, {1795,2338}, {2246,3245}, {2291,2742}, {2503,5164}, {3509,4880}, {3632,4513}, {3997,5276}, {5219,5228}

X(5526) = isogonal conjugate of X(34578)
X(5526) = crosspoint of X(4845) and X(10482)
X(5526) = crosssum of X(i) and X(j) for these {i,j}: {1086, 1638}, {1323, 10481}
X(5526) = crossdifference of every pair of points on line X(354)X(513)
X(5526) = trilinear pole of line X(8645)X(22108)
X(5526) = Conway-circle-inverse of X(35892)


X(5527) =  GIBERT-BUREK-MOSES CONCURRENT CIRCLES IMAGE OF X(7)

Trilinears   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a6 - 3a5(b + c) + a4(3b2 + 3c2 + 7bc) - 2a3(b + c)(b2 + c2) + 3a2(b2 + c2)(b - c)2 - a(b + c)(b - c)2(3b2 + 3c2 - 2bc) + (b - c)4(b2 + c2 + 3bc)    (César Lozada, August 15, 2013)

Gibert-Burek-Moses concurrent circles images are introduced at X(5524).

X(5527) = X(316)-of-excentral triangle; also, X(5527) is the excentral isotomic conjugate of X(5528).    (Randy Hutson, July 18, 2013)

X(5527) lies on these lines: {1, 7}, {165, 5011}, {514,4105}, {1053, 2958}, {1308, 5536}, {1699,5074}

X(5527) = reflection of X(5536) in X(1308)
X(5527) = excentral-isogonal conjugate of X(34925)


X(5528) =  REFLECTION OF X(9) IN X(100)

Trilinears   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a4 - 4a3(b + c) + a2(6b2 + 6c2 + bc) - a(4b3 + 4c3 - b2c - bc2) + (b -c)2(b2 + c2 + 4bc)    (Randy Hutson, July 18, 2013)

X(5528) is the antipode of X(9) in the rectangular hyperbola that passes through X(1), X(9), and the 3 excenters. Also, X(5528) is X(67)-of-the-excentral triangle, the excentral isogonal conjugate of X(5536), and the excentral isotomic conjugate of X(5527).    (Randy Hutson, July 18, 2013)

X(5528) lies on these lines: {1, 528}, {9, 100}, {11, 4329}, {2951, 5531}

X(5528) = reflection of X(i) in X(j) for these (i,j):
{1,528}, {9,100}, {11,4326}, {35,5506}, {40,2801}, {142,149}, {191,4436}, {518,3245}, {527,3935}, {971,2950}, {1317,4321}, {2136,3868}, {2802,3243}, {2949,3579}, {2951,5531}, {3020,3340}, {3646,5248}

X(5528) = Bevan-circle-inverse of X(34925)


X(5529) =  GIBERT-BUREK-MOSES CONCURRENT CIRCLES IMAGE OF X(10)

Trilinears   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a3 - 2a2(b + c) - a(2b2 + 2c2 - bc) + (b + c)(b2 + c2 + bc)    (Randy Hutson, July 18, 2013)

X(5529) is the inverse-in-excircles-radical-circle of X(5530).   (Randy Hutson, July 18, 2013)

X(5529) lies on these lines: {1,2}, {9,5110}, {36,1757}, {238,5440}, {404,1046}, {609,1743}, {758,1054}, {846,4256}, {982,3940}, {1326,5150}, {1739,4867}, {2948,5131}, {3667,4040}, {5400,5538}

X(5529) = Conway-circle-inverse of X(35633)


X(5530) =  HUTSON RADICAL CIRCLE POINT

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a3(b + c) + a2(3b2 + 3c2 + 4bc) + a(b + c)(b2 + c2) - (b2 - c2)2    (César Lozada, August 15, 2013)

Let A′ be the inverse-in-excircles-radical-circle of A, and define B′ and C′ cyclically. Let IA be the inverse-in-excircles-radical-circle of the A-excenter, and define IB and IC cyclically. The lines A′IA, B′IB, C′IC concur in X(5530).   (Randy Hutson, July 18, 2013)

X(5530) is the inverse-in-excircles-radical-circle of X(5529).   (Randy Hutson, July 18, 2013)

X(5530) lies on these lines: {1,2}, {5,3931}, {12,3666}, {36,961}, {37,1329}, {46,573}, {65,970}, {171,580}, {181,942}, {226,986}, {388,988}, {429,1785}, {442,1738}, {517,1682}, {908,2292}, {968,2478}, {1686,2362}, {1695,2093}, {1838,1880}, {2051,4424}, {2476,3914}, {2886,4646}, {3596,4078}, {3614,4854}, {3663,3947}, {3743,3814}, {4339,5281}


X(5531) =  GIBERT-BUREK-MOSES CONCURRENT CIRCLES IMAGE OF X(11)

Trilinears   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a5 - 3a4(b + c) + a3(2b + c)(b + 2c) + 2a2(b + c)(b2 + c2 - 3bc) - a(b - c)2(3b2 + 3c2 + 5bc) + (b + c)(b2 - c2)2

Four of the circles that are tangent to two of the sidelines BC, CA, AB pass through X(11), namely, the incircle and 3 others. The centers of those 3 are collinear. (See Barry Wolk's Hyacinthos messages #21431, #21433, etc., January 2013). Let A′B′C′ be the triangle formed by the radical axes of these circles and the corresponding mixtilinear excircle. A′B′C′ is homothetic to the hexyl triangle, and the center of homothety is X(5531). Moreover, X(5531) is the Fuhrmann-triangle-to-excentral triangle similarity image of X(40). Further, in the definition of X(5495), if A′B′C′ is the excentral triangle, then the circumcircles of TA, TB, TC concur in X(5531). Also, X(5531) is the inverse of X(1) in the circumcircle of OA, OB, OC.    (Randy Hutson, July 18, 2013)

X(5531) lies on these lines: {1,5}, {3,3711}, {40,2771}, {63,100}, {101,3119}, {104,4866}, {149,1699}, {153,3811}, {214,936}, {484,912}, {515,5538}, {516,3935}, {518,5536}, {528,1750}, {971,3689}, {1145,4882}, {1156,4326}, {1490,2800}, {1709,3158}, {2951,5528}, {3062,3174}, {3817,3957}, {4297,4420}

X(5531) = reflection of X(i) in X(j) for these (i,j): (1768,100), (2951,5528), (5537,3689)


X(5532) =  WOLK-FEUERBACH POINT

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b - c)4(b + c - a)3

X(5532) is the point of intersection, other than X(11), of the three collinear circles described at X(5531).    (Barry Wolk, Hyacinthos #21433, January 18, 2013)

X(5532) lies on these lines: {11,514}, {516,5183}, {1111,3323}, {1146,3022}, {2310,4041}, {3689,5199}, {4081,4163}


X(5533) =  INVERSE-IN-INCIRCLE OF X(5)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a4(b + c - a)(b2 + c2 - 4bc) - 2a3(b4 + c4 - 3b3c - 3bc3 + 5b2c2) + 2a2(b + c)(b - c)2(b2 + c2 - bc) + a(b + c)2(b - c)4 - (b - c)(b2 - c2)3    (César Lozada, August 15, 2013)

X(5533) is the Gibert-Burek-Moses concurrent circles image of X(5534).    (Randy Hutson, July 18, 2013)

X(5533) = inverse-in-incircle of X(5), and X(5533) = {X(11),X(1317)}-harmonic conjugate of X(5).

X(5533) lies on these lines: {1,5}, {100,499}, {104,1479}, {149,3086}, {528,3582}, {1145,3813}, {1647,1772}, {1737,2802}, {2829,3583}, {3036,4187}


X(5534) =  GIBERT-BUREK-MOSES CONCURRENT CIRCLES IMAGE OF X(5533)

Trilinears   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a6 - 2a5(b +c) - a4(b + c)2 + 4a3(b + c)(b2 + c2) - a2(b4 + c4 + 6b2c2) - 2a(b + c)(b2 - c2)2 + (b + c)2(b2 - c2)2       (César Lozada, August 15, 2013)

Gibert-Burek-Moses concurrent circles images are introduced at X(5524). In the definition of X(5495), if A′B′C′ is the excentral triangle, then X(5534) is the center of the circumcircle of OA, OB, OC. In this case, unlike that of X(5495), the circle does not also pass through O. Also, X(5534) = X(5)-of-3rd-antipedal-triangle-of-X(1).    (Randy Hutson, July 18, 2013)

X(5534) lies on these lines: {1,5}, {3,200}, {4,3870}, {20,3935}, {40,912}, {78,944}, {84,3158}, {104,4855}, {515,3811}, {517,1490}, {936,1385}, {971,3174}, {1062,1103}, {1158,2801}, {1728,2078}, {1998,3149}, {2057,5440}, {3072,3751}, {3073,3749}, {3090,4666}, {3091,3957}, {3576,5258}


X(5535) =  GIBERT-BUREK-MOSES CONCURRENT CIRCLES IMAGE OF X(35)

Trilinears   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a6 - a4(3b2 + 3c2 + bc) + a3bc(b + c) + a2(3b4 + 3c4 - b3c - bc3) - abc(b + c)(b - c)2 - (b + c)2(b - c)4    (Randy Hutson, July 18, 2013)

Gibert-Burek-Moses concurrent circles images are introduced at X(5524). X(5535) = inverse-in-Bevan-circle-of- X(3) = X(2070)-of-excentral-triangle = X(36)-of-tangential-triangle-of-excentral triangle.    (Randy Hutson, July 18, 2013)

X(5535) = midpoint of X(484) and X(5536)
X(5535) = reflection of X(i) in X(j) for these (i,j): (40,484), (104,4973), (2077,1155), (5180,946), (5538,3)
X(5535) = inverse-in-Bevan-circle of X(3)

X(5535) lies on these lines: {1,3}, {5,191}, {9,3814}, {30,1768}, {63,5080}, {104,4973}, {442,2949}, {515,3218}, {535,3928}, {546,3652}, {912,4880}, {946,5180}, {1727,3583}, {2272,5011}, {3628,5506}


X(5536) =  GIBERT-BUREK-MOSES CONCURRENT CIRCLES IMAGE OF X(55)

Trilinears   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a5 - a4(b + c) - a3(2b2 + 2c2 - bc) + 2a2(b3 + c3) + a(b - c)2(b2 + c2 - bc) - (b + c)(b - c)4    (Randy Hutson, July 18, 2013)

Gibert-Burek-Moses concurrent circles images are introduced at X(5524). X(5536) = inverse-in-Bevan-circle-of-X(165) = X(23)-of-excentral-triangle = X(1155)-of-tangential-triangle-of-excentral-triangle = excentral isogonal conjugate of X(5528).    (Randy Hutson, July 18, 2013)

X(5536) = reflection of X(i) in X(j) for these (i,j): (484,5535), (1768,3218), (5527,1308), (5537,1155), (5538,36)
X(5536) = inverse-in-Bevan-circle of X(165)

X(5536) lies on these lines: {1,3}, {9,5087}, {63,1699}, {103,1290}, {110,2717}, {149,516}, {191,946}, {411,3874}, {518,5531}, {672,2957}, {910,2323}, {1308,5527}, {1421,2361}, {1709,3928}, {1757,5400}, {2949,5506}, {3219,3817}


X(5537) =  GIBERT-BUREK-MOSES CONCURRENT CIRCLES IMAGE OF X(57)

Trilinears   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a[a4 - 2a3(b + c) + 7a2bc + 2a(b + c)(b2 + c2 - 3bc) - (b - c)2(b2 + c2 + 3bc)]    (Randy Hutson, July 18, 2013)

Gibert-Burek-Moses concurrent circles images are introduced at X(5524). X(5537) is the radical trace of each pair of the 1st, 2nd, and 3rd antipedal circles of X(1); also, X(5537) = X(23)-of-1st-circumperp-triangle = X(858)-of-excentral-triangle.    (Randy Hutson, July 18, 2013)

X(5537) lies on these lines: {1,3}, {20,535}, {100,516}, {103,677}, {105,2743}, {200,1709}, {404,4301}, {411,5493}, {480,3062}, {518,1768}, {840,1293}, {971,3689}, {972,2222}, {991,2177}, {1012,3679}, {1260,1750}, {1376,1699}, {1618,2272}, {2291,2742}, {2800,4867}, {2801,3935}, {3091,3814}, {3146,5080}, {3871,4297}, {5288,5450}

X(5537) = reflection of X(i) in X(j) for these (i,j): (36,2077), (3245,40), (5526,2742), (5531,3689), (5536,1155)
X(5537) = circumcircle-inverse of X(165)

X(5537) = Conway-circle-inverse of X(35645)

X(5538) =  GIBERT-BUREK-MOSES CONCURRENT CIRCLES IMAGE OF X(65)

Trilinears   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a6 - 2a5(b + c) - a4(b2 + c2 - 7bc) + a3(b + c)(4b2 + 4c2 - 5bc) - a2(b2 + c2 - bc)(b2 + c2 + 6bc) - a(b + c)(b - c)2(2b2 + 2c2 - bc) + (b + c)2(b - c)4    (Randy Hutson, July 18, 2013)

Gibert-Burek-Moses concurrent circles images are introduced at X(5524). X(5538) = X(2070)-of-hexyl-triangle.    (Randy Hutson, July 18, 2013)

X(5538) = reflection of X(i) in X(j) for these (i,j): (484,2077), (5535,3), (5536,36)
X(5538) = inverse-in-hexyl-circle of X(3)

X(5538) lies on these lines: {1,3}, {78,5080}, {200,5176}, {515,5531}, {516,4511}, {758,1768}, {936,3814}, {997,1699}, {1006,5426}, {5400,5529}


X(5539) =  GIBERT-BUREK-MOSES CONCURRENT CIRCLES IMAGE OF X(99)

Trilinears   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a4bc - a3(b + c)(b - c)2 - a2bc(b2 + c2) - abc(b + c)(b - c)2 + b3c3    (Randy Hutson, July 18, 2013)

Gibert-Burek-Moses concurrent circles images are introduced at X(5524). X(5539) = X(1356)-of-tangential-triangle-of-excentral-triangle.    (Randy Hutson, July 18, 2013)

X(5539) = reflection of X(1) in X(741)

X(5539) lies on the Bevan circle and these lines: {1,99}, {9,3037}, {43,5213}, {57,1356}, {484,3510}, {1015,3571}, {1045,5541}, {1046,1282}, {1716,3464}, {1740,2948}, {2640,5540)


X(5540) =  GIBERT-BUREK-MOSES CONCURRENT CIRCLES IMAGE OF X(101)

Trilinears    a3 - a2(b + c) + a(b2 + c2 - bc) - (b + c)(b - c)2 : :    (Randy Hutson, July 18, 2013)

Gibert-Burek-Moses concurrent circles images are introduced at X(5524).

X(5540) is the point of concurrence of the reflections of the line X(1)X(6) in the sides of the excentral triangle.    (Randy Hutson, August 14, 2013)

The 1st and 2nd Montesdeoca bisector triangles are inversely similar to the excentral triangle. Let s1 and s2 be the similarity mappings. Then there is a unique point X such that s1(X) = s2(X), and X = X(5540). See HGT2017 and AdvGeom3769

X(5540) lies on the Bevan circle and these lines: {1,41}, {6,1718}, {9,80}, {19,1743}, {35,1212}, {36,910}, {37,3196}, {43,3034}, {44,3245}, {57,1358}, {115,2503}, {120,1698}, {165,1292}, {190,4986}, {191,2795}, {484,672}, {517,2348}, {519,5525}, {579,3464}, {610,909}, {614,5354}, {644,2802}, {654,1768}, {657,2957}, {673,1111}, {952,4534}, {1023,4919}, {1053,4040}, {1054,1635}, {1475,3337}, {1697,3021}, {1699,5511}, {1713,2833}, {1723,2270}, {1724,2838}, {1731,2183}, {1766,3973}, {2173,5053}, {2238,5164}, {2448,2591}, {2449,2590}, {2640,5539}, {2814,5400}, {3336,4253}, {3583,5179}, {4875,5258}, {5030,5131}

X(5540) = reflection of X(i) in X(j) for these (i,j): (1,105), (5526,2348)
X(5540) = X(112)-of-excentral-triangle
X(5540) = Stevanovic-circle-inverse of X(34464)
X(5540) = X(1358)-of-tangential-triangle-of-excentral-triangle
X(5540) = excentral isogonal conjugate of X(3309)
X(5540) = trilinear-pole-with-respect-to-excentral-triangle-of-the-line-X(2)X(7)


X(5541) =  GIBERT-BUREK-MOSES CONCURRENT CIRCLES IMAGE OF X(106)

Trilinears   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a3 + a2(b + c) - a(b2 + c2 + 5bc) - (b + c)(b2 + c2 - 4bc)    (Randy Hutson, July 18, 2013)

Gibert-Burek-Moses concurrent circles images are introduced at X(5524). X(5541) = Bevan-circle-antipode-of-X(1768) = X(74)-of-excentral-triangle = {X(100), X(1320)}-harmonic-conjugate-of-X(214) = X(1317)-of-tangential-triangle-of-excentral-triangle. Also, X(5541) is the antipode of X(1) in the rectangular hyperbola that passes through X(1), X(9) and the 3 excenters, and X(5541) is the inverse of X(214) in the circumconic centered at X(1).    (Randy Hutson, July 18, 2013)

Let A′B′C′ be the excentral triangle. Let EA be the Euler line of BCA′. Let LA be the line through A′ parallel to EA, and define LB and LC cyclically. The lines LA, LB, LC concur in X(5541).    (Randy Hutson, August 14, 2013)

X(5541) = reflection of X(i) in X(j) for these (i,j): (1,100), (80,1145), (149,10), (1320,214), (1768,40), (4867,3689), (4880,5183)

X(5541) lies on the Bevan circle and these lines: {1,88}, {8,191}, {9,80}, {10,149}, {11,1697}, {36,2932}, {40,550}, {43,3032}, {46,2136}, {55,5426}, {57,1317}, {63,4677}, {104,165}, {119,1699}, {145,3336}, {153,516}, {190,4738}, {200,3899}, {484,519}, {515,2950}, {517,3689}, {518,3245}, {984,2805}, {1045,5539}, {1050,3216}, {1282,3887}, {1490,2800}, {1706,3035}, {1759,4050}, {2093,3174}, {2246,4752}, {2448,3307}, {2449,3308}, {2801,2951}, {2948,4730}, {3219,4669}, {3244,3337}, {3339,5083}, {3464,4707}, {3579,3893}, {3654,4863}, {3813,5445}, {3919,3957}, {3968,5284}, {4880,5183}, {5011,5525}

X(5541) = {X(10),X(149)}-harmonic conjugate of X(37718)


X(5542) =  MIDPOINT OF X(1) AND X(7)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 3a2(b + c) - 2a(b - c)2 - (b + c)(b - c)2    (Randy Hutson, July 18, 2013)

X(5542) = X(182)-of-intouch-triangle = {X(175), X(176)}-harmonic conjugate of X(5543).    (Randy Hutson, July 18, 2013)

X(5542) lies on these lines: {1,7}, {2,5223}, {6,4989}, {9,1125}, {10,141}, {11,118}, {35,2346}, {55,553}, {56,954}, {57,3475}, {75,4684}, {144,3616}, {320,3883}, {474,480}, {497,4654}, {519,1056}, {527,551}, {537,4078}, {673,4649}, {726,3950}, {938,5290}, {946,971}, {1086,3755}, {1155,4031}, {1210,3947}, {1386,4667}, {1445,3338}, {1836,3982}, {1870,1890}, {2321,4966}, {3008,3751}, {3059,3555}, {3242,4675}, {3244,4780}, {3295,5493}, {3452,3742}, {3649,4890}, {3720,4656}, {3748,4114}, {3782,4883}, {3790,3912}, {3873,4847}, {3911,4860}, {4061,4359}

X(5542) = midpoint of X(i) and X(j) for these (i,j): (1,7), (390,4312), (962,2951), (2550,3243), (3059,3555), (4295,4326)
X(5542) = reflection of X(i) on X(j) for these (i,j): (9,1125), (10,142)
X(5542) = complement of X(5223)
X(5542) = harmonic center of of inner and outer Soddy circles
X(5542) = X(6)-of-incircle-circles-triangle


X(5543) =  {X(175),X(176)}-HARMONIC CONJUGATE OF X(5542)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (a - b + c)(a + b - c)(5a2 + b2 + c2 - 6ab - 6ac - 2bc)    (Peter Moses, August 13, 2013)

X(5543) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): (1,7,3160), (1,4350,1442), (175,176,5542), (3945,4328,7), (5228,5308,5435).    (Randy Hutson, July 18, 2013 and Peter Moses, August 13, 2013)

X(5543) lies on these lines: {1,7}, {85,3241}, {354,3599}, {1441,4460}, {2295,5228}, {3340,3598}, {3772,5222}


X(5544) =  HIRIART-URRUTY MINIMIZER

Barycentrics   a^2*(a^4 - 4*a^2*b^2 + 3*b^4 - 4*a^2*c^2 - 26*b^2*c^2 + 3*c^4) : :
Barycentrics   a^2*(7*S^2 + 5*SA^2 + SB*SC) : : (Peter Moses, August 30, 2013)
Barycentrics   Sin[A]^2*(2 + 6*(Cot[A] + Cot[B])*(Cot[A] + Cot[C]) - Cot[A]*Cot[w]) : : (Peter Moses, March 3, 2024)
Barycentrics   Sin[A]^2*(5*Cot[A]^2 + 8*Cot[B]*Cot[C] + 7*Cot[A]*(Cot[B] + Cot[C])) : : (Peter Moses, March 5, 2024)
X(5544) = 6 X[2] - X[40912], X[3] + 2 X[52163], X[5646] - 3 X[59777]

Let X be a point in the plane of a triangle ABC, and let A′B′C′ be the pedal triangle of X. The sum |AX|2 + |BX|2 + |CX|2 + |A′X|2 + |B′X|2 + |C′X|2 is minimized by X = X(5544).    (Jean-Baptiste Hiriart-Urruty; Toulouse, France; August 30, 2013)

The minimal value is (4S4 - 12PT + 15S2T2)/(20S2T - 18P), where P = SASBSC and T = SA + SB + SC.   (Peter Moses, August 30, 2013)

X(5544) is the only point whose polar conic in the Thomson cubic. (K002) is a circle. (Bernard Gibert, June 22, 2014)

If you have The Geometer's Sketchpad, you can view X(5544).

The following notes pertaining to minimal sums were contributed by Peter Moses, March 5, 2024.

Let X be a point in the plane of a triangle ABC, and let A'B'C' be the pedal triangle of X. The sum

|AX|^2 + |A'X|^2 + |BX|^2 + |B'X|^2 + |CX|^2 + |C'X|^2

is minimized by X(5544). More generally, the sum

|AX|^2 + k*|A'X|^2 + |BX|^2 +k*|B'X|^2 + |CX|^2 + k*|C'X|^2

is minimized by the following point:

X = a^2*(a^4*k^2 - 2*a^2*(b^2 + c^2)*k*(1 + k) + (b^4 + c^4)*k*(2 + k) - 2*b^2*c^2*(6 + 6*k + k^2)) : :

or, equivalentley,

X = = Sin[A]^2*((3 + 2*k)*Cot[A]^2 + (1 + k)*(3 + k)*Cot[B]*Cot[C] + (3 + k*(3 + k))*Cot[A]*(Cot[B] + Cot[C])) : :

The point X lies on the Thomson-Gibert-Moses hyperbola, and its minimum value is

m= (-16*k*(1 + k)^2*S^4 + 96*(1 + k)*SA*SB*SC*SW - 16*(2 + k)*(3 + 2*k)*S^2*SW^2)/(144*(1 + k)*SA*SB*SC - 16*(3 + k)*(3 + 2*k)*S^2*SW).

There are 3 values of k for which m = 0; they are the roots of this equation:

16*k*(1 + k)^2*S^4 - 96*(1 + k)*SA*SB*SC*SW + 16*(2 + k)*(3 + 2*k)*S^2*SW^2 = 0.

The corresponding points X are intersections of the following curves: Thomson-Gibert-Moses hyperbola, Kiepert circumhyperbola of the anticomplementary triangle, and the cubics K210 and K511. Although barycentrics for the three points are unamenable, their barycentric product, trilinear product, and barycentric sum are given at X(62175), X(62176), and X(62177).

The point X is the Thomson-isogonal conjugate of 6*a^2*(a^2 - b^2 - c^2) + (5*a^4 - 4*a^2*b^2 - b^4 - 4*a^2*c^2 + 2*b^2*c^2 - c^4)*k : : = k*X[2] - 2*(1 + k)*X[3] (on the Euler line).

The appearance of (k,X(n)) in the following list means that X = X(n):

(-6,55038), (-4,9716), (-3,3167), (-2,110), (-5/3,55157), (-9/7,61771), (-14/9,55156), (-3/2,154), (-4/3,7712), (-6/5,6030), (-1,3), (-6/7,61772), (-3/4,61773), (-2/3,5888), (-1/2,5646), (-1/3,61774), (0,2), (1/2,14924), (1,5544), (2,5643), (3,5644), (4,5645), (6,61775)

X(5544) lies on the Thomson-Gibert-Moses hyperbola and these lines: {2, 1351}, {3, 373}, {5, 5656}, {6, 16187}, {23, 55682}, {25, 6030}, {51, 55584}, {110, 5050}, {125, 5055}, {140, 21970}, {154, 182}, {323, 5645}, {354, 3751}, {381, 11820}, {382, 35253}, {392, 1482}, {394, 5644}, {474, 48921}, {511, 5646}, {567, 12309}, {576, 12045}, {1350, 5943}, {1495, 55697}, {1656, 5654}, {1995, 7712}, {3030, 37502}, {3090, 32605}, {3124, 5024}, {3167, 5651}, {3357, 11479}, {3426, 40280}, {3526, 3527}, {3545, 15431}, {3589, 23326}, {3618, 6391}, {3628, 11432}, {3819, 55722}, {3843, 44300}, {5054, 32269}, {5070, 12316}, {5079, 45303}, {5085, 32237}, {5097, 10219}, {5422, 55038}, {5640, 5888}, {5643, 11482}, {5648, 5972}, {5650, 44456}, {5652, 8371}, {5653, 11637}, {5892, 11472}, {5921, 45298}, {6090, 9716}, {6244, 16058}, {6388, 31489}, {6642, 9920}, {6723, 15131}, {6800, 30734}, {7392, 39884}, {7393, 32205}, {7395, 11465}, {7484, 11451}, {7485, 55648}, {7496, 55639}, {7529, 13339}, {7998, 55724}, {8547, 40670}, {8717, 18535}, {8780, 11003}, {9171, 34291}, {9306, 55711}, {9818, 12041}, {9909, 53094}, {10545, 55678}, {10546, 55156}, {10620, 41670}, {11002, 55580}, {11328, 34099}, {11433, 61545}, {11477, 15082}, {11484, 15805}, {11579, 40917}, {12099, 38396}, {12167, 52290}, {12174, 15022}, {12310, 15040}, {13361, 14826}, {13364, 58764}, {14810, 17810}, {15107, 55643}, {15448, 38064}, {15693, 20192}, {15703, 58891}, {16042, 26864}, {17508, 31860}, {17809, 55709}, {18928, 40330}, {19124, 21313}, {19347, 19360}, {20190, 41424}, {20998, 55165}, {25555, 59767}, {33586, 55616}, {33750, 37910}, {35259, 55157}, {35283, 39899}, {37493, 55857}, {37672, 55714}, {38110, 40132}, {40916, 55610}, {41462, 55602}, {43650, 55692}, {45311, 51941}, {45578, 55579}, {45579, 55577}, {46219, 61644}, {55587, 58470}

X(5544) = midpoint of X(3) and X(3531)
X(5544) = reflection of X(i) in X(j) for these {i,j}: {3531, 52163}, {18489, 5}, {40912, 44833}
X(5544) = complement of X(44833)
X(5544) = Thomson-isogonal conjugate of X(10304)
X(5544)-Dao conjugate of X(44833)
{X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {373, 22112, 3066}, {3066, 22112, 3}, {5651, 10601, 53091}, {5651, 53091, 3167}, {6090, 15018, 53092}, {6688, 17825, 5020}
X(5544) = pole of line {3524, 5032} with respect to the Feuerbach circumhyperbola of the tangential triangle
X(5544) = pole of line {5093, 5544} with respect to the Thomson-Gibert-Moses hyperbola
X(5544) = pole of line {5646, 54439} with respect to the Parry circle


X(5545) =  ISOGONAL CONJUGATE OF X(4843)

Trilinears    a/[(b + c - a)(b + c + 3a)(b2 - c2)] : :

Suppose that P is a point in the plane of triangle ABC. Let A′B′C′ be the anticevian triangle of P and let A″B″C″ be the 1st circumperp triangle. The locus of P for which the lines A′A″, B′B″, C′C″ concur is the union of the line X(1)X(6) and the conic U = {A, B, C, X(66), X(101), X(294), X(651)}; i.e., the isogonal conjugate of the Gergonne line. The conic U has center X5452) and is given by the trilinear equation

a(b + c - a)yz + b(c + a - b)zx + c(a + b - c)xy = 0.

For X on X(1)X(6)∪U, let F(X) be the point of concurrence. Then if X is on X(1)X(6), the image F(X) is on the line X(1)X(3); a pair (i,j) in the following list indicates that F(X(i)) = X(j): (1,165), (6,3), (9,40), (37,3579), (44,517), 281,55), 1713,1715), (1723,46), (1724,1754), (1743,1), (2323,2077), (5247,171), 5526,5537). On the other hand, if X is on U, the image F(X) is on the circumcircle; a pair (i,j) in the following list indicates that F(X(i)) = X(j): (101,109), (110,5543), (111,5543), (294,105), (644,100), (645,99), (651,934), (666,927), (1783,108), (2311,741), (2316,106), (4627,5545).   (César Lozada; August 29, 2013)

Suppose that P is on X(1)X(6). If P = p : q : r (trilinears), then F(P) = a(b + c - a)/[(b - c)p] : b(c + a - b)/[(c - a)q] : c(a + b - c)/[(a - b)r];
If P = p : q : r (barycentrics), then F(P) = a3(b + c - a)/[(b - c)p] : b3(c + a - b)/[(c - a)q] : c3(a + b - c)/[(a - b)r]
Suppose that P is on U. If P = p : q : r (trilinears), then F(P) = (b + c - a)p : (c + a - b)q : (a + b - c)r];
If P = p : q : r (barycentrics), then F(P) = then F(P) = (b + c - a)p : (c + a - b)q : (a + b - c)r].    (Peter Moses; September 2, 2013)

X(5545) lies on the circumcircle and these lines: {100,1414}, {101,4565}, {105,5323}, {835,4624}

X(5545) = trilinear pole of the line X(6)X(1412)
X(5545) = Ψ(X(6), X(1412))
X(5544) = Thomson-isogonal conjugate of X(10304)


X(5546) =  X(100)X(112)∩X(101)X(110)

Trilinears    a(b + c - a)(a2 - b2)(a2 - c2) : :

X(5546) = F(X(110)), where F is the mapping defined at X(5545).    (Peter Moses; September 2, 2013)

X(5546) is the perspector of the anticevian triangle of X(110) and the unary cofactor triangle of the intangents triangle. (Randy Hutson, July 31 2018)

X(5546) lies on these lines: {9,1793}, {21,294}, {41,60}, {58,1810}, {99,666}, {100,112}, {101,110}, {283,2338}, {284,2316}, {345,4548}, {593,609}, {643,644}, {645,4612}, {648,4552}, {651,662}, {672,5060}, {910,1325}, {1018,1021}, {1333,1811}, {1576,4557}, {1625,2427}, {1809,2193}, {1951,4511}, {1983,2610}, {2251,5006}, {2328,4845}, {3732,4237}, {3939,4587}, {4556,4627}, {5127,5526}

X(5546) = isogonal conjugate of X(7178)
X(5546) = X(2)-Ceva conjugate of-X(34961)
X(5546) = X(19)-isoconjugate of X(17094)


X(5547) =  POINT ARNEB

Trilinears   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b + c - a)(a2 + b2 - 2c2)(a2 - 2b2 + c2)

X(5547) = F(X(111)), where F is the mapping defined at X(5545).    (Peter Moses; September 2, 2013)

X(5547) is the perspector of the anticevian triangle of X(111) and the unary cofactor triangle of the intangents triangle. (Randy Hutson, July 31 2018)

X(5547) lies on these lines: {8,645}, {42,101}, {65,651}, {210,644}, {666,671}, {1334,3939}, {1783,1824}, {2334,4627}

X(5547) = isogonal conjugate of X(7181)


X(5548) =  POINT ASCELLUS AUSTRALIS

Trilinears   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b + c - a)/[(b - c)(b + c - 2a)]

X(5548) lies on these lines: {101,649}, {106,5526}, {294,1320}, {644,650}, {645,4560}, {651,3257}, {663,3939}, {666,4555}, {1318,2316}, {1783,5375}, {2340,4845}, {2423,2427}, {2429,2441}, {4591,4627}

X(5548) = isogonal conjugate of X(30725)
X(5548) = F(X(44)), where F is the mapping defined at X(5545)    (Peter Moses; September 3, 2013)


X(5549) =  POINT ASCELLUS BOREALIS

Trilinears   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b + c - a)/[(b - c)(2b + 2c - a)]

X(5549) = F(X(45)), where F is the mapping defined at X(5545).    (Peter Moses; September 3, 2013)

X(5549) lies on these lines: {21,2341}, {41,2316}, {101,4588}, {294,2320}, {651,4604}, {666,4597}, {1783,4242}, {4558,4627}


X(5550) =  GARCIA POINT G(1/4)

Trilinears    r + 3 R sin B sin C : :
Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (a + b + c) + (1/4)(a - b - c)
Barycentrics   5a +3b + 3c : 3a + 5b + 3c + 3a + 3b + 5c
X(5550) = 2 X(1) + 9 X(2)

Let O(A,t) be the circle with center A and radius t*r, where r is the inradius of triangle ABC. Define O(B,t) and O(C,t) cyclically. Of the two parallel lines tangent to O(B,t) and O(C,t), let TA be the closer to A, and define TB and TC cyclically. Let D = TB∩TC, and define E and F cyclically. Let A′ be the midpoint of segment BC, and define B′ and C′ cyclically. Let A″ be the touchpoint of TA and the incircle of DEF. Then AA′, BB′, CC′ concur and AA″, BB″, CC″ concur.    (Emmanuel José Garcia; September 11, 2013)

The triangle DEF has incenter X(1) and is similar to ABC with dilation factor 1-t. Let G(t) = AA′∩BB′∩ CC′ and GF(t) = AA″∩BB″∩ CC″. The point G(t) lies on the line X(1)X(2) and has barycentric coordinates given by

G(t) = a + b + c - (b + c - a)t : a + b + c - (c + a - b)t : a + b + c - (a + b - c)t

and satisfies |X(1)G(t)|/|X(2)G(T)| = 3(1 - t)/(2t).    (Peter Moses; September 12, 2013)

The point GF(t) lies on the Feuerbach hyperbola (the isogonal conjugate of the line X(1)X(3)) and has barycentric coordinates given (Peter Moses; September 12, 2013) by

GF(t) = f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 1/[(a + b + c)(b + c - a) - (b2 + c2 - a2)t]

In the following list, the appearance of {n,t} indicates that X(n) = G(t) :

{1,1}, {2,0}, {10,-1}, {78,1+(2 R)/r}, {145,2}, {200,1+(4 R)/r}, {498,R/(2 r+R)}, {499,-(R/(2 r-R))}, {551,3/5}, {936,(r+2 R)/(r-2 R)}, {938,1+r/(2 R)}, {997,(r+R)/(r-R)}, {1125,1/3}, {1210,-((r+2 R)/(r-2 R))}, {1698,-(1/3)}, {1737,-((r+R)/(r-R))}, {3085,R/(r+R)}, {3086,-(R/(r-R))}, {3241,3/2}, {3244,5/3}, {3582,-((3 R)/(4 r-3 R))}, {3584,(3 R)/(4 r+3 R)}, {361,1/2}, {3617,-2}, {3621,4}, {3622,2/3}, {3623,4/3}, {3624,1/5}, {3625,7}, {3626,-5}, {3632,5}, {3633,7/3}, {3634,-(1/5)}, {3635,7/5}, {3636,5/7}, {3679,-3}, {3811,(r+3 R)/(r+R)}, {3828,-(3/7)}, {3870,(r+4 R)/(r+2 R)}, {3872,1-(2 R)/r}, {3935,(r+4 R)/(r+R)}, {3957,(r+4 R)/(r+3 R)}, {4420,1+(3 R)/r}, {4511,(r+R)/r}, {4666,(r+4 R)/(r+6 R)}, {4668,-7}, {4678,-4},v{4691,-(7/3)}, {4847,-1-(4 R)/r}, {4853,1-(4 R)/r}, {4861,1-R/r}, {4882,1+(8 R)/r}, {4915,1-(8 R)/r}, {5231,-((r+4 R)/(3 r))    (Peter Moses; September 14, 2013)

In the next list, the appearance of {n,t} indicates that X(n) = GF(t):

{1,1}, {7,0}, {8,2}, {9,(r+4 R)/(r+2 R)}, {21,(r+2 R)/(r+R)}, {79,-1}, {80,3}, {84,1+(2 R)/r}, {90,(r+3 R)/(r+R)}, {104,(r+R)/r}, {943,(r+3 R)/(r+2 R)}, {1000,3/2}, {1156,(r+4 R)/(r+R)}, {1320,(r-2 R)/(r-R)}, {1389,1-R/r}, {1392,(2 (r-R))/(2 r-R)}, {1476,r/(r-R)}, {2320,(2 (r+R))/(2 r+R)}, {2346,(r+4 R)/(r+3 R)}, {3062,1+(4 R)/r}, {3065,(2 r+5 R)/(2 r+R)}, {3254,-((r+4 R)/(r-2 R))}, {3255,(r+4 R)/(3 r+2 R)}, {3296,1/2}, {3427,(2 (r+R))/r}, {3467,(2 r+7 R)/(2 r+3 R)}, {3577,1-(2 R)/r}, {3680,(r-4 R)/(r-2 R)}, {4866,(r+8 R)/(r+4 R)}, {4900,(r-8 R)/(r-4 R)}, {5424,(4 r+7 R)/(4 r+5 R)}    (Peter Moses; September 14, 2013)

X(5550) lies on these lines: {1,2}, {3,5284}, {11,4197}, {12,4308}, {21,4423}, {44,5296}, {56,5047}, {63,3646}, {65,3848}, {210,3889}, {226,5265}, {354,3876}, {355,5067}, {377,5225}, {404,1001}, {405,5253}, {474,1621}, {515,5056}, {517,3525}, {631,962}, {632,1482}, {756,3976}, {944,1656}, {946,3523}, {952,5070}, {958,5328}, {999,5260}, {1155,5180}, {1385,3090}, {1386,3619}, {1420,5261}, {1479,5444}, {1699,3522}, {1788,4323}, {2098,5326}, {2476,3816}, {2478,5229}, {3091,3576}, {3146,3817}, {3219,3338}, {3246,4645}, {3305,3333}, {3485,5221}, {3600,5219}, {3601,5274}, {3614,4193}, {3618,4663}, {3653,5071}, {3678,4430}, {3681,5045}, {3697,5049}, {3698,3885}, {3742,3868}, {3753,3890}, {3812,3877}, {3822,5154}, {3825,5141}, {3832,4297}, {3869,5439}, {3871,4413}, {3873,4539}, {3874,4532}, {3881,4661}, {3993,4772}, {4188,5248}, {4189,5259}, {4295,5443}, {4419,4798}, {4747,4758}, {4860,4999}, {5080,5084}, {5128,5250}, {5177,5436}

X(5550) = {X(1),X(2)}-harmonic conjugate of X(9780)


X(5551) =  GARCIA-FEUERBACH POINT GF(1/4)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 1/(3b2 + 3c2 - 3a2 + 8bc)

Garcia-Feuerbach points are defined at X(5550).

X(5551) lies on these lines: {1,4114}, {8,4004}, {943,5204}


X(5552) =  GARCIA POINT G(R/r)

Barycentrics    (a + b + c) + (R/r)(a - b - c) : :

Garcia points are defined at X(5550).

X(5552) lies on these lines: {1,2}, {3,3436}, {4,100}, {5,3434}, {9,1195}, {11,3913}, {12,377}, {20,2077}, {21,2551}, {40,908}, {55,1329}, {56,3035}, {140,956}, {149,5154}, {318,406}, {329,3359}, {345,3701}, {355,5440}, {388,404}, {405,3820}, {442,1260}, {452,5281}, {474,495}, {475,5081}, {480,3826}, {497,3871}, {515,4855}, {529,5204}, {631,2975}, {944,5176}, {958,5432}, {962,1519}, {1056,5253}, {1145,1482}, {1213,3713}, {1331,1771}, {1478,4190}, {1479,3814}, {1621,5084}, {1706,5219}, {1788,3868}, {1837,5123}, {1877,4200}, {2476,2550}, {2899,4194}, {3090,5082}, {3256,5177}, {3295,4187}, {3303,3816}, {3452,5250}, {3524,5303}, {4188,4293}, {4294,5046}, {5193,5265}


X(5553) =  GARCIA-FEUERBACH POINT GF(R/r)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 1/[(a + b + c)(b + c - a) - (b2 + c2 - a2)R/r]

Garcia-Feuerbach points are defined at X(5550).

X(5553) lies on these lines: {8,912}, {9,2252}, {21,2096}, {84,1519}, {90,499}, {944,1320}, {962,1392}, {1389,4295}

X(5553) = perspector of ABC and mid-triangle of hexyl triangle and reflection triangle of X(1)


X(5554) =  GARCIA POINT G(r/R)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (a + b + c) + (r/R)(a - b - c)

Garcia points are defined at X(5550).

X(5554) lies on these lines: {1,2}, {20,3359}, {63,4848}, {65,3436}, {100,3486}, {119,2476}, {355,377}, {388,5176}, {404,944}, {474,952}, {515,4190}, {517,2478}, {529,5221}, {631,3897}, {908,3340}, {946,5187}, {962,5046}, {1058,3885}, {1145,3295}, {1220,2994}, {1329,2099}, {1470,1788}, {1478,3754}, {1482,4187}, {1519,3091}, {1837,3434}, {2077,4189}, {2098,3816}, {2550,5086}, {2551,3869}, {3256,5273}, {3421,3868}, {3476,5253}, {3488,3871}, {3812,5252}, {3877,5084}, {4295,5080}, {4308,5193}


X(5555) =  GARCIA-FEUERBACH POINT GF(r/R)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 1/[(a + b + c)(b + c - a) - (b2 + c2 - a2)r/R]

Garcia-Feuerbach points are defined at X(5550).

X(5555) lies on these lines: {21,1470}, {90,1210}, {388,1320}, {497,1476}, {943,5281}, {1039,1877}, {1392,4323}, {3434,3680}


X(5556) =  GARCIA-FEUERBACH POINT GF(-2)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 1/[(a + b + c)(b + c - a) + 2(b2 + c2 - a2)]

Garcia-Feuerbach points are defined at X(5550).

X(5556) lies on these lines: {1,3146}, {7,5225}, {8,1836}, {9,5128}, {21,4423}, {79,938}, {80,4295}, {962,1000}, {1156,5221}, {3474,3614}, {3617,4866}, {3621,4900}, {3832,4312}, {5217,5226}

X(5556) = isotomic conjugate of X(32099)
X(5556) = orthocenter of triangle X(1)X(4)X(8) (Randy Hutson, November 22, 2014 )


X(5557) =  GARCIA-FEUERBACH POINT GF(1/3)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 1/[(a + b + c)(b + c - a) - (b2 + c2 - a2)(1/3)]

Garcia-Feuerbach points are defined at X(5550).

X(5557) lies on these lines: {1, 550}, {8, 2891}, {9, 583}, {21, 551}, {35, 2346}, {36, 943}, {79, 354}, {80, 942}, {90, 3333}, {140, 3337}, {256, 3953}, {553, 3746}, {1320, 3635}, {1385, 5424}, {1389, 5425}, {1476, 3671}, {1656, 4860}, {3065, 3649}, {3467, 5443}, {3487, 5444}

X(5557) = isogonal conjugate of X(3746)
X(5557) = perspector of ABC and mid-triangle of 2nd circumperp and 1st Conway triangles


X(5558) =  GARCIA-FEUERBACH POINT GF(2/3)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 1/[(a + b + c)(b + c - a) - (b2 + c2 - a2)(2/3)]

Garcia-Feuerbach points are defined at X(5550).

X(5558) lies on these lines: {1, 3522}, {2, 4866}, {4, 5045}, {8, 354}, {9, 1475}, {21, 3304}, {56, 2346}, {80, 938}, {145, 4900}, {942, 1000}, {943, 999}, {962, 3296}, {1156, 3485}, {1476, 4323}, {3062, 5542}, {3241, 3680}, {3333, 3523}, {3854, 5290}, {4298, 5059}

X(5558) = isogonal conjugate of X(3303)
X(5558) = isotomic conjugate of X(32087)


X(5559) =  GARCIA-FEUERBACH POINT GF(5/3)

Barycentrics    1/[(a + b + c)(b + c - a) - (b2 + c2 - a2)(5/3)] : :

Garcia-Feuerbach points are defined at X(5550).

Let Pa be the isotomic conjugate of X(1222) with respect to AX1)X(8), and define Pb and Pc cyclically. Then ABC and PaPbPc are perspective at X(5559). (Angel Montesdeoca, September 23, 2018)

X(5559) lies on these lines: {1, 140}, {2, 1392}, {8, 3884}, {9, 3632}, {10, 1320}, {21, 519}, {35, 104}, {36, 1476}, {79, 517}, {80, 3057}, {84, 5119}, {90, 1697}, {145, 2320}, {314, 3264}, {518, 3255}, {952, 3065}, {1389, 5443}, {1656, 2098}, {3254, 4553}, {3679, 3680}, {4668, 4900}, {4677, 4866}


X(5560) =  GARCIA-FEUERBACH POINT GF(5)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 1/[(a + b + c)(b + c - a) - 5(b2 + c2 - a2)]

Garcia-Feuerbach points are defined at X(5550).

X(5560) lies on these lines: {1, 381}, {7, 3585}, {8, 3583}, {21, 1698}, {40, 3467}, {46, 3065}, {79, 1837}, {84, 3336}, {90, 484}, {943, 3586}, {1000, 1479}, {1125, 2320}, {1320, 3633}, {1389, 1699}, {1392, 3244}, {1478, 3296}


X(5561) =  GARCIA-FEUERBACH POINT GF(-3)

Barycentrics    1/[(a + b + c)(b + c - a) + 3(b2 + c2 - a2)] :

Garcia-Feuerbach points are defined at X(5550).

Let A′B′C′ be the cevian triangle of X(1) with respect to the incentral triangle. Let A″ be the reflection of A′ in BC, and define B″ and C″ cyclically. The lines AA″, BB″, CC″ concur in X(5561). (Randy Hutson, August 17, 2014)

X(5561) lies on these lines: {1, 382}, {7, 3583}, {8, 3585}, {9, 484}, {21, 3624}, {30, 5424}, {46, 3467}, {57, 3065}, {80, 1836}, {84, 3337}, {90, 3336}, {104, 1699}, {551, 2320}, {1000, 1478}, {1156, 4312}, {1392, 3635}, {1479, 3296}, {1770, 3634}, {3830, 5425}, {5010, 5219}

X(5561) = isogonal conjugate of X(5010)
X(5561) = isotomic conjugate of X(17360)
X(5561) = perspector of the circle centered at X(1) with radius 2r
X(5561) = X(15110)-of-excentral-triangle


X(5562) =  REFLECTION OF X(52) IN X(5)

Trilinears        cos2A cos(B - C) : cos2B cos(C - A) : cos2C cos(A - B)
Trilinears        (cos A)(cos 2B + cos 2C) : (cos B)(cos 2C + cos 2A) : (cos C)(cos 2A + cos 2B)
Barycentrics   (cot A)(csc 2B + csc 2C) : (cot B)(csc 2C + csc 2A) : (cot C)(csc 2A + csc 2B)
Barycentrics   (sin 2A)(cos 2B + cos 2C) : (sin 2B)(cos2C + cos 2A) : (sin 2C)(cos 2A + cos 2B)
Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(b2 + c2 - a2)2[a2b2 + a2c2 - (b2 - c2)2]
Barycentrics    tan B tan C - cot B cot C : :

X(5562) = 4X(5) - 3*X(51)

Let A′ be the point, other than A, in which the line parallel to BC meets the circumcircle of ABC, and define B′ and C′ cyclically. Let PA be the point in which the line through A′ perpendicular to BC meets BC, and define PB and PC cyclically; the points PA, PB, PC are collinear, forming the so-called Simson line of A′. The Simson lines of A′, B′, C′ concur in X(5562).      (Dao Thanh Oai, October 2, 2013)

X(5562) = isotomic conjugate of isogonal conjugate of X(418), and A′B′C′ is homothetic to the orthic triangle of ABC from X(2) with ratio -2.      (Peter Moses, October 4, 2013)

Let A′B′C′ be the cevian triangle of X(3). Let A″B″C″ be the reflection of A′B′C′ in X(3). Let A*B*C be the tangential triangle, with respect to A′B′C′, of the circumconic of A′B′C′ centered at X(3) (that is, the bicevian conic of X(3) and X(394)). The lines A″B*, B″B*, C″C* concur in X(5562). (Randy Hutson, August 17, 2014)

The following items were contributed by Randy Hutson, August 17, 2014:
X(5562) = X(20)-of-orthic-triangle
X(5562)-of-excentral-triangle = X(20)
X(5562)-of-hexyl-triangle = X(4)
X(5562)-of-intouch-triangle = X(950)
X(5562) is the QA-P5 center (Isotomic Center) of the quadrangle ABCX(4); see Isotomic Center
. X(5562) is the QA-P37 center of quadrangle ABCX(4); see QA-P37. (For certain special cases of quadrangles, such as orthocentric systems, some QA points coincide.)

The tangents at A, B, C to the Euler central cubic (K044) concur in X(5562), which lies on the Euler central cubic. (Randy Hutson, November 22, 2014)

Let L be the line X(2)X(6). Let U = isogonal conjugate of polar conjugate of L, and let V = polar conjugate of isogonal conjugate of L. Then X(5562) = U∩V. (U = X(3)X(49) and V = X(4)X(69).) (Randuy Hutson, February 16, 2015)

If you have The Geometer's Sketchpad, you can view X(5562).

X(5562) lies on the hyperbola {A,B,C,X(4),X(51)} and these lines: {2,389}, {3,49}, {4,69}, {5,51}, {20,2979}, {26,1495}, {39,3289}, {40,2807}, {99,1298}, {146,2889}, {159,1350}, {195,567}, {216,217}, {255,1364}, {265,3519}, {373,568}, {381,5446}, {399,2918}, {417,2972}, {520,5489}, {542,1205}, {575,1199}, {578,1993}, {631,3819}, {916,1071}, {970,1812}, {1060,1425}, {1062,3270}, {1503,3313}, {2055,3463}, {2072,5449}, {2781,2883}, {2818,3869}, {2888,3153}, {3060,3091}, {3090,3567}, {3564,4173}, {3719,4158}

X(5562) = reflection of X(i) in X(j) for these (i,j): (185,3), (52,5), (3,1216), (1843,1352)
X(5562) = isogonal conjugate of X(8884)
X(5562) = isotomic conjugate of X(8795)
X(5562) = complement of X(5889)
X(5562) = anticomplement of X(389)
X(5662) = X(343)-Ceva conjugate of X(216)
X(5662) = crosspoint of X(3) and X(68)
X(5662) = crosssum of X(4) and X(24)
X(5662) = crossdifference of every pair of points on the line X(421)X(2501)
X(5662) = orthocenter-of-2nd-Euler-triangle
X(5562) = pole wrt polar circle of trilinear polar of X(8794)
X(5562) = X(48)-isoconjugate (polar conjugate) of X(8794)


X(5563) =  ISOGONAL CONJUGATE OF X(5559)

Trilinears    3 - 2 cos A : 3 - 2 cos B : 3 - 2 cos C : :
Barycentrics    a2(b2 + c2 - a2 - 3bc) : :
X(5563) = 3R*X(1) - 2r*X(3)

X(5563) lies on these lines: {1,3}, {2,5258}, {4,4317}, {5,3582}, {10,5253}, {11,546}, {12,3628}, {21,551}, {23,5322}, {30,4325}, {58,106}, {61,5357}, {62,5353}, {73,1173}, {79,104}, {80,1210}, {100,3244}, {101,1475}, {140,3584}, {172,1015}, {191,392}, {202,2307}, {214,3881}, {226,5443}, {229,759}, {376,4309}, {388,499}, {404,519}, {474,3679}, {495,632}, {496,3583}, {497,3529}, {498,1056}, {529,4187}, {535,5046}, {550,3058}, {575,1428}, {576,1469}, {595,1149}, {614,1995}, {908,1125}, {956,1698}, {958,3624}, {993,3616}, {995,1203}, {997,3984}, {1014,3663}, {1054,3987}, {1055,4251}, {1058,4302}, {1066,1450}, {1106,1497}, {1108,1781}, {1124,3592}, {1250,5237}, {1283,1623}, {1290,2718}, {1334,5030}, {1335,3594}, {1376,3632}, {1398,5198}, {1449,2178}, {1478,3086}, {1479,3146}, {1621,3636}, {1696,3973}, {1804,4328}, {1866,1870}, {2067,3299}, {2163,3445}, {2242,2275}, {3085,5265}, {3218,3878}, {3241,4188}, {3530,4995}, {3560,4654}, {3622,5248}, {3635,3871}, {3723,5124}, {3731,5120}, {3754,4861}, {3825,5080}, {3868,4867}, {3869,4880}, {3874,4511}, {3884,4973}, {3892,4881}, {3911,5445}, {3915,4257}, {4225,4658}, {4253,5526}, {4297,5441}, {5302,5506}

X(5563) = {X(1),X(36)}-harmonic conjugate of X(35)


X(5564) =  ISOTOMIC CONJUGATE OF X(5557)

Trilinears        a2(3 + 2 cos A) : b2(3 - 2 cos B) : c2(3 - 2 cos C)
Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b2 + c2 - a2 + 3bc)
X(5564) = r(r + 4R)*X(7) + 5s2*X(8)

X(5564) lies on these lines: {2,3723}, {7,8}, {10,4360}, {86,519}, {190,3686}, {239,594}, {314,3264}, {316,5015}, {321,4886}, {326,4853}, {333,3977}, {350,4651}, {527,4545}, {536,1654}, {668,1269}, {872,4489}, {894,3629}, {966,4664}, {1086,4478}, {1125,1268}, {1213,4971}, {1266,4746}, {1267,3595}, {1278,4643}, {2345,3759}, {2895,4980}, {3593,5391}, {3619,4402}, {3625,3879}, {3626,4357}, {3661,3763}, {3662,4445}, {3663,4669}, {3664,4701}, {3672,4678}, {3679,3875}, {3729,4034}, {3757,4046}, {3912,4060}, {3975,4043}, {4007,4384}, {4021,4691}, {4389,4668}, {4419,4764}, {4440,4726}, {4675,4772}, {4686,4690}, {4698,4727}, {4699,4851}, {4741,4821}

X(5564) = anticomplement of X(3723)


X(5565) =  OUTER DOMINICAN IMAGE OF X(6)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 1/[a4b4 + a4c4 - a2b6 - a2c6 + a2b4c2 + a2b2c4 + 4a2bc(b2 + c2)S - 2b4c4]

Let X be a point in the plane of a triangle ABC. Let A* = AX∩BC, and define B* and C* cyclically. Let O(BA*) be the circle having diameter BA* and O(A*C) the circle having diameter A*C. There are two lines tangent to the circles O(BA*) and O(A*C). Let UA be the inner one (i.e., closer to A) and VA the outer. Define UB and UC cyclically and VB and VC cyclically. Let A′ = VB∩VC, and define B′ and C′ cyclically. The lines AA′, BB′, CC′ concur in the outer Dominican image of X, denoted by D(X). Let A″ = UB∩UC, and define B″ and C″ cyclically. The lines AA″, BB″, CC″ concur in the inner Dominican image of X, denoted by E(X).      (Emmanuel José García, September 28, 2013)

Suppose that X = x : y : z (barycentrics). Let

f(a,b,c,x,y,z) = a2[a2y2z2 - x2(2(y + z)(yz)1/2S + y2SB + z2SC)] and
g(a,b,c,x,y,z) = a2[a2y2z2 - x2(2(y + z)(yz)1/2(- S) + y2SB + z2SC)].

Then D(X) = f(a,b,c,x,y,z) : f(b,c,a,y,z,x) : f(c,a,b,z,x,y) and E(X) = g(a,b,c,x,y,z) : g(b,c,a,y,z,x) : g(c,a,b,z,x,y).

Note that D(X) and E(X) lie in the real plane of ABC if and only if X lies inside ABC; equivalently, yz >0, zx > 0, xy > 0.      (Peter Moses, September 30, 2013)

If the construction is modified by using the A-internal tangent and the B- and C- external tangents, the resulting triangle is perspective to ABC, and likewise for 5 other perspectivities, for a total of 8 perspectors, of which only two (D(X) and E(X)) are central if X is central. The 8 perspectors are given by barycentrics

a2[a2y2z2 - x2(2(y + z)(yz)1/2S*i + y2SB + z2SC )] : b2[b2z2x2 - y2(2(z + x)(zx)1/2S*j + z2SB + x2SC )] : c2[c2x2y2 - z2(2(x + y)(xy)1/2S*k + x2SB + y2SC)],

where (i,j,k) ranges through 8 3-tuples listed here as additive-inverse pairs: (-1,-1,-1) & (1,1,1), (-1,-1,1) & (1,1,-1), (-1,1,-1) & (1,-1,1), (-1,1,1) & (1,-1,-1). Each pair determines a line, and the four lines concur in the point having 1st barycentric

a2t/(t2 - w2), where t = x2(y2SB + z2SC - a2y2z2, w = 2x2(y + z)(yz)1/2S.

The 4 lines determined by pairs differing only in the first coordinate, such as (-1,1,1) & (1,1,1), concur in A; those 4 differing only in the 2nd coordinate concur in B, and those 4 differing only in the 3rd coordinate concur in C.      (Peter Moses, October 1, 2013)

X(5565) lies on these lines: {}


X(5566) =  INNER DOMINICAN IMAGE OF X(6)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 1/[a4b4 + a4c4 - a2b6 - a2c6 + a2b4c2 + a2b2c4 - 4a2bc(b2 + c2)S - 2b4c4]

For definitions and discussion, see X(5565).

X(5566) lies on these lines: {}


X(5567) =  OUTER DOMINICAN IMAGE OF X(76)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2/[2a6 - b6 - c6 - a2b4 - a2c4 + b4c2 + b2c4 - 4bc(b2 + c2)S]

For definitions and discussion, see X(5565).

X(5567) lies on these lines: {}


X(5568) =  INNER DOMINICAN IMAGE OF X(76)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2/[2a6 - b6 - c6 - a2b4 - a2c4 + b4c2 + b2c4 + 4bc(b2 + c2)S]

For definitions and discussion, see X(5565).

X(5568) lies on these lines: {}


X(5569) =  CENTER OF THE DAO 6-POINT CIRCLE

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 7a4 + b4 + c4 - 7a2b2 - 7a2c2 - 4b2c2

Let ABC be a triangle, and let AB be the center of the circle through A and tangent to the B-median at X(2), and define BC and CA cyclically. Let AC be the center of the circle through A and tangent to the C-median at X(2), and define BA and CB cyclically. The points AB, BA, BC, CB, CA, AC lie on a circle, of which X(5569) is the center.      (Dao Thanh Oai, Nov. 3, 2013)

The following properties were communicated by Peter Moses, November 4, 2013. Let Δ = area of ABC, r = radius of the Dao 6-point circle, and ω = Brocard angle of ABC. Let fa = 2b2 + 2c2 - a2, and define fb and fc cyclically. Then

r = [fafbfc(b2c2 + c2a2 + a2b2)]1/2/(144Δ)2

|ABBA| = |BCCB| = |CAAC| = [fafbfc]1/2/(36Δ)

Let X = X(5569). Then angle(ABXBA) = angle(BCXCB) = angle(CAXAC) = Tan-1[(a2 + b2 + c2)/(4Δ)]

angle(ABBAX) = angle(BCCBX) = angle(CAACX) = π/2 - ω

If you have The Geometer's Sketchpad, you can view X(5569).

X(5569) lies on these lines: {2,187}, {3,543}, {182,524}, {183,2482}, {538,3524}, {599,620}, {754, 5054}, {3406, 5503}, {5077,5461}

X(5569) = midpoint of X(2) and X(8182)
X(5569) = reflection of X(2) in X(1153)
X(5569) = harmonic center of medial-van Lamoen and anticomplementary-van Lamoen circles


X(5570) =  INVERSE-IN-INCIRCLE OF X(3)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where
f(a,b,c) = a(a5b + a5c - a4b2 - a4c2 - 2a3b3 - 2a3c3 + 2a2b4 + 2a2c4 - 2a2b3c - 2a2bc3 + 4a2b2c2 + ab5 + ac5 - ab4c - abc4 - b6 - c6 + 2b5c + 2bc5 + b4c2 + b2c4 - 4b3c3)
X(5570) = (r2 + 2rR - R2)*X(1) - r2*X(3)   (Peter Moses, November 9, 2013)

X(5570) lies on these lines: {1,3}, {11,912}, {72,499}, {496,1858}, {498,5439}, {515,5083}, {518,1737}, {938,5080}, {971,3583}, {1066,1393}, {1071,1479}, {1210,3814}, {1785,1876}, {2771,5533}, {3086,3868}, {3873,5176}

X(5570) = inverse-in-de-Longchamps-ellipse of X(3)
X(5570) = {X(2446),X(2447)}-harmonic conjugate of X(3)
X(5570) = X(2072)-of-intouch-triangle. (Randy Hutson, July 18, 2014)


X(5571) =  X(1) OF INVERSE-IN-INCIRCLE TRIANGLE

Barycentrics a[(b + c - a)(ab + ac - (b - c)2)sin(A/2) + b(c + a - b)2sin(B/2) + c(a + b - c)2Sin(C/2)] : :

Let ABC be a triangle. Let A′ = (inverse-in-incircle) of A, and define B′ and C′ cyclically. The triangle with vertices A,′ B, C′ is introduced here as the inverse-in-incircle triangle. A′B′C′ is a central triangle of type 2. The following properties were communicated by Peter Moses, November 9, 2013:

Barycentric coordinates for vertices:
A′ = (b - c)2 - ab - ac : b(a - b - c) : c(a - b - c)
B′ = a(b - c - a) : (c - a)2 - bc - ba : c(b - c - a)
C′ = a(c - a - b) : b(c - a - b) : (a - b)2 : a(c - a - b).

|B′C′|2 = (a - b - c)2[a2 - (b - c)2]/(16bc)
area(A′B′C′)/area(ABC) = (b + c - a)(c + a - b)(a + b - c)/(16abc)

X(354) = centroid of A′B′C′
X(942) = circumcenter of A′B′C′
X(1) = orthocenter of A′B′C′
X(5045) = nine-point center of A′B′C′

The following triangles are perspective to A′B′C′, with perspector X(1): reflection of T in X(3), excentral, incentral, mid-arc, 2nd circumperp, mixtilinear, 1st circumperp. Also, A′B′C′ is perspective to other central triangles, with perspectors as shown:

medial, X(142)
intouch, X(354)
hexyl, X(3333)
2nd circumperp, X(57)

X(5571) lies on these lines: {1,164}, {65,209}, {177,354}

X(5571) = X(10)-of-intouch-triangle. (Randy Hutson, July 18, 2014)


X(5572) =  X(6) OF INVERSE-IN-INCIRCLE TRIANGLE

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where
f(a,b,c) = a(a3b + a3c - 3a2b2 - 3a2c2 + 3ab3 + 3ac3 - 3ab2c - 3abc2 - b4 - c4 + 2b3c + 2bc3 - 2b2c2)

See X(5571) for the inverse-in-incircle triangle.

X(5572) = X(7) - 3X(354)   (Peter Moses, November 9, 2013)

X(5572) = X(141)-of-intouch-triangle. Let A′ be the inverse-in-incircle of the A-excenter, and define B′ and C′ cyclically. Then X(5572) = X(9)-of-A′B′C′. (Randy Hutson, July 18, 2014)

X(5572) lies on these lines: {1,6}, {2,3059}, {7,354}, {55,1445}, {57,4326}, {65,390}, {105,2264}, {142,2886}, {144,3873}, {241,2293}, {480,3870}, {516,942}, {938,2550}, {946,971}, {982,4335}, {1210,3826}, {1376,3174}, {1387,2801}

X(5572) = complement of X(3059)
X(5572) = X(6)-of-inverse-in-incircle triangle


X(5573) =  PERSPECTOR OF MEDIAL AND ANDROMEDA TRIANGLES

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(a2 + 3b2 + 3c2 - 6bc)

Let A′ be the center of the inverse-in-incircle of the A-excircle, and define B′ and C′ cyclically. The triangle with vertices A,′ B, C′ is introduced here as the Andromeda triangle. A′B′C′ is a central triangle of type 2. The following properties were communicated by Peter Moses, November 9, 2013:

Barycentric coordinates for vertices:
A′ = a[a2 + 3(b - c)2] : b[3a2 + (b - c)2] : c[3a2 + (b - c)2]
B′ = a[3b2 + (c - a)2] : b[b2 + 3(c - a)2] : c[3b2 + (c - a)2]
C′ = a[3c2 + (a - b)2] : b[3c2 + (a - b)2] : c[c2 + 3(a - b)2]

The triangle A′B′C′ is perspective to the following triangles, with perspector X(1): ABC, excentral, incentral, mid-arc, mixtilinear, 2nd circumperp. Also, A′B′C′ is perspective to the intouch triangle at X(4907).

X(5573) lies on these lines: {1,474}, {2,3677}, {9,982}, {31,57}, {43,3243}, {165,1279}, {223,3660}, {238,3928}, {354,2999}, {748,3929}, {988,5436}, {1054,3749}, {1086,1699}, {1104,3361}, {1191,3339}, {1201,3340}, {1261,3872}, {1420,3924}, {1453,3338}, {1722,3976}, {2276,3247}, {2886,4859}, {3305,4392}, {3306,5269}, {3315,3870}, {3452,4310}, {3756,3772}, {3915,5128}, {3999,4383}, {4003,4423}, {4666,4850}, {4907,5274}

X(5573) = complement of X(5423)


X(5574) =  PERSPECTOR OF MEDIAL AND ANTLIA TRIANGLES

Barycentrics   a(b + c - a)3(a2 + 3b2 + 3c2 - 6bc)

Let A′ be the center of the inverse-in-A-excircle of the incircle, and define B′ and C′ cyclically. The triangle with vertices A,′ B, C′ is introduced here as the Antlia triangle. A′B′C′ is a central triangle of type 2. The following properties were communicated by Peter Moses, November 10, 2013:

Barycentric coordinates for vertices:
A′ = a[a2 + 3(b - c)2] : - b[3a2 + (b - c)2] : - c[3a2 + (b - c)2]
B′ = - a[3b2 + (c - a)2] : b[b2 + 3(c - a)2] : - c[3b2 + (c - a)2]
C′ = - a[3c2 + (a - b)2] : - b[3c2 + (a - b)2] : c[c2 + 3(a - b)2]

The triangle A′B′C′ is perspective to the following triangles, with perspector X(1): ABC, excentral, incentral, mid-arc, mixtilinear, 2nd circumperp.

X(5574) lies on these lines: {2,479}, {9,165}, {200,3119}, {2391,3452}, {3041,5223}, {3817,5199}


X(5575) =  PERSPECTOR OF INTOUCH AND ANTLIA TRIANGLES

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a[a2 - (b - c)2][a2 + 3(b - c)2]

See X(5574) for the Antlia triangle.

X(5575) lies on these lines: {7,346}, {57,1122}, {269,604}, {1463,5223}, {1469,3339}, {3062,4014}


X(5576) =  CENTER OF NINE-POINT-CIRCLE-INVERSE OF CIRCUMCIRCLE

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b10 + c10 - a8(b2 + c2) + 2a6(b4 + c4 + b2c2) + 2a4b2c2(b2 + c2) - 2a2(b8 + c8 - 2b4c4) - 3b8c2 - 3b2c8 + 2b6c4 + 2b4c6
X(5576) = 3(-5 + J2)*X(2) + (7 - J2)*X(3), where J = |OH|/R. (See X(1113) for J = J(a,b,c).)    (Peter Moses, November 10, 2013)

As a point on the Euler line, X(5576) has Shinagawa coefficients (E + 4F, 3E + 4F).

X(5576) lies on these lines: {2,3}, {51,5449}, {125,5462}, {143,3580}, {195,3564}, {511,1209}, {524,3519}, {570,1506}, {1199,3448}

X(5576) = polar-circle-inverse of X(37932)
X(5576) = center of inverse-in-polar-circle-of-tangential-circle
X(5576) = center of inverse-in-{circumcircle, nine-point circle}-inverter-of-tangential-circle
X(5576) = inverse-in-orthocentroidal-circle of X(26)


X(5577) =  INVERSE-IN-{INCIRCLE, CIRCUMCIRCLE}-INVERTER OF X(106)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(b + c - a)(b - c)2[b2 + c2 - a2 - 4bc]2

The inverter of circles (U,u) and (V,v) is introduced here as the circle (W,w) such that (V,v) is the inverse-in-(W,w) of (U,u), where W is the insimilicenter of (U,u) and (V,v).

Peter Moses (Nov. 12, 2013) found representations for W and w, as follows. The center W of (W,w) is the combo uV + vU; that is, barycentrics for W are given by u(vA, vB, vC) + v(uA, uB, uC), where (uA, uB, uC) are normalized barycentrics for U, and (vA, vB, vC) are normalized barycentrics for V. The radius of (W,w) is w = sqrt[uv(1 - (|UV|/(u + v))2], so that the inverter is real if and only if u + v >= |UV|. Moses also gave properties for the case that (U,u) = (O,R) = circumcircle and (V,v) = (I,r) = incircle, for which the inverter is given by (W,w) = (X(55), (r/(r + R))sqrt(rR + 4R2)). The power of A with respect to (W,w) is

- abc(b + c - a)2/D, where D = 2(a3 + b3 + c2 - a2b - a2c - ab2 - ac2 - b2c - bc2); likewise, (power of B) = - abc(a - b + c)2/D and (power of C) = - abc(a + b - c)2/D.

The alternate inverter of circles (U,u) and (V,v) is introduced here as the circle (W′,w') such that (V,v) is the inverse-in-(W,w) of (U,u), where W′ is the exsimilicenter of (U,u) and (V,v). The center W′ is the combo uV - vU, and the radius w' of W′ is given by sqrt[uv(- 1 + (|UV|/(u - v))2], so that the alternate inverter is real if and only if |u - v| <= |UV|. (Peter Moses, September 3, 2014)

The appearance of (i,j) in the following list means that X(i) is on the circumcircle, X(j) is on the incircle, and each is the inverse-in-(W,w) of the other: (98, 5578), (99, 5579), (100, 3021), (101, 5580), (103, 1364), (105, 11), (106, 5577), (108, 1360), (109, 1362), (840, 3025), (934, 3321), (939, 5582), (972, 3318), (1381, 2447), (1382, 2446), (1477, 1357), (2222, 3322), (2291, 3022), (2384, 5583), (2717, 3326).

The barycentrics for X(5577) are of the form g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = a2(b + c - a)(b - c)2[b2 + c2 - a2 - kbc]2, where k is a homogeneous of degree zero and symmetric in (a,b,c); every such point lies on the incircle. (Peter Moses, August 28, 2014)

If you have The Geometer's Sketchpad, you can view Inverter.

X(5577) lies on the incircle and these lines: {55,106}, {57,1361}, {244,1364}, {354,1317}, {1086,3326}, {1362,4860}, {3025,3271}, {3319,3660}


X(5578) =  INVERSE-IN-{INCIRCLE, CIRCUMCIRCLE}-INVERTER OF X(98)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b + c - a)(b - c)2(a5 + a4b + a4c - a3b2 - a3c2 - a3bc - a2b3 - a2c3 - ab3c - abc3 - 2ab2c2 + b4c + bc4 - b3c2 - b2c3)2

Inverters are dicussed at X(5577).

X(5578) lies on the incircle and these lines: {55,98}, {354,1355}


X(5579) =  INVERSE-IN-{INCIRCLE, CIRCUMCIRCLE}-INVERTER OF X(99)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b + c - a)(a3b + a3c + a2b2 + a2c2 - 2a2bc - ab2c - abc2 + b3c - 2b2c2 + bc3)2

Inverters are discussed at X(5577).

X(5579) lies on the incircle and these lines: {11,4357}, {55,99}, {354,1356}, {1357,3664}, {1358,3666}, {1365,3663}


X(5580) =  INVERSE-IN-{INCIRCLE, CIRCUMCIRCLE}-INVERTER OF X(101)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(b + c - a)(b3 + c3 + a2b + a2c - 2ab2 - 2ac2 + 2abc - b2c - bc2)2

Inverters are discussed at X(5577).

X(5580) lies on the incircle and these lines: {11,142}, {55,101}, {354,1358}, {1357,4860}, {1364,3056}, {1365,4890}


X(5581) =  INVERSE-IN-{INCIRCLE, CIRCUMCIRCLE}-INVERTER OF X(739)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(b + c - a)(b - c)2(2a2b + 2a2c - 2ab2 - 2ac2 + abc + b2c + bc2)2

Inverters are discussed at X(5577).

X(5581) lies on the incircle and this line: {55,739}


X(5582) =  INVERSE-IN-{INCIRCLE, CIRCUMCIRCLE}-INVERTER OF X(2384)

Barycentrics   a^2*(b-c)^2*(a^3-5*(b+c)*a^2+(5*b^2+b*c+5*c^2)*a-b^3-c^3)^2*(-a+b+c) : :

Inverters are discussed at X(5577).

X(5582) lies on the incircle and this line: {55, 2384}


X(5583) =  CENTER OF INVERSE-IN-{INCIRCLE, CIRCUMCIRCLE}-INVERTER OF EULER LINE

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b + c - a)(b - c)(4a5 + b5 + c5 - a4b - a4c - 2a3b2 - 2a3c2 + 4a2b2c + 4a2bc2 - 2ab4 - 2ac4 + 4ab2c2 - 3b4c - 3bc4 + 2b3c2 + 2b2c3)

Inverters are discussed at X(5577).

X(5583) lies on these lines: {55, 523}, {1946, 6362}, {3737, 10383}


X(5584) =  PERSPECTOR OF EXTANGENTS AND APUS TRIANGLES

Barycentrics   a2(b5 + c5 - a5 + a4b + a4c + 2a3b2 + 2a3c2 + 4a3bc - 2a2b3 - 2a2c3 + 2a2b2c + 2a2bc2 - ab4 - ac4 - 4ab3c - 4abc3 - 6ab2c2 - 3b4c - 3bc4 + 2b3c2 + 2b2c3)

Let A′ be the insimilicenter of the circumcircle and A-excircle, and define B′ and C′ cyclically. The triangle with vertices A,′ B, C′ is introduced here as the Apus triangle. A′B′C′ is a central triangle of type 2. The following properties were communicated by Peter Moses, November 12, 2013:

Barycentric coordinates for vertices:
A′ = a2(a - b + c)(a + b - c) : b2(b - c - a)(a + b + c) : c2(c - b - a)(a + b + c)
B′ = a2(a - c - b)(a + b + c) : b2(b - c + a)(b + c - a) : c2(c - a - b)(a + b + c)
C′ = a2(a - b - c)(a + b + c) : b2(b - a - c)(a + b + c) : c2(c - a + b)(c + a - b)

The triangle A′B′C′ is perspective to ABC at X(55), the excentral and hexyl triangles at X(3), the incentral triangle at X(56), the tangential triangle at X(198), the Feuerbach triangle at X(4), and the Apollonius triangle at X(573).

The Apus triangle is the extraversion triangle of X(56). (Randy Hutson, July 18, 2014)

Let A′B′C′ be the intouch triangle of the extangents triangle, if ABC is acute. Then A′B′C′ is homothetic to the cevian triangle of X(3) at X(5584). (Randy Hutson, December 2, 2017)

X(5584) lies on these lines: {1,3}, {4,3925}, {6,4300}, {19,1212}, {20,958}, {64,71}, {72,480}, {104,3528}, {201,1854}, {210,1490}, {212,221}, {218,573}, {227,1035}, {380,5120}, {405,516}, {411,1376}, {946,4423}, {954,3671}, {956,4297}, {962,1001}, {1042,1253}, {1151,5415}, {1152,5416}, {1204,3611}, {1350,3779}, {1407,1496}, {1742,5247}, {1753,1859}, {1802,3207}, {1804,3160}, {2266,4258}, {2951,5234}, {2975,3522}, {3146,5260}, {3149,4413}, {5248,5493}


X(5585) =  CENTER OF AQUARIUS CONIC

Barycentrics   a2(11b2 + 11c2 - 13a2) : b2(11c2 + 11a2 - 13b2) : c2(11a2 + 11b2 - 13c2)

Let A′B′C′ be the tangential triangle, so that A′ is the center of the circle OA through B and C that is orthogonal to the circumcircle (whence OA is self-inverse with respect to the circumcircle). Define OB and OC cyclically. Let O(A,B) be the circle which is the inverse-in-OA of OB; define O(B,C) and O(C,A) cyclically. Let O(A,C) be the circle which is the inverse-in-OA of OC; define O(B,A) and O(C,B) cyclically. The centers of these six circles lie on a conic, introduced here as the Aquarius conic, of which X(5585) is the center. The following properties were found by Peter Moses (Nov. 18, 2013).

The centers of the 6 circles are given by the following barycentrics:

- a2 : b2 : 3c2,       3a2 : - b2 : c2        a2 : 3b2 : - c2;
- a2 : 3b2 : c2,       a2 : - b2 : 3c2        3a2 : b2 : - c2

The radius of O(A,B) is abc/(-a2 + b2 + 3c2); the remaining 5 radii are found by cyclical and bicentric modifications. The Aquarius conic has equation

b4c4x2 + c4a4y2 + a4b4z2 + 11a2b2c2(a2yz + b2zx + c2xy) = 0

The major axis of the Aquarius conic is the Brocard axis, and the perspector is X(6).      (Randy Hutson, November 30, 2013)

X(5585) lies on these lines: {3,6}, {20,3054}, {439,3619}, {3055,3523}


X(5586) =  PERSPECTOR OF AQUILA AND INTOUCH TRIANGLES

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (a - b + c)(a + b - c)(3a + b + c)(a + 2b + 2c)

Let A′ = reflection of the incenter in A, and define B′ and C′ cyclically. The triangle A′B′C′ is introduced here as the Aquila triangle (in TCCT, , p. 173, as T(1,2)). The following properties were found by Peter Moses (Nov. 18, 2013).

A′ = a + 2b + 2c : -a : -a (trilinears)
B′ = -b : b + 2c + 2a : -b
C′ = -c : -c : c + 2a + 2b
area(A′B′C′) = 4*area(ABC).

The Aquila triangle is perspective to the following triangles with perspector X(1): ABC, excentral, incentral, mid arc, 2nd circumperp, and mixtilinear. The Aquila triangle is perspective to other triangles with perspectors as listed here: medial, X(1698); anticomplementary, X(10); intouch, X(5586); Euler, X(1699); hexyl, X(1768); tangential 1st circumperp, X(35); tangential 2nd circumperp, X(36); Carnot, X(5587); outer Grebe, X(5588); inner Grebe, (X5589).

X(5586) lies on these lines: {1,376}, {7,10}, {57,191}, {65,3632}, {145,4298}, {388,4114}, {942,4312}, {986,4888}, {1046,4859}, {1317,3340}, {1537,1768}, {1698,3715}, {1788,3982}, {3361,3616}, {3485,4031}, {3600,3635}, {3633,5434}


X(5587) =  PERSPECTOR OF AQUILA AND CARNOT TRIANGLES

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 2b4 + 2c4 - a4 + a3b + a3c - a2b2 - a2c2 - 2a2bc - ab3 - ac3 + ab2c + abc2 - 4b2c2

The Aquila triangle is introduced at X(5586). Not only is X(5587) the perspector of the Aquila and Carnot triangles, but also, X(5587) is also the perspector of the Euler triangle and the outer Garcia triangle, defined as follows. Let TATBTC be the extouch triangle of a triangle ABC, and let LA be the line perpendicular to line BC at TA. Of the two points on LA at distance r from TA, let A′ be the one farther from A and let A″ be the closer. Define B′, C′ and B″, C″ cyclically. We call A′B′C′ the outer Garcia triangle and A″B″C″ the inner Garcia triangle. The outer triangle is introduced by Emmanuel Garcia in ADGEOM #1205 (April 2, 2014), and the inner by Garcia in ADGEOM #1212 (April 3, 2014). In subsequent postings, Paul Yiu reports that A′B′C′ is oppositely congruent to ABC at X(10), the Euler lines of the four triangles AB′C′, BC′A′, CA′B′, ABC concur in X(2475), and the circles (BCA′), (CAB′), (ABC′) concur in X(80). Peter Moses reports that

A′ = -a : a + c : a + b,     B′ = b + c : -b : b + a,     C′ = c + b : c + a : -c

A″ = a2 : ca + c2 - b2 : ab + b2 - c2,     B″ = bc + c2 - a2 : b2 : ab + a2 - c2 ,     C″ = bc + b2 - a2 : ca + a2 - b2 : c2     

Randy Hutson notes that the inner Garcia triangle is the anticomplement of orthic-triangle-of-Fuhrmann-triangle, that X(5587) = X(2)-of-Fuhrmann triangle, and X(5587) = {X(355), X(5)}-harmonic conjugate of X(1).

Let MA be the midpoint of segment BC and A′ the reflection of X(1) in MA; define B′ and C′ cyclically. Then A′B′C′ is the outer Garcia triangle. See Emmanuel José García, A Note on Reflections.

Triangle A′B′C′ is perspective to the cevian triangle of the points on the cubic (K366) and to the anticevian triangles of points on the cubic (K345), as well at the following triangles, with perspectors:

medial, X(1)
excentral, extouch, extangents, X(40)
anticomplementary, Fuhrmann, X(8)
circumcircle midard, 2nd circumperp, X(100)
tangential 1st circumperp, X(5587)
tangential 2nd circumperp, X(956)
Euler, X(5587)
outer Grebe, X(5688)
inner Grebe, X(5689)

The appearance of (i,j) is the following list means that (X(i) of A′B′C′) = X(j): (1,8), (2,3679), (3,355), (4,40), (5, 5690), (6,3416), (7,5223), (8,1), (9,2550), (10,10), (11,1145), (20,5691). (Peter Moses, June 21, 2014)

The point A′ is also the orthocenter of BCIA and cyclically for B′ and C′, where IA, IB, IC are the excenters. (Randy Hutson, October 8, 2019)

X(5587) lies on these lines: {1,5}, {2,515}, {3,1698}, {4,9}, {8,908}, {30,165}, {35,3560}, {46,3585}, {55,3586}, {57,1478}, {63,5080}, {78,5086}, {84,377}, {145,5068}, {149,3895}, {153,3306}, {200,3419}, {210,381}, {235,5090}, {262,730}, {265,2948}, {282,1549}, {376,3828}, {382,3579}, {388,1210}, {404,5450}, {411,5260}, {442,1490}, {498,3601}, {499,1420}, {519,3545}, {547,3655}, {551,5071}, {631,3634}, {912,4654}, {936,1329}, {938,5261}, {942,5290}, {944,1125}, {950,3085}, {956,5231}, {958,3149}, {962,3617}, {997,3814}, {1000,4342}, {1012,1376}, {1071,3812}, {1158,2475}, {1350,3844}, {1352,3751}, {1385,1656}, {1453,5230}, {1479,1697}, {1482,3632}, {1532,2886}, {1537,3036}, {1572,5475}, {1702,3071}, {1703,3070}, {1709,3359}, {1724,3072}, {1750,3925}, {1770,5128}, {1771,1935}, {1785,1857}, {1788,4292}, {1834,2910}, {1836,2093}, {1853,3753}, {2364,5397}, {2782,3097}, {3073,5264}, {3338,5270}, {3416,5480}, {3421,4847}, {3487,3947}, {3583,5119}, {3616,5056}, {3626,3855}, {3633,5072}, {3646,5084}, {3654,3845}, {3656,4677}, {3850,4668}, {3854,4678}, {3872,5176}, {3911,4293}, {3949,4007}, {4295,4848}, {4304,5218}, {5046,5250}, {5087,5289}

X(5587) = midpoint of X(1699) and X(3679)
X(5587) = reflection of X(i) in X(j) for these (i,j): (1699, 381), (3576,2)
X(5587) = crossdifference of every pair of points on the line X(654)X(1459)
X(5587) = homothetic center of hexyl and 4th Euler triangles
X(5587) = centroid of the six touchpoints of the Johnson circles and the outer Johnson triangle


X(5588) =  PERSPECTOR OF AQUILA AND OUTER GREBE TRIANGLES

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(a2 - b2 - c2 + 2ab + 2ac - S)

The Aquila triangle is introduced at X(5586). The outer and inner Grebe triangles are discussed by Darij Grinberg at Math Forum.

X(5588) lies on these lines: {1,6}, {10,1270}, {40,1160}, {1374,1738}, {1698,5590}


X(5589) =  PERSPECTOR OF AQUILA AND INNER GREBE TRIANGLES

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(a2 - b2 - c2 + 2ab + 2ac + S)

The Aquila triangle is introduced at X(5586). The outer and inner Grebe triangles are discussed by Darij Grinberg at Math Forum.

X(5589) lies on these lines: {1,6}, {10,1271}, {40,1161}, {1373,1738}, {1698,5591}


X(5590) =  PERSPECTOR OF MEDIAL AND OUTER GREBE TRIANGLES

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b2 + c2 + S

The outer and inner Grebe triangles are discussed by Darij Grinberg at Math Forum.

X(5590) = {X(2), X(141)}-harmonic conjugate of X(5591)

X(5590) lies on these lines: {2,6}, {3,5594}, {4,639}, {5,1160}, {8,5604}, {10,3640}, {76,5490}, {626,638}, {631,641}, {640,3090}, {642,3525}, {1162,1165}, {1267,3662}, {1698,5588}, {3535,5413}, {3661,5391}

X(5590) = homothetic center of ABC and cross-triangle of ABC and outer Grebe triangle


X(5591) =  PERSPECTOR OF MEDIAL AND INNER GREBE TRIANGLES

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b2 + c2 - S

The outer and inner Grebe triangles are discussed by Darij Grinberg at Math Forum.

X(5591) = {X(2), X(141)}-harmonic conjugate of X(5590)

X(5591) lies on these lines: {2,6}, {3,5595}, {4,640}, {5,1161}, {8,5605}, {10,3641}, {76,5491}, {626,637}, {631,642}, {639,3090}, {641,3525}, {1163,1164}, {1267,3661}, {1698,5589}, {3536,5412}, {3662,5391}

X(5591) = homothetic center of ABC and cross-triangle of ABC and inner Grebe triangle


X(5592) =  CIRCUMCENTER OF CEVIAN TRIANGLE OF X(190)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b - c) (3a3 + b3 + c3 - 2a2b - 2a2c - abc)

If you have The Geometer's Sketchpad, you can view X(5592).

X(5592) lies on these lines: {1,514}, {20,3667}, {513,960}, {659,2785}, {661,5051}, {764,4778}, {1960,4458}, {2789,3762}, {2899,3239}

X(5592) = Yff-contact-isogonal conjugate of X(8)


X(5593) =  CENTER OF YIU CONIC OF THE TANGENTIAL TRIANGLE (IF ABC IS ACUTE)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2SA(SA - SB)(SA - SC)(g(a,b,c) - g(a,c,b)), where g(a,b,c) = [b2SBSB(S2 - SCSC)(4S4 - (S2 + SASC)(3S2 + SBSB - 2SASC))]

The Yiu conic is presented at X(478); it passes through the 6 of the nine touch-points of the sidelines of a triangle and the excircles of the triangle. When the triangle is the tangential, the conic has center X(5593).

Let u(a,b,c) = 4a2b4c4 and v(a,b,c) = a2(a8 + b8 + c8 - 2a6b2 - 2a6c2 + 2a4b4 + 2a4c4 - 2a2b6 - 2a2c6 + 6a2b4c2 + 6a2b2c4 - 4b6c2 - 4b6c2 + 6b4c4).

The Yiu conic of the tangential triangle of a triangle ABC is given by

u(a,b,c)x + u(b,c,a)y + u(c,a,b) z + v(a,b,c)yz + v(b,c,a)zx + v(c,a,b)xy = 0. (Peter Moses, Nov. 19, 2013)

If you have The Geometer's Sketchpad, you can view X(5593).

X(5593) lies on these lines: {4,157}, {184,216}


X(5594) =  PERSPECTOR OF ARA AND OUTER GREBE TRIANGLES

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2[a6 - b6 - c6 + a4b2 + a4c2 - a2b4- a2c4 - 2a2b2c2 + b4c2 + b2c4 + (a2 - b2 + c2)(a2 + b2 - c2)S]

Let A′B′C′ be the tangential triangle of triangle ABC. Let A″ be the center of the A′-excircle of A′B′C′, unless this is also the circumcircle of ABC, in which case let A″ be the incenter of A′B′C′. Define B″, C″ cyclically. The triangle A″B″C″ is introduced here as the Ara triangle, which appears in the sketch at X(5593). The vertices of the Ara triangle are given by Peter Moses (Nov. 19, 2013):

A″ = - a2(a2 + b2 + c2) : b2(a2 + b2 - c2) : c2(a2 - b2 + c2)
B″ = a2(b2 - c2 + a2) : - b2(b2 + c2 + a2) : c2(b2 + c2 - a2)
C″ = a2(c2 + a2 - b2) : b2(c2 - a2 + b2) : - c2(c2 + a2 + b2)

The Ara triangle is perspective to triangles as listed here with perspectors: ABC, X(25); anticomplementary, X(22); Euler, X(1598); tangential 1st circumperp, X(197).      (Peter Moses, Nov. 19, 2013)

The Ara triangle is homothetic to triangle ABC. If ABC is acute then the Ara triangle is the excentral triangle of the tangential triangle. (Randy Hutson, August 17, 2014)

X(5594) lies on these lines: {6,25} et al

X(5594) = {X(25),X(159)}-harmonic conjugate of X(5595)


X(5595) =  PERSPECTOR OF ARA AND INNER GREBE TRIANGLES

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2[a6 - b6 - c6 + a4b2 + a4c2 - a2b4- a2c4 - 2a2b2c2 + b4c2 + b2c4 - (a2 - b2 + c2)(a2 + b2 - c2)S]

The Ara triangle is introduced at X(5594).

X(5595) lies on these lines: {6,25} et al

X(5595) = {X(25),X(159)}-harmonic conjugate of X(5594)


X(5596) =  PERSPECTOR OF ARIES AND ANTICOMPLEMENTARY TRIANGLES

Barycentrics   b8 + c8 - 3a8 +2a4b4 + 2a4c4 - 2b4c4 : :

Let A′B′C′ be the tangential triangle of an acute triangle ABC. Let A″ be the touchpoint of the A-excircle of A′B′C′ and the line B′C′; define B″ and C″ cyclically. The triangle A″B″C″ is introduced here as the Aries triangle, with vertices given by Peter Moses (Nov. 21, 2013).

A″ = a4 + b4 + c4 - 2b2c2 : 2b2(c2 - b2) : 2c2(b2 - c2)
B″ = 2a2(c2 - a2) : b4 + c4 + a4 - 2c2a2 : 2c2(a2 - c2)
C″ = 2a2(b2 - a2) : 2b2(a2 - b2) : c4 + a4 + b4 - 2a2b2

The Aries triangle is perspective to the tangential triangle, with perspector X(1498).

If ABC is acute, the Aries triangle is the extouch triangle of the tangential triangle. (Randy Hutson, July 18, 2014)

If ABC is acute, then the vertices of the Aries triangle lie on the cubic K075. (César Lozada, October 21, 2015)

If you have The Geometer's Sketchpad, you can view X(5596).

X(5596) lies on these lines: {2,66}, {4,6}, {20,3313}, {22,69}, {110,2892}

X(5596) = isogonal conjugate of X(34427)
X(5596) = isotomic conjugate of isogonal conjugate of X(20993)
X(5596) = complement of X(20079)
X(5596) = anticomplement of X(66)
X(5596) = polar conjugate of isogonal conjugate of X(22135)


X(5597) =  PERSPECTOR OF ABC AND 1st AURIGA TRIANGLE

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a4 - a2(b + c)2 + 4aS(rR + 4R2)1/2

Let U be the inverter of the circumcircle and incircle, as described at X(5577). There are two triangles that circumscribe U and are homothetic to triangle ABC, one of which has A-vertex on the same side of line BC as A. This triangle, A′B′C′, is introduced here as the 1st Auriga triangle, and the other, as the 2nd Auriga triangle. Each is the reflection of the other in the center, X(55), of the inverter. The six points A′, B′, C′, A″, B″, C″ lie on a conic introduced here as the Auriga conic. Let D = (rR + 4R2)1/2; barycentrics for the six points and conic were found by Peter Moses (Nov. 21, 2013):

A′ = a4 - a2(b + c)2 - 4(b + c)SD : b4 - b2(c + a)2 + 4bSD : c4 - c2(a + b)2 + 4cSD

A″ = a4 - a2(b + c)2 + 4(b + c)SD : b4 - b2(c + a)2 - 4bSD : c4 - c2(a + b)2 - 4cSD

where B′, C′, B″, C″ are determined cyclically.

The Auriga conic is given by {cyclic sum[g(a,b,c)x2 + h(a,b,c)yz} = 0, where

g(a,b,c) = bc(b + c - a)(b5 + c5 + 3a3bc + a2b3 + a2c3 - a2b2c - a2bc2 + ab3c + abc3 - 2ab2c2 + 3b4c + 3bc4 - 2b3c2 - 2b2c3)

h(a,b,c) = a[a7 - 2a6(b + c) - a5(b2 + c2 - 4a5bc) + 4a4(b3 + c3)
- a3(b4 + c4 + 4b3c + 4bc3 - 8b2c2)
- 2a2(b5 + c5 - b4c - bc4 + 5b3c2 + 5b2c3)
+ a(b6 + c6 + b4c2 + b2c4 - 4b3c3)
+ 2(b5c2 + b2c5 - b4c3 - b3c4)

The two Auriga triangles are perspective with perpsector X(55), which is the center of the Auriga conic.

If you have The Geometer's Sketchpad, you can view X(5597).

X(5597) lies on these lines: {1,3}, {2,5599}, {8,5600}, {145,5602}

X(5597) = {X(1), X(55)}-harmonic conjugate of X(5598)
X(5597) = exsimilicenter of circumcircles of ABC and 1st Auriga triangle; the insimilicenter is X(11822)


X(5598) =  PERSPECTOR OF ABC AND 2nd AURIGA TRIANGLE

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a4 - a2(b + c)2 - 4aS(rR + 4R2)1/2

The 1st and 2nd Auriga triangles are introduced at X(5597).

If you have The Geometer's Sketchpad, you can view X(5598).

X(5598) lies on these lines: {1,3}, {2,5600}, {8,5599}, {145,5601}

X(5598) = {X(1), X(55)}-harmonic conjugate of X(5597)
X(5598) = insimilicenter of circumcircles of ABC and 2nd Auriga triangle; the exsimilicenter is X(11823)


X(5599) =  PERSPECTOR OF MEDIAL AND 1st AURIGA TRIANGLES

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a4 - a2(b + c)2 - 4S(b + c)(rR + 4R2)1/2

The 1st and 2nd Auriga triangles are introduced at X(5597).

X(5599) = {X(10), X(55)}-harmonic conjugate of X(5600)

X(5599) lies on these lines: {2,5597}, {8,5598}, {10,55}, {3617,5602}


X(5600) =  PERSPECTOR OF MEDIAL AND 2nd AURIGA TRIANGLES

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a4 - a2(b + c)2 + 4S(b + c)(rR + 4R2)1/2

The 1st and 2nd Auriga triangles are introduced at X(5597).

X(5600) = {X(10), X(55)}-harmonic conjugate of X(5599)

X(5600) lies on these lines: {2,5598}, {8,5597}, {10,55}, {3617,5601}


X(5601) =  PERSPECTOR OF ANTICOMPLEMENTARY AND 1st AURIGA TRIANGLES

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b + c - a)[a2(a + b + c) - 2S(rR + 4R2)1/2]

The 1st and 2nd Auriga triangles are introduced at X(5597).

X(5601) = {X(8), X(55)}-harmonic conjugate of X(5602)

X(5601) lies on these lines: {{2,5597}, {8,21}, {145,5598}, {3617,5600}


X(5602) =  PERSPECTOR OF ANTICOMPLEMENTARY AND 2nd AURIGA TRIANGLES

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b + c - a)[a2(a + b + c) + 2S(rR + 4R2)1/2]

The 1st and 2nd Auriga triangles are introduced at X(5597).

X(5602) = {X(8), X(55)}-harmonic conjugate of X(5601)

X(5602) lies on these lines: {2,5598}, {8,21}, {145,5597}, {3617,5599}


X(5603) =  PERSPECTOR OF EULER AND CAELUM TRIANGLES

Trilinears    r + R cos B cos C : :
Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a4 + b4 + c4 - 2a3b - 2a3c - 2a2b2 - 2a2c2 + 4a2bc + 2ab3 + 2ac3 - 2ab2c -2abc2 - 2b2c2
X(5603) = 2 X(1) + X(4)

The reflection of triangle ABC in the incenter, here called the Caelum triangle, is perspective to the medial triangle with perspector X(8), to the anticomplementary and intouch triangles with perspector X(145), and to the Euler triangle at X(5603). See also X(5604) and X(5605). The vertices of the Caelum triangle were found by Peter Moses (Nov. 21, 2013):

A′ = a - b - c : 2a : 2a       B′ = 2b : b - c - a : 2b       C′ = 2c : 2c : c - a - b.

Let A′ be the orthocenter of triangle BCX(7), and define B′ and C′ cyclically. Then X(5603) is the centroid of A′B′C′. (Randy Hutson, November 22, 2014)

X(5603) lies on these lines: {1,4}, {2,392}, {3,962}, {5,8}, {7,104}, {10,3090}, {11,2099}, {12,2098}, {20,1385}, {29,945}, {36,3474}, {40,631}, {56,4295}, {65,3086}, {78,5082}, {79,4317}, {84,3296}, {86,4221}, {119,1320}, {140,5550}, {145,355}, {165,3524}, {281,1953}, {329,956}, {376,516}, {381,952}, {495,1532}, {496,938}, {498,5443}, {499,1788}, {519,3545}, {546,1483}, {908,3421}, {912,3873}, {929,953}, {971,5049}, {995,4000}, {997,2550}, {1000,1512}, {1001,1006}, {1060,4318}, {1065,3478}, {1071,5045}, {1158,3338}, {1210,3340}, {1279,3332}, {1312,2102}, {1313,2103}, {1319,1836}, {1420,4292}, {1468,3073}, {1476,5553}, {1698,5067}, {1829,3089}, {1872,4200}, {1902,3088}, {2093,3911}, {2476,5330}, {2646,4294}, {2792,5429}, {2801,3892}, {2829,5434}, {2886,5289}, {2975,3560}, {3057,3085}, {3072,3915}, {3149,3295}, {3242,5480}, {3244,3855}, {3304,3649}, {3306,3359}, {3333,3671}, {3434,4511}, {3436,4861}, {3523,3579}, {3525,3624}, {3529,3636}, {3543,3655}, {3617,5056}, {3621,5068}, {3623,3832}, {3679,5071}, {3820,5328}, {4193,5554}, {5048,5252}, {5119,5218}, {5450,5563}

X(5603) = midpoint of X(1) and X(1699)
X(5603) = relection of X(i) in X(j) for these (i,j): (4,1699), (376,3576), (1699,946), (3576,551)
X(5603) = {X(1),X(4)}-harmonic conjugate of X(944)


X(5604) =  PERSPECTOR OF CAELUM AND OUTER GREBE TRIANGLES

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(a2 + 2b2 + 2c2 - ab - ac + 2S)

The Caelum triangle is defined at X(5603).

X(5604) = {X(1), X(3242)}-harmonic conjugate of X(5605)

X(5604) lies on these lines: {1,6}, {8,5590}, {145,1270}, {1160,1482}


X(5605) =  PERSPECTOR OF CAELUM AND INNER GREBE TRIANGLES

Barycentrics    a(a2 + 2b2 + 2c2 - ab - ac - 2S) : :

The Caelum triangle is defined at X(5603).

X(5605) = {X(1), X(3242)}-harmonic conjugate of X(5604)

X(5605) lies on these lines: {1,6}, {8,5591}, {145,1271}, {1161,1482}


X(5606) =  HATZIPOLAKIS CIRCUMCIRCLE POINT

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a/[(b - c)(a3 + b3 + c3 - a2b -a2c - ab2 - ac2 - abc + 3b2c + 3bc2)]

Let I be the incenter and A′ the nine-point center of triangle IBC. Define B′ and C′ cyclically. The circles AB′C′, BC′A′, CA′B′ concur in X(5606).      (Antreas Hatzipolakis, June 2, 2013: see Concurrent Circumcircles)

Let L be the Euler line of the incentral triangle of ABC, so that L is the line X(500)X(1962). Let LA be the reflection of L in line BC, and define LB and LC cyclically. Let A″ = LB∩LC, B″ = LC∩LA, C″ = LA∩LB. The lines AA″, BB″, CC″ concur in X(5606). (Randy Hutson, July 18, 2014)

X(5606) lies on the circumcircle and these lines: {74,1385}, {229,759}, {2372,5253}

X(5606) = isogonal conjugate of X(8702)
X(5606) = anticomplement of X(5952)
X(5606) = cevapoint of X(513) and X(3337)
X(5606) = trilinear pole of line X(6)X(3336)
X(5606) = Ψ(X(6), X(3336))


X(5607) =  CENTER OF 1st POHOATA-DAO-MOSES CIRCLE

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(b2 - c2)[31/2(a8 - 3a6b2 - 3a6c2 + 3a4b4 + 3a4c4 - a4b2c2 - a2b6 - a2c6 + 2b4c4) + 2S(a6 - 2b6 - 2c6 - 4a4b2 - 4a4c2 + 5a2b4 + 5a2c4 - 3a2b2c2 + 2b4c2 + 2b2c4)]

A construction of the 1st Pohoata-Dao-Moses circle is given at X(399), in connection with the work of Cosmin Pohoata on the Parry reflection point. The circle passes through the points X(13), X(16), X(110), X(399), X(1338), X(2381), X(5610), X(5611), X(5612), X(5613), and the 2nd Pohoata-Dao-Moses circle pass through X(14), X(15), X(110), X(399), X(1337), X(2380), X(5614), X(5615), X(5616), X(5617).     (Dao Thanh Oai and Peter Moses, Nov., 2013)

X(5607) lies on this line: {526, 5608}


X(5608) =  CENTER OF 2nd POHOATA-DAO-MOSES CIRCLE

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(b2 - c2)[31/2(a8 - 3a6b2 - 3a6c2 + 3a4b4 + 3a4c4 - a4b2c2 - a2b6 - a2c6 + 2b4c4) - 2S(a6 - 2b6 - 2c6 - 4a4b2 - 4a4c2 + 5a2b4 + 5a2c4 - 3a2b2c2 + 2b4c2 + 2b2c4)]

A construction of the 2nd Pohoata-Dao-Moses circle is given at X(399), in connection with the work of Cosmin Pohoata on the Parry reflection point. The circle passes through the points X(13), X(16), X(110), X(399), X(1338), X(2381), X(5610), X(5611), X(5612), X(5613), and the 2nd Pohoata-Dao-Moses circle pass through X(14), X(15), X(110), X(399), X(1337), X(2380), X(5614), X(5615), X(5616), X(5617).     (Dao Thanh Oai and Peter Moses, Nov., 2013)

X(5608) lies on this line: {526, 5607}


X(5609) =  RADICAL TRACE OF 1st AND 2nd POHOATA-DAO-MOSES CIRCLES

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(2a8 + b8 + c8 - 7a6b2 - 7a6c2 + 9a4b4 + 9a4c4 + 4a4b2c2 - 5a2b6 - 5a2c6 + 3b6c2 + 3b2c6 - 8b4c4)
> X(5609) = 5X(3) - 3X(74)

See X(5607) and X(5608).      (Dao Thanh Oai and Peter Moses, Nov., 2013)

Let A′B′C′ be the Euler triangle. Let L be the line through A′ parallel to the Euler line, and define M and N cyclically. Let L′ be the reflection of L in line BC, and define M′ and N′ cyclically. The lines L′, M′, N′ concur in X(5609); c.f., X(113), X(399), and X(1511). Let NA be the reflection of X(5) in the perpendicular bisector of BC, and define NB and NC cyclically. Then X(5609) = X(23)-of-NANBNC. (Randy Hutson, July 18, 2014)

X(5609) lies on these lines: {3,74}, {5,542}, {23,1154}, {30,3292}, {113,137}, {125,3628}, {526,5607}

X(5609) = circumcircle- inverse of X(32609)


X(5610) =  INTERSECTION OF LINES X(13)X(531) AND X(15)X(110)

Barycentrics   a^2*(-2*sqrt(3)*(a^8-4*(b^2+c^2)*a^6+3*(2*b^4-b^2*c^2+2*c^4)*a^4-(b^2+c^2)*(5*b^4-11*b^2*c^2+5*c^4)*a^2+(2*b^2-c^2)*(b^2-2*c^2)*(b^2+c^2)^2)*S+a^10-5*(b^2+c^2)*a^8+(10*b^4+31*b^2*c^2+10*c^4)*a^6-(b^2+c^2)*(11*b^4+16*b^2*c^2+11*c^4)*a^4+(7*b^8+7*c^8+10*b^2*c^2*(b^4+c^4))*a^2-(b^4-c^4)*(b^2-c^2)*(2*b^4+7*b^2*c^2+2*c^4)) : :

X(5610) lies on these lines: {13,531}, {15,110}, {511,2379}

X(5610) = reflection of X(2378) in X(15)


X(5611) =  INTERSECTION OF LINES X(3)X(6) AND X(5)X(303)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(S2 + 31/2SSA - SASA + SBSC)      (Wimalasiri Perera, December 18, 2013)

X(5611) lies on these lines: {3,6}, {5,303}, {110,3129}, {147,1080}, {381,531}, {623,1656}, {1993,3131}, {3060,3132}, {5464,5476}

X(5611) = reflection of X(i) in X(j) for these (i,j): (3,15), (621,5)


X(5612) =  INTERSECTION OF LINES X(5)X(14) AND X(15)X(399)

Barycentrics   a^2*(-2*S+(-a^2+b^2+c^2)*sqrt(3))*(a^6-3*(b^2+c^2)*a^4+(3*b^4-b^2*c^2+3*c^4)*a^2-(b^4-c^4)*(b^2-c^2)) : :

X(5612) lies on these lines: {3,3201}, {5,14}, {15,399}, {16,323}, {62,195}, {3166,5238}

X(5612) = X(13)-Ceva conjugate of X(16)
X(5612) = trilinear product X(16)*X(1749)


X(5613) =  INTERSECTION OF LINES X(2)X(98) AND X(5)X(14)

Barycentrics    3a2[SASA + SBSC) + 6SBSBASC - (12)1/2S3: :      (Wimalasiri Perera, December 15, 2013)
Barycentrics   2S3 - 31/2[S2SA + (SA + SB + SC)SBSC]     (Peter Moses, June 20, 2014)

Lengths of segments: |X(5613)X(13)| = |X(5617)X(14)| = R, the circumradius of triangle ABC. (Dao Thanh Oai, Francisco Javier García Capitán), ADGEOM #1256, April 23, 2014)

The lines X(5617)X(13) and X(5613)X(14) are parallel to the line X(5)X(39). (Francisco García Capitán), ADGEOM #1259, April 23, 2014)

The Euler line is tangent to the circle {{X(3), X(5613), X(5617)}} at X(3). (Dao Thanh Oai, ADGEOM #1256, April 23, 2014)

Suppose that P is a point. The P-Fuhrmann triangle is the triangle A″B″C″, where A″ is the reflection in line BC of the A-vertex of the cercumcevian triangle of P, and B″ and C″ are defined cyclically (so that taking P to be X(1), X(4), and X(6) yields the classical Fuhrmann triangle, the single-point triangle X(4), and the 4th Brocard triangle, respectively. The X(16)-Fuhrmann triangle is equilateral, and X(5613) is its center. X(5613) is also the {X(2),X(1352)}-harmonic conjugate of X(5617). (Randy Hutson, July 7, 2014)

Let BA′C be the equilateral triangle with side BC and A′ on the side of BC that includes A. Let La be the line through A′ parallel to BC, and define Lb and Lc cyclically. Let A″ = Lb∩Lc, and define B″and C″ cyclically. The Euler lines of B′A″C′, C′B″A′, A′C″B′ concur in X(5613). The acute angle between each pair of these Euler lines is π/6. See Dao Thanh Oai, ADGEOM 4030), and Francisco Javier García Capitán, ADGEOM 4031). See also X(5617) and X(14144).

X(5613) lies on these lines: {2,98}, {3,619}, {4,617}, {5,14}, {13,2782}, {30,5464}, {99,622}, {299,383}, {303,1080}, {381,531}, {395,3564}, {576,3180}, {5055,5460}

X(5613) = midpoint of X(i) and X(j) for these (i,j): (4,617), (299,383)
X(5613) = reflection of X(i) in X(j) for these (i,j): (14,5), (3,619), (5617,114)
X(5613) = inner-Napoleon-to-outer-Napoleon similarity image of X(3)
X(5613) = outer-Napoleon-isogonal conjugate of X(16)


X(5614) =  INTERSECTION OF LINES X(14)X(530) AND X(16)X(110)

Barycentrics   a^2*(2*sqrt(3)*(a^8-4*(b^2+c^2)*a^6+3*(2*b^4-b^2*c^2+2*c^4)*a^4-(b^2+c^2)*(5*b^4-11*b^2*c^2+5*c^4)*a^2+(2*b^2-c^2)*(b^2-2*c^2)*(b^2+c^2)^2)*S+a^10-5*(b^2+c^2)*a^8+(10*b^4+31*b^2*c^2+10*c^4)*a^6-(b^2+c^2)*(11*b^4+16*b^2*c^2+11*c^4)*a^4+(7*b^8+7*c^8+10*b^2*c^2*(b^4+c^4))*a^2-(b^4-c^4)*(b^2-c^2)*(2*b^4+7*b^2*c^2+2*c^4)) : :

X(5614) lies on these lines: {14,530}, {16,110}, {511,2378}

X(5614) = reflection of X(2379) in X(16)


X(5615) =  INTERSECTION OF LINES X(3)X(6) AND X(5)X(302)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(S2 - 31/2SSA - SASA + SBSC)      (Wimalasiri Perera, December 18, 2013)

X(5615) lies on these lines: {3,6}, {5,302}, {110,3130}, {147,383}, {381,530}, {624,1656}, {1993,3132}, {3060,3131}, {5463,5476}

X(5615) = reflection of X(i) in X(j) for these (i,j): (3,16), (622,5)


X(5616) =  INTERSECTION OF LINES X(5)X(13) AND X(16)X(399)

Barycentrics   a^2*(2*S+(-a^2+b^2+c^2)*sqrt(3))*(a^6-3*(b^2+c^2)*a^4+(3*b^4-b^2*c^2+3*c^4)*a^2-(b^4-c^4)*(b^2-c^2)) : :

X(5616) lies on these lines: {3, 3200}, {5, 13}, {15, 323}, {16, 399}, {61, 195}, {3165, 5237}

X(5616) = X(14)-Ceva conjugate of X(15)
X(5616) = trilinear product X(15)*X(1749)


X(5617) =  INTERSECTION OF LINES X(2)X(98) AND X(5)X(13)

Barycentrics    3a2[SASA + SBSC) + 6SBSBASC + (12)1/2S3 : :      (Wimalasiri Perera, December 16, 2013)
Barycentrics    2S3 + 31/2[S2SA + (SA + SB + SC)SBSC] : :     (Peter Moses, June 20, 2014)

Lengths of segments: |X(5617)X(14)| = |X(5613)X(13)| = R, the circumradius of triangle ABC. (Dao Thanh Oai, Francisco Javier García Capitán), ADGEOM #1256, April 23, 2014)

The lines X(5617)X(13) and X(5613)X(14) are parallel to the line X(5)X(39). (Francisco Javier García Capitán), ADGEOM #1259, April 23, 2014)

The Euler line is tangent to the circle {{X(3), X(5617), X(5661)}} at X(3). (Dao Thanh Oai, ADGEOM #1256, April 23, 2014)

The X(15)-Fuhrmann triangle, defined at X(5613), is equilateral, and X(5617) is its center. X(5613) is also the {X(2),X(1352)}-harmonic conjugate of X(5613). (Randy Hutson, July 7, 2014)

Let BA′C be the equilateral triangle having A′ on the side of BC that does not include C. Let LA be the line through A′ parallel to BC, and define Lb and Lc cyclicalloy. Let A″ = Lb∩Lc, and define B″ and C″ cyclically.The Euler lines of B′A″C′, C′B″A′, A′C″B′ concur in X(5617), and the acute angle between each pair of these lines is π/2. See Dao Thanh Oai, ADGEOM 4030), and Francisco Javier García Capitán, ADGEOM 4031). See also X(5613) and X(14144).

X(5617) lies on these lines: {2,98}, {3,618}, {4,616}, {5,13}, {14,2782}, {30,5463}, {99,621}, {298,511}, {302,383}, {381,530}, {396,3564}, {576,3181}, {5055,5459}

X(5617) = midpoint of X(i) and X(j) for these (i,j): (4,616), (298,1080)
X(5617) = reflection of X(i) in X(j) for these (i,j): (13,5), (3,618), (5613,114)

X(5617) = outer-Napoleon-to-inner-Napoleon similarity image of X(3)
X(5617) = inner-Napoleon-isogonal conjugate of X(15)


X(5618) =  1st MONTESDEOCA EQUILATERAL TRIANGLES POINT

Barycentrics    f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 1/[(b2 - c2)(271/2b2c2SA + S(S2 + 9SASA))]

Let AP, BP, CP be the cevians of a point P in the plane of a triangle ABC. The A-positive Montesdeoca equilateral triangle is constructed as follows: let LA be the line through A perpendicular to CP; let UA be the 30-degree rotation of LA, where the angle BAC, for present purposes, defines the positive direction of rotation, and angle CAB, the negative (used in X(5619)). Let A1 = UA∩CP, let VA be the - 60 degree rotation of CP about A1, let AB = VA∩BP, let AC be the - 60 degree rotation of segment AAB about A. Then AABAC is an equilateral triangle. Define BBCBA and CCACB cyclically. These are the positive Montesdeoca equilateral triangles. X(5618) is the unique choice of P on the circumcircle of ABC for which the lines ABAC, BCBA, CBCA concur. For arbitrary P, the centers of the three equilateral triangles are collinear with P; denote their line by L(P). If P is on the circumcircle of ABC, then L(P) passes through X(110).    (Angel Montesdeoca, November 3, 2013)

For details, see Hechos Geométricos en el Triángulo.

If you have The Geometer's Sketchpad, you can view Montesdeoca Equilateral Triangles.

X(5618) lies on the circumcircle and these lines: {13,74}, {115,2378}, {1989,2380}

X(5618) = intersection, other than X(111), of circumcircle and Parry circle of pedal triangle of X(13)


X(5619) =  2nd MONTESDEOCA EQUILATERAL TRIANGLES POINT

Barycentrics    f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 1/[(b2 - c2)(271/2b2c2SA - S(S2 + 9SASA))]

The negative Montesdeoca equilateral triangles for a point P are constructed as follows: in the construction of the positive Montesdeoca equilateral triangles atX(5618), replace the rotation angles (30, -60, -60) by (-30, 60, 60). Barycentrics for X(5619) are obtained from those of X(5618) by replacing S by - S.    (Peter Moses, November 8, 2013)

If you have The Geometer's Sketchpad, you can view Montesdeoca Equilateral Triangles.

X(5619) lies on the circumcircle and these lines: {14,74}, {115,2379}, {1989,2381}

X(5619) = intersection, other than X(111), of circumcircle and Parry circle of pedal triangle of X(14)


X(5620) =  ISOGONAL CONJUGATE OF X(5127)

Barycentrics    (b + c)[a6 - a4(b2 + c2) - a2(b4 + c4 - 3b2c2) - 2abc(b + c)(b - c)2 + (b + c)2(b - c)4]
X(5620) = R*X(65) - (2r + R)*X(1365)

Let A′B′C′ be the excentral triangle of ABC. Let NA be the nine-point center of A′BC, and let OA be the circumcircle of NABC. Define OB and OC cyclically. The circles OA, OB, OC concur in X(5620).      (Angel Montesdoca, Anapolis #1120, November 2013: see Concurrent Circumcircles)

Let A′B′C′ be the incentral triangle and let A″ be the point such that triangle A″BC is similar to A′B′C′ and A″ is on the same side of line BC as A. Define B″ and C″ cyclically. The lines AA″, BB″, CC″ concur in X(5620); see also X(502). (Randy Hutson, July 7, 2014)

X(5620) lies on these lines: {1,149}, {10,1109}, {36,759}, {37,115}, {65,1365}, {162,1838}, {267,3336}, {897,1738}, {1054,1247}, {1737,2166}, {2218,2915}

X(5620) = isogonal conjugate of X(5127)
X(5620) = X(2245)-cross conjugate of X(226)
X(5620) = incircle-inverse-of X(33593)
X(5620) = X(i)-isoconjugate of X(j) for these (i,j): (3,2074), (21,5172)
X(5620) = trilinear pole of line X(661)X(2294)
X(5620) = trilinear product X(523)*X(1290)
X(5620) = barycentric product X(1290)*X(1577)
X(5620) = X(10214)-of-excentral-triangle


X(5621) =  1st KIRIKAMI-EULER-LEMOINE POINT

Barycentrics    f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2b2SC(SA - SB)(-2SASB + SASC + SBSC) + a2c2SB(SA - SC)(-2SASC + SASB + SBSC)
+ (a2 + b2 + c2)(-2SASB + SASC + SBSC)(-2SASC + SASB + SBSC)
X(5621) = X(6) + 2X(74)

Let L be the 1st Lemoine circle of a triangle ABC. Let AB be the point nearer A where line AB meets L, and define BC and CA cyclically. Let AC be the point nearer A where line AC meets L, and define BA and CB cyclically. The Euler lines of the triangles AABAC, BBCBA, CCACB concur in X(5621).      (Seiichi Kirikami, November 7, 2013)

See Concurrent Euler lines.

X(5621) lies on these lines: {3, 67}, {6, 74}, {25, 125}, {64, 1177}, {110, 3796}, {146, 3589}, {165, 2836}, {186, 1503}, {246, 1976}, {343, 3448}, {399, 5092}, {524, 2071}, {895, 3532}, {1204, 1205}, {1597, 2777}, {2453, 2790}, {2916, 2931}, {3516, 5095}


X(5622) =  2nd KIRIKAMI-EULER-LEMOINE POINT

Barycentrics    2a2b2SC(SA - SB)(-2SASB + SASC + SBSC) + 2a2c2SB(SA - SC)(-2SASC + SASB + SBSC) + (a2 + b2 + c2)(-2SASB + SASC + SBSC)(-2SASC + SASB + SBSC)
Barycentrics    a^2(a^2 - b^2 - c^2)[a^8 - a^6(b^2 + c^2) - a^4(b^4 - 3b^2c^2 + c^4) + a^2(b^2 - c^2)^2(b^2 + c^2) + 3b^2c^2(b^2 - c^2)^2] : :
X(5622) = 2X(6) + X(74)

Continuing from the configuration in X(5621), let K denote the symmedian point (Lemoine point, X(6)) of ABC. The Euler lines of the triangles KABAC, KBCBA, KCACB concur in X(5622).       (Seiichi Kirikami, November 7, 2013)

See Concurrent Euler lines.

X(5622) lies on these lines: {2, 98}, {3, 895}, {4, 1177}, {6, 74}, {54, 67}, {69, 5504}, {113, 3618}, {185, 575}, {186, 2393}, {217, 5038}, {265, 1176}, {389, 1205}, {403, 1503}, {511, 2071}, {576, 1204}, {578, 5095}, {631, 5181}, {1316, 2790}, {2854, 5085}, {2892, 3541}, {3431, 5505}


X(5623) =  REFLECTION OF X(13) IN X(5618)

Barycentrics    f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = HA (HAVA - HBVB - HCVC), where HA = 31/2a2S + S2 + 3SBSC and VA = (S2 - 3SASB)(S2 - 3SASC)       (Peter Moses, June 20, 2014)

Referring to the construction of X(5618), the lines ABAC, BCBA, CACB concur in X(5623).    (Peter Moses, December 4, 2013)

X(5623) lies on the Neuberg cubic and these lines: {13,74}, {14,3440}, {16,1138}, {3065,3383}

X(5623) = reflection of X(13) in X(5618)
X(5623) = X(30)-Ceva conjugate of X(13)


X(5624) =  REFLECTION OF X(14) IN X(5619)

Barycentrics    f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = KA (KAVA - KBVB - KCVC), where KA = - 31/2a2S + S2 + 3SBSC and VA = (S2 - 3SASB)(S2 - 3SASC)       (Peter Moses, June 20, 2014)

Referring to the construction of X(5619), the lines ABAC, BCBA, CACB concur in X(5624).    (Peter Moses, December 4, 2013)

X(5624) lies on the Neuberg cubic and these lines: {14,74}, {13,3441}, {15,1138}, {3065,3376}

X(5624) = reflection of X(14) in X(5619)
X(5624) = X(30)-Ceva conjugate of X(14)


X(5625) =  MIDPOINT OF X(1) AND X(86)

Barycentrics    (2a + b + c)(a2 + 2ab + 2ac + bc) : (2b + c + a)(b2 + 2bc + 2ba + ca) : (2c + a + b)(c2 + 2ca + 2cb + ab)
X(5625) = X(1654) - 5*X(3616)

Suppose that P is a point in the plane of a triangle ABC. Let LA be the line through P parallel to BC, and let BA = LA∩AB and CA = LA∩CA. Define AB and CB cyclically, and define AC and BC cyclically. Let UA be the line of the midpoints of segments ABAC and BCCB, and define UB and UC cyclically. The lines UA, UB, UC concur in a point Q = Q(P). If P is given by barycentrics p : q : r, then Q = g(p, q, r) : g(q, r, p) : g(r, p, q), where g(p,q,r) = (2p + q + r)(p2 + 2pq + 2pr + qr). If P = X(1), then Q = X(5625).    (Seiichi Kirikami, December 8, 2013)

X(5625) lies on these lines: {1,75}, {10,4478}, {519,4733}, {524,551}, {726,3723}, {1100,1125}, {1255,4756}, {1279,3636}, {1654,3616}, {1961,3699}, {1962,4427}, {2796,4353}, {3244,4923}, {3624,3759}, {3842,4649}, {3945,4655}, {3993,4670}

X(5625) = midpoint of X(1) and X(86)
X(5625) = reflection of X(1213) in X(1125)
X(5625) = trilinear product X(i)*X(j) for these (i,j): (1125,4649), (4427,4784)
X(5625) = barycentric product X(4359)*X(4649)


X(5626) =  CENTER OF ELECTROSTATIC POTENTIAL

Trilinears    [(gaga - 1)(a2 - (bgb - gcc)2)]1/2 : : , where

ga = coth(aλ/(a + b + c)),   gb = coth(bλ/(a + b + c)),   gc = coth(cλ/(a + b + c)),    where λ is the unique positive solution of the equation

[(u2 - a2) (a2 - (v - w)2)]1/2 + [(v2 - b2) (b2 - (w - u)2)]1/2 + [(w2 - c2) (c2 - (u - v)2)]1/2 = [2(b2c2 + c2a2 + a2b2) - a4 - b4 - c4)]1/2,

where u = aga,   v = bgb,   w = cgc

X(5626) is the point of maximal electrostatic potential inside a triangle ABC having a homogeneous surface charge distribution.    (Hrvoje Abraham and Vjekoslav Kovac, December 11, 2013)

Download From electrostatic potentials to yet another triangle center.

Here is a Mathematica program that gives λ = 4.6547... for the (user-chosen) triangle ABC as testTriangle = {6,9,13), followed by the normalized barycentric coordinates and then normalized trilinear coordinates for X(5626).

\[Lambda] =.; testTriangle = {6, 9, 13}; {u, v, w} = Map[# Coth[# \[Lambda]/(a + b + c)] &, {a, b, c}]; {lhs, area} = {Sqrt[(u^2 - a^2) (a^2 - (v - w)^2)] + Sqrt[(v^2 - b^2) (b^2 - (w - u)^2)] + Sqrt[(w^2 - c^2) (c^2 - (u - v)^2)], Sqrt[(-a + b + c) (a + b - c) (a - b + c) (a + b + c)]/4} /. Thread[{a, b, c} → testTriangle]; \[Lambda] = \[Lambda] /. FindRoot[lhs == 4 area, {\[Lambda], 1}, WorkingPrecision → 50]; {\[Lambda], #, 2 area #/testTriangle} &[#/Apply[Plus, #] &[ Sqrt[(u^2 - a^2) (a^2 - (v - w)^2)] /. Map[Thread[{a, b, c} → #] &, NestList[RotateLeft, testTriangle, 2]]]] (* Peter Moses, December 20, 2013 *)

Geogebra sketch by David Fernández-De la Cruz: X(5626). (November 21, 2021)

If you have The Geometer's Sketchpad (version 5.05 or later), you can view X(5626).


X(5627) =  YIU REFLECTION POINT

Trilinears    f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (sin A csc 3A)/(cos A - 2 cos B cos C)    (Randy Hutson, Jan. 8, 2014)
Barycentrics    g(a,b,c) : g(b,c,a): g(c,a,b), where g(a,b,c) = 1/[(a2SA - 2SBSC)(S2 - 3SASA)]
Barycentrics    h(a,b,c) : h(b,c,a): h(c,a,b), where h(a,b,c) = 1/[3a6(b2 + c2) - 6a4(b4 + c4) + 3a2(b6 + c6) - 2b8 + 3b6c2 - 6b4c4 + 3b2c6 - 2c8]    (Randy Hutson, Jan. 8, 2014)
X(5627) = 2X(265) + X(476)
X(5627) = 4X(125) - X(477)    (Peter Moses, January 2, 2014)

Paul Yiu introduced this point on New Year's Day, January 1, 2014. He noted that X(74) is the unique point whose reflections in the sidelines of triangle ABC are collinear and perspective to ABC. The perspector is X(5627). The line of the reflections is perpendicular to the Euler line at X(4), and the rectangular circumhyperbola through X(5627), here called the Yiu hyperbola, YH, has asymptotes parallel and perpendicular to the Euler line. The center of YH is X(3258), and the perspector of YH is X(1637); YH meets the circumcircle in X(477), which is the reflection of X(74) in the Euler line.    (Paul Yiu, ADGEOM, "An easy new year puzzle", January 1, 2014)

The line tangent to YH at X(5627) is parallel to the line X(74)X(1138). The axes of YH are the Wallace-Simson lines of X(74) and X(110). The Steiner circumellipse meets YH in four points: A, B, C, and X(5641). The isogonal conjugate of YH is the line X(3)X(74). X(5627) is the cevapoint of the 1st and 2nd Fermat Points.    (Peter Moses, January 2, 2014)

X(5627) is the perspector of ABC and the reflection of the Euler triangle in the Euler line.    (Randy Hutson, Jan. 8, 2014)

Let A′B′C′ be the tangential triangle of the Kiepert hyperbola. Let A″ be the intersection, other than X(3258) of the nine-point circle and the line A′X(3258); define B″ and C″ cyclically. The lines AA″, BB″, CC″ concur in X(5627).    (Randy Hutson, Jan. 8, 2014)

Let P = X(110) and A1A2, B1B2, C1C2 be the diameters of the circumcircle of ABC, parallel to AP, BP, CP, respectively. The Simson-Wallace lines of the points A1 and A2 intersect orthogonally in Pa, on the nine-point circle. The points Pb and Pc are defined similarly. The triangles ABC and PaPbPc are perspective and inversely similar; the perspector is X(5627). (Angel Montesdeoca, October 21, 2018)

X(5627) lies on these lines: {5,1117}, {30,74}, {125,477}, {328,1494}, {403,1989}, {1138,3258}, {1141,1304}

X(5627) = reflection of X(1138) in X(3258)
X(5627) = isogonal conjugate of X(1511)
X(5627) = isotomic conjugate of X(6148)
X(5627) = cevapoint of X(i) and X(j) for these (i,j): (13,14), (74,3470)
X(5627) = crossconjugate of X(i) and X(j) for these (i,j): (4,1141), (115,2394), (523, 476)
X(5627) = isoconjugate of X(i) and X(j) for these (i,j): (1,1511), (63,39176), (323,2173), (1101,3258), (2407,2624)
X(5627) = trilinear pole of line X(1637) X(1989)
X(5627) = trilinear product X(i)*X(j) for these (74,94), (476,2394), (1494,1989), (2166,2349)
X(5627) = perspector of ABC and cross-triangle of ABC and circumcevian triangle of X(186)


X(5628) =  1st MORLEY - VAN TIENHOVEN POINT

Trilinears    cos(A/3) sec(2A/3) : cos(B/3) sec(2B/3) : cos(C/3) sec(2C/3)

X(5628) and several other triangle centers are perspectors of each pair of the following triangles in the plane of a triangle ABC:
T1 = 1st Morley triangle; MathWorld: First Morley triangle
T2 = 2nd Morley triangle; MathWorld: Second Morely triangle, etc.
T3 = 3rd Morley triangle>
T4 = 1st adjunct Morley triangle; MathWorld: First adjunct Morley triangle, etc.)
T5 = 2nd adjunct Morley triangle
T6 = 3rd adjunct Morley triangle
T7 = 1st p-Morley triangle (defined below)
T8 = 2nd p-Morley triangle
T9 = 3rd p-Morley triangle
T10 = 1st p-adjunct Morley triangle (defined below)
T11 = 2nd p-adjunct Morley triangle
T12 = 3rd p-adjunct Morley triangle

The p-Morley triangles T7, T8, T9 have as vertices the points of intersection of pairs of perpendiculars to trisectors at corresponding vertices that form T1, T2, T3, respectively. For example, T7 is formed as follows from the 1st Morley triangle A′B′C′: let LB be the line perpendicular to BA′ at B, let LC be the line perpendicular to CA′ at C; then the A-vertex of T7 is LB∩LC, and the B-vertex and C-vertex are defined cyclically. Similarly, the p-adjunct Morley triangles T10, T11, T12 are defined from T4, T5, T6.

X(5628) = 1st Morley-van Tienhoven point = perspector of ABC and T7
X(5629) = 2nd Morley-van Tienhoven point = perspector of ABC and T10
X(5630) = 3rd Morley-van Tienhoven point = perspector of ABC and T8
X(5631) = 4th Morley-van Tienhoven point = perspector of ABC and T11
X(5632) = 5th Morley-van Tienhoven point = perspector of ABC and T9
X(5633) = 6th Morley-van Tienhoven point = perspector of ABC and T12
X(356) = 7th Morley-van Tienhoven point = perspector of each pair of T1, T4, T7
X(3276) = 8th Morley-van Tienhoven point = perspector of each pair of T2, T5, T8
X(3277) = 9th Morley-van Tienhoven point = perspector of each pair of T3, T6, T9
X(5634) = 10th Morley-van Tienhoven point = perspector of T7 and T10
X(5635) = 11th Morley-van Tienhoven point = perspector of T8 and T11
X(5636) = 12th Morley-van Tienhoven point = perspector of T9 and T12
X(5637) = 13th Morley-van Tienhoven point

X(5628)-X(5633) were found in connection with Chris van Tienhoven's rotations of Morley trisectors and subsequent collaborations with Bernard Gibert, including is the cubic K587 in Gibert's catalog of cubics: Morley - van Tienhoven cubic.

X(5628) lies on these lines: {357,5457}, {3272,3274}, {3602,3606}

X(5628) = isogonal conjugate of X(5629)


X(5629) =  2nd MORLEY - VAN TIENHOVEN POINT

Trilinears    cos(2A/3) sec(A/3) : cos(2B/3) sec(B/3) : cos(2/3) sec(C/3)

X(5629) = perspector of ABC and T10; see X(5628)

X(5629) lies on these lines: {356,357}, {3273,3281}, {3274,3606}

X(5629) = isogonal conjugate of X(5628)


X(5630) =  3rd MORLEY - VAN TIENHOVEN POINT

Trilinears    cos[(A - 2π)/3] sec[(2A - 4π)/3] : cos[(B - 2π)/3] sec[(2B - 4π)/3] : cos[(C - 2π)/3] sec[(2C - 4π)/3]

X(5630) = perspector of ABC and T8; see X(5628)

X(5630) lies on these lines: {3603,3607}, {3272,3275}

X(5630) = isogonal conjugate of X(5631)


X(5631) =  4th MORLEY - VAN TIENHOVEN POINT

Trilinears    cos[(2A - 4π)/3] sec[(A - 2π)/3] : cos[(2B - 4π)/3] sec[(B - 2π)/3] : cos[(2C - 4π)/3] sec[(C - 2π)/3]

X(5631) = perspector of ABC and T11; see X(5628)

X(5631) lies on these lines: {1136,1137}, {3274,3283}, {3275,3607}

X(5631) = isogonal conjugate of X(5630)


X(5632) =  5th MORLEY - VAN TIENHOVEN POINT

Trilinears    cos[(A - 4π)/3] sec[(2A - 8π)/3] : cos[(B - 4π)/3] sec[(2B - 8π)/3] : cos[(C - 4π)/3] sec[(2C - 8π)/3]

X(5632) = perspector of ABC and T9; see X(5628)

X(5632) lies on these lines: {356,3272}, {3604,3605}

X(5632) = isogonal conjugate of X(5633)


X(5633) =  6th MORLEY - VAN TIENHOVEN POINT

Trilinears    cos[(2A - 8π)/3] sec[(A - 4π)/3] : cos[(2B - 8π)/3] sec[(B - 4π)/3] : cos[(2C - 8π)/3] sec[(C - 4π)/3]

X(5633) = perspector of ABC and T12; see X(5628)

X(5633) lies on these lines: {356,1134}, {3273,3605}, {3275,3279}

X(5633) = isogonal conjugate of X(5632)


X(5634) =  10th MORLEY - VAN TIENHOVEN POINT

Trilinears    f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = cos(2A/3) cos(B/3) cos(C/3) - cos(A/3) cos(2B/3) cos(2C/3)

X(5634) = perspector of the triangles T7 and T10 listed at X(5628).

X(5634) lies on these lines: {356,3605}, {3276,3606}


X(5635) =  11th MORLEY - VAN TIENHOVEN POINT

Trilinears    f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = cos[(2(A - 2π)/3] cos[(B - 2π)/3] cos[(C - 2π)/3] - cos[(A - 2π)/3] cos[(2B - 4π)/3] cos[(2C - 4π)/3]

X(5635) = perspector of the triangles T8 and T11 listed at X(5628).

X(5635) lies on these lines: {3276,3606}, {3277,3607}


X(5636) =  12th MORLEY - VAN TIENHOVEN POINT

Trilinears    f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = cos[(2A - 8π)/3] cos[(B - 4π)/3] cos[(C - 4π)/3] - cos[(A - 4π)/3] cos[(2B - 8π)/3] cos[(2C - 8π)/3]

X(5636) = perspector of the triangles T9 and T12 as listed at X(5628).

X(5636) lies on these lines: {356,3605}, {3277,3607}


X(5637) =  13th MORLEY - VAN TIENHOVEN POINT

Trilinears    sin(B/3 - C/3) : :

Using the notation at X(5628), let
L1 = perspectrix of each pair of the triangles ABC, T1, T4
L2 = perspectrix of each pair of the triangles ABC, T2, T5
L3 = perspectrix of each pair of the triangles ABC, T3, T6
The lines L1, L2, L3 concur in X(5637).    (Chris van Tienhoven, January 3, 2014)

X(5637) lies on this line: {396,523}

X(5637) = isogonal conjugate of X(14146)
X(5637) = crossdifference of every pair of points on line X(16)X(358)
X(5637) = perspector of Morley circumconic


X(5638) =  INSIMILICENTER OF CIRCLES {{X(14), X(15), X(16)}} AND {{X(13), X(15), X(16)}}

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (csc B)[e cos C + cos(C - ω)] - (csc C)[e cos B + cos(B - ω)]
Barycentrics    g(A,B,C) : g(B,C,A ) : g(C,A,B), where g(A,B,C) = sin(A - ω)/[e cos A - cos(A + ω)]
Barycentrics    h(A,B,C) : h(B,C,A) : h(C,A,B), where h(A,B,C) = (S2B - S2C)[(S + 31/2SA)p - (S - 31/2SA)q], where p = (Sω - 31/2S)1/2 and q = (Sω + 31/2S)1/2    César Lozada (ADGEOM #1341, June 22, 2014)
Barycentrics    Sin[A]*((e*Cos[C] + Cos[C - w])*Csc[B] - (e*Cos[B] + Cos[B - w])*Csc[C]) : : (Peter Moses, March 3, 2024)
Barycentrics    a^2*(2*a^4 - 2*a^2*b^2 - b^4 - 2*a^2*c^2 + 4*b^2*c^2 - c^4 - (2*a^2 - b^2 - c^2)*Sqrt[a^4 - a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2 + c^4]) : : (Peter Moses, March 3, 2024)

The Parry circle and Thomson-Gibert-Moses hyperbola (introduced at X(5642)), intersect in four points: X(2), X(110), X(5638), X(5639). Of the latter two points, X(5638) is the farther from X(2); also, X(5638) = intersection farther from X(2) of the Parry circle and Lemoine axis. X(5638) = (F1, F2)-harmonic conjugate of X(1341), where F1 and F2 are the foci of the Steiner inellipse. (Randy Hutson, June 16, 2014)

X(5638) lies on the Steiner major axis, the circumconic {{A,B,C,X(2),X(6)}}, the Parry circle, the Thomson-Gibert-Moses hyperbola, the cubics K889, K890, K891, K1067, the curve Q090, and these lines: {2, 1341}, {3, 6141}, {6, 6142}, {100, 11651}, {110, 1379}, {111, 1380}, {154, 21032}, {187, 237}, {353, 1340}, {739, 11652}, {2028, 3124}, {2029, 39689}, {2395, 13636}, {3228, 6189}, {3414, 9147}, {3557, 9716}, {5643, 14631}, {5648, 46463}, {5652, 52723}, {16081, 57013}, {21001, 21036}, {36213, 39067}

X(5638) = reflection of X(5639) in X(351)
X(5638) = isogonal conjugate of X(6190)
X(5638) = reflection of X(5638) in the Lemoine axis
X(5638) = Parry-isodynamic-circle-inverse of X(5639)
X(5638) = isogonal conjugate of the anticomplement of X(39023)
X(5638) = isogonal conjugate of the complement of X(39366)
X(5638) = isogonal conjugate of the isotomic conjugate of X(3413)
X(5638) = Thomson-isogonal conjugate of X(6039)
X(5638) = psi-transform of X(1341)
X(5638) = X(31)-complementary conjugate of X(39068)
X(5638) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 39068}, {6, 2028}, {110, 5639}, {1379, 6}, {6177, 39023}, {6190, 3558}, {41880, 512}, {57013, 13636}
X(5638) = X(i)-isoconjugate of X(j) for these (i,j): {1, 6190}, {63, 57014}, {75, 1379}, {662, 3414}, {799, 5639}, {13722, 24041}, {36085, 52723}
X(5638) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 6190}, {206, 1379}, {1084, 3414}, {3005, 13722}, {3162, 57014}, {13722, 850}, {21905, 46463}, {38988, 52723}, {38996, 5639}, {39023, 76}, {39067, 30508}, {39068, 2}
X(5638) = trilinear pole of line {512, 2028}
X(5638) = complement of anticomplementary conjugate of X(39366)
X(5638) = anticomplement of complementary conjugate of X(39023)
X(5638) = X(2)-Ceva conjugate of X(39068)
X(5638) = X(110)-Ceva conjugate of X(5639)
X(5638) = X(3124)-cross conjugate of X(5639)
X(5638) = X(6)-vertex conjugate of X(5639)
X(5638) = inverse-in-circumcircle of X(6141)
X(5638) = antipode-in-Parry-circle of X(5639)
X(5638) = trilinear pole of the line X(512)X(2028)
X(5638) = crossdifference of every pair of points on the line X(2)X(1340)
X(5638) = X(1380)-of-1st-Parry-triangle
X(5638) = X(1379)-of-2nd-Parry-triangle
X(5638) = crossdifference of PU(i) for these i: 117, 119
X(5638) = PU(118)-harmonic conjugate of X(1341)
X(5638) = X(i)-line conjugate of X(j) for these (i,j): {187, 5639}, {353, 1340}, {1341, 2}, {2395, 13636}, {5652, 52723}, {9147, 3414}
X(5638) = barycentric product X(i)*X(j) for these {i,j}: {6, 3413}, {110, 13636}, {111, 52722}, {512, 6189}, {523, 1380}, {647, 57013}, {691, 46462}, {1379, 39023}, {2028, 6190}, {3414, 41880}, {5639, 30509}
X(5638) = pole of line {7668, 39023} with respect to the Kiepert circumhyperbola
X(5638) = pole of line {2028, 3269} with respect to the Jerabek circumhyperbola
X(5638) = pole of line {2028, 3124} with respect to ABCGK
X(5638) = pole of line {39068, 44312} with respect to ABCGGe
X(5638) = pole of line {1015, 2028} with respect to ABCIK
X(5638) = pole of line {670, 6190} with respect to the Steiner-Wallace right hyperbola
X(5638) = pole of line {99, 1379} with respect to the Feuerbach circumhyperbola of the tangential triangle
X(5638) = pole of line {190, 6190} with respect to the Kiepert circumhyperbola of the excentral triangle
X(5638) = pole of line {668, 6190} with respect to the Jerabek circumhyperbola of the excentral triangle
X(5638) = pole of line {670, 6190} with respect to the Kiepert circumhyperbola of the anticomplementary triangle
X(5638) = pole of line {194, 3414} with respect to the Steiner circumellipse
X(5638) = pole of line {3167, 5639} with respect to the MacBeath circumconic
X(5638) = pole of line {39, 3414} with respect to the Steiner inellipse
X(5638) = pole of line {6, 5639} with respect to the Brocard inellipse
X(5638) = pole of line {669, 30509} with respect to the Kiepert parabola
X(5638) = pole of line {5638, 9155} with respect to the Thomson-Gibert-Moses hyperbola
X(5638) = pole of line {6, 5639} with respect to the Aquarius conic (see X(5585))
X(5638) = pole of line {6, 5639} with respect to the circumcircle
X(5638) = pole of line {574, 5639} with respect to the Brocard circle
X(5638) = pole of line {511, 5638} with respect to the Parry circle
X(5638) = pole of line {262, 3414} with respect to the orthoptic-circle-of-the-Steiner-inellipse
X(5638) = pole of line {3414, 44434} with respect to the orthoptic-circle-of-the-Steiner-circumellipe
X(5638) = pole of line {3414, 44460} with respect to the circumcircle of the inner Napoleon triangle
X(5638) = pole of line {3414, 44464} with respect to the circumcircle of the outer Napoleon triangle
X(5638) = pole of line {5639, 6468} with respect to the Lucas inner circle
X(5638) = pole of line {5639, 6221} with respect to the Lucas circles radical circle
X(5638) = pole of line {5639, 50663} with respect to the outer Montesdeoca-Lemoine circle
X(5638) = pole of line {5639, 50662} with respect to the inner Montesdeoca-Lemoine circle
X(5638) = pole of line {511, 5639} with respect to the Parry isodynamic circle
X(5638) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 6190}, {25, 57014}, {32, 1379}, {351, 52723}, {512, 3414}, {669, 5639}, {1379, 57576}, {1380, 99}, {2028, 3413}, {3124, 13722}, {3413, 76}, {5639, 30508}, {6189, 670}, {13636, 850}, {21906, 46463}, {41880, 6189}, {46462, 35522}, {52722, 3266}, {57013, 6331}
X(5638) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {187, 2502, 5639}, {647, 3569, 5639}, {649, 5029, 5639}, {663, 5075, 5639}, {665, 5098, 5639}, {667, 5040, 5639}, {669, 5027, 5639}, {890, 42655, 5639}, {902, 5168, 5639}, {1495, 5191, 5639}, {3005, 5113, 5639}, {3230, 5163, 5639}, {3231, 5106, 5639}, {3724, 5202, 5639}, {3747, 5147, 5639}, {6137, 6138, 5639}, {8644, 9135, 5639}, {8651, 42663, 5639}, {9208, 17414, 5639}, {9409, 42654, 5639}, {14899, 35607, 13722}, {15451, 42651, 5639}, {39162, 39163, 1341}, {39202, 39203, 51493}


X(5639) =  EXSIMILICENTER OF CIRCLES {{X(14), X(15), X(16)}} AND {{X(13), X(15), X(16)}}

Trilinears    (csc B)[e cos C - cos(C - ω)] + (csc C)[e cos B - cos(B - ω)] : :
Barycentrics    sin(A - ω)/[e cos A + cos(A + ω)] : :
Barycentrics    h(A,B,C) : h(B,C,A) : h(C,A,B), where h(A,B,C) = (S2B - S2C)[(S + 31/2SA)p + (S - 31/2SA)q], where p = (Sω - 31/2S)1/2 and q = (Sω + 31/2S)1/2    César Lozada (ADGEOM #1341, June 22, 2014)
Barycentrics    Sin[A]*((e*Cos[C] - Cos[C - w])*Csc[B] - (e*Cos[B] - Cos[B - w])*Csc[C]) : : (Peter Moses, March 3, 2024)
Barycentrics    a^2*(2*a^4 - 2*a^2*b^2 - b^4 - 2*a^2*c^2 + 4*b^2*c^2 - c^4 + (2*a^2 - b^2 - c^2)*Sqrt[a^4 - a^2*b^2 + b^4 - a^2*c^2 - b^2*c^2 + c^4]) : : (Peter Moses, March 3, 2024)

The Parry circle and Thomson-Gibert-Moses hyperbola (introduced at X(5642)), intersect in four points: X(2), X(110), X(5638), X(5639). Of the latter two points, X(5639) is the closer to X(2); also, X(5639) = the intersection closer to X(2) of the Parry circle and Lemoine axis. X(5639) = perspector of the hyperbola {{A,B,C,X(6), F1, F2}}, where F1 and F2 are the foci of the Steiner inellipse; also X(5639) = intersection of the trilinear polars of X(6), F1, and F2. (Randy Hutson, June 16, 2014)

X(5639) lies on the Steiner minor axis, the circumconic {{A,B,C,X(2), X(6)}}, the Parry circle, the Thomson-Gibert-Moses hyperbola, K889, K890, K891, K1067, the curve Q090, and these lines: {2, 1340}, {3, 6142}, {6, 6141}, {100, 11652}, {110, 1380}, {111, 1379}, {154, 21036}, {187, 237}, {353, 1341}, {739, 11651}, {2028, 39689}, {2029, 3124}, {2395, 13722}, {3228, 6190}, {3413, 9147}, {3558, 9716}, {5643, 14630}, {5648, 46462}, {5652, 52722}, {16081, 57014}, {21001, 21032}, {36213, 39068}

X(5639) = reflection of X(5638) in X(351)
X(5639) = isogonal conjugate of X(6189)
X(5639) = complement of anticomplementary conjugate of X(39365)
X(5639) = anticomplement of complementary conjugate of X(39022)
X(5639) = X(3124)-cross conjugate of X(5638)
X(5639) = X(6)-vertex conjugate of X(5638)
X(5639) = circumcircle-inverse of X(6142)
X(5639) = Parry-circle-antipode of X(5638)
X(5639) = trilinear pole of the line X(512)X(2029)
X(5639) = crossdifference of every pair of points on the line X(2)X(1341)
X(5639) = X(1379)-of-1st-Parry-triangle
X(5639) = X(1380)-of-2nd-Parry-triangle
X(5639) = crossdifference of PU(i) for these i: 116, 118
X(5639) = perspector of hyperbola {{A,B,C,X(6),PU(118)}}
X(5639) = isogonal conjugate of the anticomplement of X(39022)
X(5639) = isogonal conjugate of the complement of X(39365)
X(5639) = isogonal conjugate of the isotomic conjugate of X(3414)
X(5639) = Thomson-isogonal conjugate of X(6040)
X(5639) = psi-transform of X(1340)
X(5639) = X(31)-complementary conjugate of X(39067)
X(5639) = X(i)-Ceva conjugate of X(j) for these (i,j): {2, 39067}, {6, 2029}, {110, 5638}, {1380, 6}, {6178, 39022}, {6189, 3557}, {41881, 512}, {57014, 13722}
X(5639) = X(i)-isoconjugate of X(j) for these (i,j): {1, 6189}, {63, 57013}, {75, 1380}, {662, 3413}, {799, 5638}, {13636, 24041}, {36085, 52722}
X(5639) = X(i)-Dao conjugate of X(j) for these (i,j): {3, 6189}, {206, 1380}, {1084, 3413}, {3005, 13636}, {3162, 57013}, {13636, 850}, {21905, 46462}, {38988, 52722}, {38996, 5638}, {39022, 76}, {39067, 2}, {39068, 30509}
X(5639) = X(i)-line conjugate of X(j) for these (i,j): {187, 5638}, {353, 1341}, {1340, 2}, {2395, 13722}, {5652, 52722}, {9147, 3413}
X(5639) = pole of line {7668, 39022} with respect to the Kiepert circumhyperbola
X(5639) = pole of line {2029, 3269} with respect to the Jerabek circumhyperbola
X(5639) = pole of line {2029, 3124} with respect to ABCGK
X(5639) = pole of line {39067, 44312} with respect to ABCGGe
X(5639) = pole of line {1015, 2029} with respect to ABCIK
X(5639) = pole of line {670, 6189} with respect to the Steiner / Wallace right hyperbola
X(5639) = pole of line {99, 1380} with respect to the Feuerbach circumhyperbola of the tangential triangle
X(5639) = pole of line {190, 6189} with respect to the Kiepert circumhyperbola of the excentral triangle
X(5639) = pole of line {668, 6189} with respect to the Jerabek circumhyperbola of the excentral triangle
X(5639) = pole of line {670, 6189} with respect to the Kiepert circumhyperbola of the anticomplementary triangle
X(5639) = pole of line {194, 3413} with respect to the Steiner circumellipse
X(5639) = pole of line {3167, 5638} with respect to the MacBeath circumconic
X(5639) = pole of line {39, 3413} with respect to the Steiner inellipse
X(5639) = pole of line {6, 5638} with respect to the Brocard inellipse
X(5639) = pole of line {669, 30508} with respect to the Kiepert parabola
X(5639) = pole of line {5639, 9155} with respect to the Thomson-Gibert-Moses hyperbola
X(5639) = pole of line {6, 5638} with respect to the Aquarius conic (see X(5585))
X(5639) = pole of line {6, 5638} with respect to the circumcircle
X(5639) = pole of line {574, 5638} with respect to the Brocard circle
X(5639) = pole of line {511, 5639} with respect to the Parry circle
X(5639) = pole of line {262, 3413} with respect to the orthoptic-circle-of-the-Steiner-inellipse
X(5639) = pole of line {3413, 44434} with respect to the orthoptic-circle-of-the-Steiner-circumellipe
X(5639) = pole of line {3413, 44460} with respect to the circumcircle of the inner Napoleon triangle
X(5639) = pole of line {3413, 44464} with respect to the circumcircle of the outer Napoleon triangle
X(5639) = pole of line {5638, 6468} with respect to the Lucas inner circle
X(5639) = pole of line {5638, 6221} with respect to the Lucas circles radical circle
X(5639) = pole of line {5638, 50663} with respect to the outer Montesdeoca-Lemoine circle
X(5639) = pole of line {5638, 50662} with respect to the inner Montesdeoca-Lemoine circle
X(5639) = pole of line {511, 5638} with respect to the Parry isodynamic circle
X(5639) = barycentric product X(i)*X(j) for these {i,j}: {6, 3414}, {110, 13722}, {111, 52723}, {512, 6190}, {523, 1379}, {647, 57014}, {691, 46463}, {1380, 39022}, {2029, 6189}, {3413, 41881}, {5638, 30508}
X(5639) = barycentric quotient X(i)/X(j) for these {i,j}: {6, 6189}, {25, 57013}, {32, 1380}, {351, 52722}, {512, 3413}, {669, 5638}, {1379, 99}, {1380, 57575}, {2029, 3414}, {3124, 13636}, {3414, 76}, {5638, 30509}, {6190, 670}, {13722, 850}, {21906, 46462}, {41881, 6190}, {46463, 35522}, {52723, 3266}, {57014, 6331}
X(5639) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {187, 2502, 5638}, {647, 3569, 5638}, {649, 5029, 5638}, {663, 5075, 5638}, {665, 5098, 5638}, {667, 5040, 5638}, {669, 5027, 5638}, {890, 42655, 5638}, {902, 5168, 5638}, {1495, 5191, 5638}, {3005, 5113, 5638}, {3230, 5163, 5638}, {3231, 5106, 5638}, {3724, 5202, 5638}, {3747, 5147, 5638}, {6137, 6138, 5638}, {8644, 9135, 5638}, {8651, 42663, 5638}, {9208, 17414, 5638}, {9409, 42654, 5638}, {15451, 42651, 5638}, {35608, 35609, 13636}, {39204, 39205, 51492}


X(5640) =  CENTROID OF ORTHOCENTROIDAL TRIANGLE

Trilinears    sin A (sin 2B + sin 2C) + sin B sin C : :
Barycentrics    a^2(a^2b^2 + a^2c^2 + 3b^2c^2 - b^4 - c^4) : :
Barycentrics    (SB + SC) (SA^2 + 3 SA (SB + SC) + 5 SB SC) : :
X(5640) = X(2) + 2*X(51)

The orthocentroidal triangle is introduced at X(5476). For another construction of X(5640), let A′B′C′ be the orthic triangle, let A″ be the centroid of AB′C′, and define B″ and C″ cyclically. Then X(5640) is the centroid of A″B″C″. Also, X(5640) is the trilinear pole of the polar, with respect to the Moses circle, of the perspector of the Moses circle. (Randy Hutson, June 16, 2014)

Vertices of the central triangle A″B″C″ are given by barycentrics as follows:

A″ = b4 + c4 - a2b2 - a2c2 - 4b2c2 : b2(a2 - b2 - c2) : c2(a2 - b2 - c2) (Peter Moses, June 20, 2014)

A″B″C″ is perspective to ABC, the tangential triangle and the second Brocard triangle, all with perspector X(6), and perspective to the Euler triangle at X(125). The Euler line of A″B″C″ passes througth X(i) for these I: 6,110,111,895,1995,2493,2502,2503,2854,2930,3066,3124 (Peter Moses, June 20, 2014)

Let A′B′C′ be the Artzt triangle. Let A″ be the reflection of A′ in BC, and define B″ and C″ cyclically; then X(5640) = centroid of A″B″C″; see X(6032). (Randy Hutson, December 10, 2016)

Let A′B′C′ be the anti-Artzt triangle. Let A″ be the reflection of A′ in BC, and define B″ and C″ cyclically; then X(5640) = centroid of A″B″C″. (Randy Hutson, December 10, 2016)

X(5640) lies on these lines: {2,51}, {4,4846}, {5,568}, {6,110}, {22,5085}, {23,182}, {25,5012}, {52,3090}, {125,5169}, {143,1656}, {185,3832}, {323,576}, {324,3168}, {375,3681}, {381,5663}, {389,3091}, {394,5102}, {476,1316}, {512,598}, {569,3518}, {575,1495}, {631,5446}, {858,5480}, {1112,5094}, {1154,5055}, {1180,3981}, {1216,5067}, {1383,2030}, {1843,4232}, {1993,5020}, {3056,5297}, {3111,3972}, {3291,5052}, {3292,5097}, {3448,3818}, {3533,5447}, {5039,5354}

X(5640) = midpoint of X(51) and X(373)
X(5640) = reflection of X(2) in X(373)
X(5640) = isotomic conjugate of polar conjugate of X(33885)
X(5640) = complement of X(33884)
X(5640) = anticomplement of X(5650)
X(5640) = crossdifference of every pair of points on line X(690)X(3288)
X(5640) = intercept, other than X(110), of line X(6)X(110) and conic {{X(13),X(14),X(15),X(16),X(110)}}
X(5640) = SS(A/3 → A) of X(8065) (symbolic trilinear substitution)
X(5640) = X(2)-of-reflection-triangle of X(2)
X(5640) = isogonal conjugate of X(2) with respect to the pedal triangle of X(2)
X(5640) = 4th-anti-Brocard-to-anti-Artzt similarity image of X(2)
X(5640) = {X(11624),X(11626)}-harmonic conjugate of X(6)
X(5640) = homothetic center of X(2)-altimedial and X(2)-adjunct anti-altimedial triangles
X(5640) = circummedial-to-X(2)-pedal similarity image of X(2)
X(5640) = {X(2),X(51)}-harmonic conjugate of X(3060)


X(5641) =  ISOTOMIC CONJUGATE OF X(542)

Barycentrics    1/[2a sec(A + ω) - b sec(B + ω) - c sec(C + ω)] : :
Barycentrics    1/(2 a^6 - 2 a^4 (b^2 + c^2) + a^2 (b^4 + c^4) - (b^2 - c^2)^2 (b^2 + c^2)) : :

The Steiner circumellipse meets the Yiu Hyperbola, defined at X(5627), in four points: A, B, C, and X(5641).    (Peter Moses, January 2, 2014)

X(5641) lies on these lines: {2,2966}, {30,99}, {69,892}, {290,850}, {297,340}, {523,1494}, {525,671}, {670,3260}

X(5641) = reflection of X(2966) in X(2)
X(5641) = reflection of X(2) in X(35088)
X(5641) = isogonal conjugate of X(5191)
X(5641) = isotomic conjugate of X(542)
X(5641) = cevapoint of X(2) and X(542)
X(5641) = X(542)-cross conjugate of X(2)
X(5641) = isoconjugate of X(i) and X(j) for these (i,j): (6,2247), (163,1640)
X(5641) = antipode of X(2) in hyperbola {{A,B,C,X(2),X(325)}}
X(5641) = trilinear pole of line X(2)X(1637)
X(5641) = trilinear product X(75)*X(842)
X(5641) = barycentric product X(76)*X(842)


X(5642) =  CENTER OF THOMSON-GIBERT-MOSES HYPERBOLA

Barycentrics    f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (2a2 - b2 - c2)(2a4 - a2b2 - a2c2 + 2b2c2 - b4 - c4)

The point X(5542) minimizes a certain sum involving the pedal triangle A′B′C′ of a triangle ABC. During May, 2014, Peter Moses generalized the sum to include a parameter t, as follows:

|XA|2 + |XB|2 + |XC|2 + t(|XA′|2 + |XB′|2 + |XC′|2),

and found the solution to the extremal problem to be the point H(t) = f(A,B,C) : f(B,C,A) : f(C,A,B), where

f(A,B,C) = a2[(t2 + 3t + 3)S2 + (2t + 3) S2A + tSBSC].

Let u = 3abc[-3abc + (9a2b2c2 - 8S2S2W)1/2/(4S2S2W) and v = 3abc[-3abc - (9a2b2c2 - 8S2S2W)1/2/(4S2S2W)

Moses found that if t > u, then H(t) minimizes the sum, and if t < v, then H(t) maximizes the sum, and if t > -1, then H(t) minimizes the sum. The extreme value in all cases is

[(6t + 6)SASBSCSW - (2t + 3)(t + 2)S2S2W - t(t + 1)2S4]/[(9t + 9)SASBSC - (2t + 3)(t + 3)S2SW].

The locus of H(t) as t ranges through the extended real number line is a rectangular hyperbola, here named the Thomson-Gibert-Moses hyperbola, which passes through the triangle centers X(i) for I = 2, 3, 6, 110, 154, 354, 392, 1201, 2574, 2575, 3167, 5544, 5638, 5639, 5643, 5644, 5645, 5646, 5648, 5652-5656. The axes of this hyperbola are parallel to the Simson-Wallace lines of X(1113) and X(1114), these being the points of intersection of the Euler line and the circumcircle. See X(5643). (based on notes from Peter Moses, June 7, 2014)

X(5642) is the radical trace of the Parry circles of ABC and the 1st Brocard triangle, and also the centroid of the (degenerate) pedal triangle of X(110). The Thomson-Gibert-Moses hyperbola intersects the circumcircle in X(110) and the vertices of the Thomson triangle (see Thomson Triangle. The 4 points of intersection form an X(74)-centric system; i.e., each is X(74) of the triangle of the other three. Moreover, the Thomson-Gibert-Moses hyperbola is the Thomson isogonal conjugate (i.e., isogonal-conjugate-with-respect-to-the-Thomson-triangle) of the Euler line. In general, the Thomson isogonal conjugate of a point P is the centroid of the antipedal triangle of the isogonal conjugate of P; consequently, the Thomson-Gibert-Moses hyperbola is the locus of the centroid of the antipedal triangle of a point P that traverses the Jerebek hyperbola. Indeed, the Thomson-Gibert-Moses hyperbola is the Jerabek hyperbola of the Thomson triangle, as noted at Thomson Triangle (Randy Hutson, June 16-17, 2014)

Let O = X(3) and suppose that P is a point other than O. Let OP be the circle with segment PO as diameter. Let A′ be the point of intersection, other than O, of OP and the perpendicular bisector of segment BC, and define B′ and C′ cyclically. Triangle A′B′C′ is called the P-Brocard triangle, and X(5642) is X(23)-of-the-X(2)-Brocard triangle. (Randy Hutson, June 16-17, 2014)

The Thomson-Gibert-Moses hyperbola is the image of the Euler line under a mapping T discussed in connection with the third Deaux cubic (K609). (Bernard Gibert, June 22, 2014)

Let O* be the circle with segment X(13)X(14) as diameter (and center X(115). Let P be the perspector of O*. Then X(5642) is the trilinear pole of the polar of P with respect to O*. See X(3292) for a similar property involving the segment X(15)X(16). (Randy Hutson, July 18, 2014)

X(5642) lies on these lines: {2,98}, {3,541}, {30,113}, {74,3524}, {115,2502}, {126,5026}, {265,5055}, {351,690}, {373,597}, {376,2777}, {399,5054}, {468,524}, {543,1316}, {620,5108}, {1636,1637}, {1648,5477}, {1995,5476}, {2781,3917}, {2836,3742}, {3024,4995}, {3028,5298}, {3849,5112}

X(5642) = midpoint of X(2) and X(110)
X(5642) = reflection of X(i) in X(j) for these (i,j): (2,5972), (125,2),
X(5642) = crossdifference of every pair of points on the line X(74)X(111)
X(5642) = X(3524)-line-conjugate of X(74)
X(5642) = radical trace of Parry circles of ABC and anti-Artzt triangle


X(5643) =  H(2) ON THE THOMSON-GIBERT-MOSES HYPERBOLA

Barycentrics   f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = a2(13S2 + 7S2A + 2SBSC)    (Peter Moses, June 9, 2014)

X(5643) is the only point whose polar conic in the Napoleon cubic (K005) is a circle. (Bernard Gibert, June 22, 2014)

The Thomson-Gibert-Moses hyperbola is defined at X(5642). Points H(t) on this hyperbola include the following:

t H(t)
-3 X(3167)
-2 X(110)
-3/2 X(154)
-1/2 X(5646)
-1 X(3)
0 X(2)
1 X(5544)
2 X(5643)
3 X(5644)
4 X(5645)
infinity X(6)
3R/r X(354)
6rR/(r2 - 2rR - s2 X(354)

Let A′ be the centroid of the A-altimedial triangle, and define B′ and C′ cyclically; then X(5643) is the center of similitude of ABC and A′B′C′. (Randy Hutson, July 7, 2014)

X(5643) is the only finite fixed point of the affine transformation that maps a triangle ABC onto the pedal triangle of X(5). (Angel Montesdeoca, August 19, 2016)

X(5643) lies on these lines: {2,576}, {83,5466}, {110,373}, {111,5038}, {154,1995}, {354,4663}, {392,5047}, {597,895}, {632,1173}, {3090,5449}, {3167,5422}, {3580,3628}

X(5643) = Thomson-isogonal conjugate of X(8703)


X(5644) =  H(3) ON THE THOMSON-GIBERT-MOSES HYPERBOLA

Barycentrics   f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = a2(7S2 + 3S2A + SBSC)    (Peter Moses, June 9, 2014)

X(5644) is the Thomson isogonal conjugate of X(3522); see X(5642).

X(5644) lies on these lines: {2,5093}, {3,51}, {110,5020}, {154,5050}, {343,5070}, {373,3167}, {394,5544}, {1351,3819}, {1899,3851}

X(5644) = Thomson-isogonal conjugate of X(3522)


X(5645) =  H(4) ON THE THOMSON-GIBERT-MOSES HYPERBOLA

Barycentrics   f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = a2(31S2 + 11S2A + 4SBSC)    (Peter Moses, June 9, 2014)

The Thomson-Gibert-Moses hyperbola is defined at X(5642).

X(5645) lies on these lines: {2,5097}, {154,3066}, {323,5544}, {2889,3533}, {3448,3545}


X(5646) =  H(-1/2) ON THE THOMSON-GIBERT-MOSES HYPERBOLA

Barycentrics    a2(7S2 + 8S2A - 2SBSC)    (Peter Moses, June 9, 2014)

The Thomson-Gibert-Moses hyperbola is defined at X(5642). X(5646) = (X(6) of the Thomson triangle); see Thomson Triangle (Randy Hutson, June 16, 2014)

X(5646) lies on these lines: {2,1350}, {40,392}, {64,631}, {110,5085}, {182,3167}, {354,612}, {511,5544}, {1201,2177}, {1351,3819}


X(5647) =  HATZIPOLAKIS-EULER POINT

Barycentrics   f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (sin A cos(B - C))(4 cos4A + (-1 + 4 cos2(B - C)) cos2A + cos(B - C)(4 cos A + cos(B - C))    (César Lozada, May 18, 2014)

Let A′B′C′ be the cevian triangle of the circumcenter. Let

LAB = reflection of AA′ in AB, LAC = reflection of AA′ in AC; HAB = orthogonal projection of A′ on LAB, HAC = orthogonal projection of A′ on LAC, and define LBC, LCA, LBA, LCB, and HBC, HCA, HBA, HCB cyclically,

M11 = midpoint(HAB, HAC),      M12 = midpoint(HBC, HBA),      M13 = midpoint(HCA, HCB)
M21 = midpoint(HBA, HCA),      M22 = midpoint(HCB, HAB),      M23 = midpoint(HAC, HBC)
M31 = midpoint(HBC, HCB),      M32 = midpoint(HCA, HAC),      M33 = midpoint(HAB, HBA).

Antreas Hatzipolakis (Anopolis , May 17, 2014) asked if the Euler lines of the triangles M11M12M13, M21M22M23, M31M32M33 concur, and César Lozada established that they do. The point of concurrence is X(5647).

X(5647) lies on these lines: {5,51}, {154,157}


X(5648) =  ANTIPODE OF X(6) IN THOMSON-GIBERT-MOSES HYPERBOLA

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a^8+3 a^6 b^2-2 a^4 b^4-3 a^2 b^6+b^8+3 a^6 c^2-11 a^4 b^2 c^2+7 a^2 b^4 c^2-2 a^4 c^4+7 a^2 b^2 c^4-2 b^4 c^4-3 a^2 c^6+c^8

X(5648) is the radical center of the the circumcircle, the circle {{X(13), X(15), X(5463), X(5464)}} and the circle {{X(14), X(16), X(5463), X(5464)}}. (Randy Hutson, August 26, 2014)

X(5648) lies on these lines: {2,2854}, {3,67}, {6,5642}, {110,524}, {125,5646}, {141,5888}, {392,2836}, {511,5655}, {523,5653}, {526,5652}, {541,1350}, {543,2453}, {597,895}, {2781,5656}

X(5648) = crossdifference of every pair of points on the line X(2492)X(2780)
X(5648) = circumcircle-inverse of X(34013)
X(5648) = Thomson-isogonal conjugate of X(7464)


X(5649) =  ISOGONAL CONJUGATE OF X(1640)

Trilinears   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a/[(b2 - c2)(2a6 - b6 - c6 - 2a4b2 - 2a4c2 + a2b4 + a2c4 + b4c2 + b2c4)]
Trilinears   g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (cot A)/[sin 3B csc 2B tan C cos(C + ω) - sin 3C csc 2C tan B cos(B + ω)]

X(5649) is the trilinear pole of the line X(23)X(110); at X(110), this line is tangent to the Thomson-Gibert-Moses hyperbola and parallel to the trilinear polar of X(110). (Randy Hutson, June 16, 2014)

X(5649) lies on the hyperbola {A, B, C, X(2), X(110)} and this line: {250, 4230}

X(5649) = isogonal conjugate of X(1640)
X(5649) = isotomic conjugate of X(18312)


X(5650) =  REFLECTION OF X(373) IN X(2)

Barycentrics   a^2(b^4 + c^4 - a^2b^2 - a^2c^2 + 6b^2c^2) : :

Let U be the tangent to the Thomson-Gibert-Moses hyperbola at X(2), and let V be the tangent at X(3); then X(5650) = U∩V. Also, X(5650) is the centroid of the X(2)-Brocard triangle; see X(5642). (Randy Hutson, June 16, 2014)

X(5650) = pole of the Euler line with respect to the Thomson-Gibert-Moses hyperbola. (Peter Moses, June 17, 2014)

X(5650) lies on these lines: {2,51}, {3,1495}, {6,5646}, {110,5092}, {549,5642}

X(5650) = reflection of X(373) in X(2)
X(5650) = complement of X(5640)
X(5650) = isotomic conjugate of polar conjugate of X(33843)
X(5650) = {X(3),X(5651)}-harmonic conjugate of X(1495)


X(5651) =  {X(2), X(110)}-HARMONIC CONJUGATE OF X(182)

Barycentrics   a^2(a^4 - a^2b^2 - a^2c^2 + 4b^2c^2) : :

Let U be the tangent to the Thomson-Gibert-Moses hyperbola at X(3), and let V be the tangent at X(6); then X(5651) = U∩V. Also, X(5651) is the inverse-in-Thomson-Gibert-Moses hyperbola of X(182). (Randy Hutson, June 16, 2014)

X(5651) = pole of the Brocard axis line with respect to the Thomson-Gibert-Moses hyperbola. (Peter Moses, June 17, 2014)

X(5651) lies on these lines: {2,98}, {3,1495}, {6,373}

X(5651) = crossdifference of every pair of points on the line X(1499)X(3569)
X(5651) = {X(1495),X(5650)}-harmonic conjugate of X(3)


X(5652) =  X(4) OF TRIANGLE X(2)X(3)X(6)

Barycentrics   (b^2 - c^2)[3a^6 - 2a^4(b^2 + c^2) + a^2(b^4 - 3b^2c^2 + c^4) + b^2c^2(b^2 + c^2)] : :

X(5652) = antipode of X(5653) in the Thomson-Gibert-Moses hyperbola. (Randy Hutson, June 16, 2014)

X(5652) lies on the circle {{X(3), X(6), X(110), X(353), X(843)}}. (Randy Hutson, November 22, 2014)

X(5652) lies on the Thomson-Gibert-Moses hyperbola and these lines: {2,3111}, {3,669}, {6,523}, {83,5466}, {99,110}

X(5652) = reflection of X(5653) in X(5642)
X(5652) = Thomson-isogonal conjugate of X(7418)


X(5653) =  X(4) OF TRIANGLE X(3)X(6)X(110)

Barycentrics   a^2(b^2 - c^2)[a^10 + a^8(b^2 + c^2) - a^6(5b^4 + 8b^2c^2 + 5c^4) + a^4(b^6 + 15b^4c^2 + 15b^2c^4 + c^6) + a^2(4b^8 - 14b^6c^2 - 3b^4c^4 - 14b^2c^6 + 4c^8) - 2b^10 + 4b^8c^2 + b^6c^4 + b^4c^6 + 4b^2c^8 - 2c^10] : :

X(5653) = antipode of X(5652) in the Thomson-Gibert-Moses hyperbola. (Randy Hutson, June 16, 2014)

X(5653) lies on the Thomson-Gibert-Moses hyperbola, the circle {{X(2), X(3), X(6), X(111), X(691)}}, and these lines: {2,690}, {3,351}, {6,526}, {110,249}

X(5653) is denoted QA-P9 (QA-Miquel Center) of the quadrangle X(13)X(14)X(15)X(16); see Chris van Tienhoven's site.

X(5653) = crossdifference of every pair of points on the line X(542)X(1648)
X(5653) = reflection of X(5652) in X(5642)


X(5654) =  INTERSECTION OF LINES X(4)X(110) AND X(5)X(6)

Barycentrics   (a^2 - b^2 - c^2)[a^8 - 4a^6(b^2 + c^2) + 4a^4(b^4 - b^2c^2 + c^4) - (b^2 - c^2)^4] : :

X(5654) = isogonal-conjugate-with-respect-to-the-Thomson-triangle of X(22). (Peter Moses, June 18, 2014)

X(5654) lies on these lines: {3,4549}, {4,110}, {5,6}, {11,3157}, {12,1069}, {30,154}, {52,3542}, {140,5646}, {184,1568}, {185,3548}, {354,912}, {381,3167}, {382,1514}, {403,1993}, {539,3545}, {1216,3547}, {1656,5544}, {1899,2072}, {3089,5446}, {3090,5449}, {3549,5562}, {5055,5644}, {5056,5645}


X(5655) =  INTERSECTION OF LINES X(6)X(13) AND X(30)X(110)

Barycentrics    f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a^10 - 6a^8(b^2 + c^2) + a^6(11b^4 - b^2c^2 + 11c^4) - a^4(7b^6 - 2b^4c^2 - 2b^2c^4 + 7c^6) + 8a^2b^2c^2(b^2 - c^2)^2 + (b^2 - c^2)^4(b^2 + c^2) : :

Let A′B′C′ be the orthocentroidal triangle. Let L be the lines through A′ parallel to the Euler line, and define M and N cyclically. Let L′ be the reflection of L in sideline BC, and define M′ and L′ cyclically. The lines L′,M′,N′ concur in X(5655); c.f. X(i) for i = 74, 113, 265, 399, 1147, 1511, 5504, 5609. (Randy Hutson, August 26, 2014)

X(5655) is the center of the perspeconic of the orthocentroidal and anti-orthocentroidal triangles (see preamble before X(15254)). This conic is a circle. (Randy Hutson, December 2, 2017)

X(5655) lies on these lines: {3,541}, {4,5609}, {5,5643}, {6,13}, {30,110}, {74,549}, {125,5055}, {146,376}, {154,2777}, {354,2771}, {1539,3543}, {3167,3830}, {3448,3545}, {5054,5646}

X(5655) = isogonal-conjugate-with-respect-to-the-Thomson-triangle of X(23). (Peter Moses, June 18, 2014)
X(5655) = antipode of X(3) in Thomson-Gibert-Moses hyperbola


X(5656) =  INTERSECTION OF LINES X(4)X(6) AND X(20)X(110)

Barycentrics    a^10 - 7a^8(b^2 + c^2) + 2a^6(7b^4 - 6b^2c^2 + 7c^4) - 10a^4(b^2 - c^2)^2(b^2 + c^2) + a^2(b^2 - c^2)^2(b^4 + 14b^2c^2 + c^4) + (b^2 - c^2)^4(b^2 + c^2) : :

X(5656) = isogonal-conjugate-with-respect-to-the-Thomson-triangle of X(25). (Peter Moses, June 18, 2014)

X(5656) lies on these lines: {4,6}, {5,5544}, {20,110}, {30,3167}, {64,631}, {154,376}, {185,3089}, {193,1533}, {221,1058}, {354,5603}, {378,1619}, {381,5644}, {1056,2192}, {1853,3545}, {3091,5643}, {3357,3523}, {3832,5645}


X(5657) =  INTERSECTION OF LINES X(3)X(8) AND X(4)X(9)

Barycentrics   a^4 + 2a^3(b + c) - 2a^2(b + c)^2 - 2a(b - c)^2(b + c) + (b^2 - c^2)^2 : :
X(5657) = 2 X(3) + X(8)

Let A* be the parabola with focus A and directrix BC, and let A** be the polar of X(1) with respect to A*. Define B** and C** cyclically, and let A′ = B**∩C**, and define B′ and C′ cyclically. The lines AA′, BB′, CC′ concur in X(1000), and the centroid of A′B′C′ is X(5657). (Randy Hutson, July 7, 2014)

X(5657) lies on these lines: {1,631}, {2,392}, {3,8}, {4,9}, {5,962}, {7,495}, {12,4295}, {20,355}, {21,5554}, {35,3486}, {36,3476}, {43,1064}, {46,388}, {55,1006}, {57,1056}, {63,2096}, {65,3085}, {80,4302}, {140,1482}, {145,1385}, {165,376}, {191,2950}, {201,1148}, {226,2093}, {333,4221}, {387,1108}, {484,1478}, {497,1737}, {498,3485}, {499,5445}, {519,3158}, {549,3241}, {580,5264}, {581,3293}, {601,5247}, {602,5255}, {912,3681}, {938,3295}, {946,1698}, {993,2077}, {999,5435}, {1012,5273}, {1058,1210}, {1072,1738}, {1083,2726}, {1125,3525}, {1155,4293}, {1376,3428}, {1387,4345}, {1483,3530}, {1519,3452}, {1532,3820}, {1537,5328}, {1699,3545}, {1714,3987}, {1770,5229}, {1829,3088}, {1836,5183}, {1837,4294}, {1872,4194}, {1902,3089}, {2098,5433}, {2099,5432}, {3035,5289}, {3057,3086}, {3214,4300}, {3240,5396}, {3522,4678}, {3526,5550}, {3528,3626}, {3533,3624}, {3560,5260}, {3634,4301}, {3651,5584}, {3817,3828}, {3869,5552}, {4292,5128}, {4305,5217}, {4642,5230}, {5084,5250}, {5251,5537}, {5258,5450}, {5442,5559}

X(5657) = midpoint of X(165) and X(3679)
X(5657) = reflection of X(i) in X(j) for these (i,j): (376, 165), (3817, 3828)
X(5657) = anticomplement of X(5886)
X(5657) = crossdifference of every pair of points on the line X(1459)X(3310)
X(5657) = isogonal-conjugate-with-respect-to-the-Thomson-triangle of X(55). (Peter Moses, June 18, 2014) X(5657) = {X(10),X(40)}-harmonic conjugate of X(4)
X(5657) = centroid of antipedal triangle of X(7)


X(5658) =  INTERSECTION OF LINES X(1)X(4) AND X(2)X(971)

Barycentrics    a^6 - 4a^5(b + c) + a^4(3b^2 + 2bc + 3c^2) + 4a^3(b - c)^2(b + c) - 5a^2(b^2 - c^2)^2 + 8abc(b - c)^2(b + c) + (b - c)^4(b + c)^2 : :

X(5658) = isogonal-conjugate-with-respect-to-the-Thomson-triangle of X(56). (Peter Moses, June 18, 2014)

X(5658) is the centroid of the antipedal triangle of X(8). Let AAABAC be the orthic triangle of the A-extouch triangle, let BABBBC be the orthic triangle of the B-extouch triangle, and let CACBCC be the orthic triangle of the C-extouch triangle. Let A′ be the centroid of AABACA, let B′ be the centroid of ABBBCB, and let C′ be the centroid of ACBCCC. Then triangle A′B′C′ is homothetic to ABC with center of homothety X(7308), and X(5658) = X(84)-of-A′B′C′. (Randy Hutson, July 7, 2014)

X(5658) lies on these lines: {1,4}, {2,971}, {9,2272}, {20,5440}, {84,631}, {100,329}, {516,3158}, {1538,5274}, {1709,5218}, {3305,3358}


X(5659) =  INTERSECTION OF LINES X(1)X(140) AND X(9)X(1699)

Barycentrics    a^6 - a^5(b + c) - a^4(3b^2 + bc + 3c^2) + 2a^3(b + c)(2b^2 - bc + 2c^2) + a^2(b - c)^2(b^2 - bc + c^2) - a(b - c)^2(b + c)(3b^2 - 2bc + 3c^2) + (b - c)^4(b + c)^2 : :

X(5659) = isogonal-conjugate-with-respect-to-the-Thomson-triangle of X(35). (Peter Moses, June 18, 2014)

X(5659) lies on these lines: {1,140}, {9,1699}, {100,4847}, {515,3651}, {3925,5536}


X(5660) =  INTERSECTION OF LINES X(1)X(5) AND X(100)X(516)

Barycentrics    a^6 - 3a^5(b + c) + a^4(b^2 + 7bc + c^2) + 2a^3(b - 2c)(2b - c)(b + c) - 3a^2(b - c)^2(b^2 + 3bc + c^2) - a(b - c)^2(b + c)(b^2 - 6bc + c^2) + (b - c)^4(b + c)^2 : :

X(5660) = isogonal-conjugate-with-respect-to-the-Thomson-triangle of X(36). (Peter Moses, June 18, 2014)

Let A′B′C′ be the orthic triangle. Let A* be the antiorthic axis of triangle AB′C′, and define B* and C* cyclically. Let A″ = B*∩C*, and define B″ and C″ cyclically. Then X(5660) = X(165)-of-A″B″C″. (Randy Hutson, July 7, 2014)

X(5660) lies on these lines: {1,5}, {2,2801}, {9,1768}, {100,516}, {104,5251}, {153,214}, {528,1699}, {1512,4867}, {1537,5541}, {1538,3689}, {1639,2826}


X(5661) =  MINIMIZER ON BROCARD AXIS OF x2 + y2 + z2

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2(a6b4 + a6c4 - 2a4b6 - 2a4c6 + a2b8 + a2c8 - a2b6c2 - a2b2c6 + 2a2b4c4 + b8c2 + b2c8 - b6c4 - b4c6)

Suppose that P = p : q : r and U = u : v : w (homogeneous barycentric coordinates). Let (x,y,z) be normalized barycentric coordinates for an arbitrary point X. The point T on the line PU that minimizes x2 + y2 + z2 is given (Peter Moses, June 23, 2014) by

T = (qu - pv)(pv + rv - qu - qw) + (ru - pw)(pw + qw - ru - rv)

X(5661) is the minimizer T when P = X(3) and Q = X(6), so that PU is the Brocard axis. Other examples follow:

If PU = Lemoine axis (P = X(187), Q = X(237)), then T = X(3229)
If PU = orthic axis (P = X(230), Q = X(223)), then T = X(230)
If PU = anti-orthic axis (P = X(44), Q = X(513)), then T = X(1575)
If PU = De Longchamps line (P = X(325), Q = X(523)), then T = X(325)
If PU = Gergonne line (P = X(241), Q = X(514)), then T = X(3008)
If P = X(1) and Q = X(3), then T = X(5662)
If P = X(1) and Q = X(6), then T = X(5701)

X(5661) lies on these lines: {2,647}, {3,6}, {3672,4235}

X(5661) = crossdifference of every pair of points on the line X(237)X(523)
X(5661) = crosssum of X(6) and X(5091)


X(5662) =  MINIMIZER ON LINE X(1)X(3) OF x2 + y2 + z2

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(a5b2 + a5c2 - 2a4b2c - 2a4bc2 - 2a3b4 - 2a3c4 + 3a3b3c + 3a3bc3 + a2b4c + a2bc4 - a2b3c2 -a2b2c3 + ab6 + ac6 - 3ab5c - 3abc5 + 3ab4c2 + 3ab2c4 - 2ab3c3 + b6c + bc6 - b5c2 - b2c5)

Suppose that P = p : q : r and U = u : v : w (homogeneous barycentric coordinates). Let (x,y,z) be normalized barycentric coordinates for an arbitrary point X. The point T on the line PU that minimizes x2 + y2 + z2 is given (Peter Moses, June 23, 2014) by

T = (qu - pv)(pv + rv - qu - qw) + (ru - pw)(pw + qw - ru - rv)

X(5662) is the minimizer T when P = X(1) and Q = X(3).

X(5662) lies on these lines: {1,3}, {2,905}, {63,2427}


X(5663) =  ISOGONAL CONJUGATE OF X(477)

Trilinears   4 cos A + cos(A - 2B) + cos(A - 2C) - 3 cos(B - C) : :

Let A′B′C′ be the orthocentroidal triangle. Let A″ be the reflection of A in line B′C′, and define B″ and C″ cyclically. The lines A′A″, B′B″, C′C″ concur in X(5663). (Randy Hutson, July 11, 2019)

X(5663) lies on the line at infinity and these lines: {1,3024}, {3,74}, {4,94}, {5,113}, {23,3581}, {26,1498}, {30,511}, {40,2940}, {49,3043}, {51,3845}, {52,3627}, {67,1352}, {64,155}, {182,4550}, {389,546}, {500,3746}, {548,1216}, {895,1351}, {1147,3357}, {1350,2930}, {1353,5095}, {1597,5093}, {1625,3269}, {2088,2493}, {3567,3843}, {3850,5462}

X(5663) = isogonal conjugate of X(477)
X(5663) = X(2693)-Ceva conjugate of X(3)
X(5663) = anticomplementary conjugate of X(34193)
X(5663) = X(477)-anticomplementary conjugate of X(8)
X(5663) = complementary conjugate of X(10)
X(5663) = crossdifference of X(6) and X(1637)
X(5663) = crosssum of X(i) and X(j) for these {I,J}: {55, 3013}, {523,3154}
X(5663) = X(3)-vertex conjugate of X(526)
X(5663) = trilinear product X(2410)*X(2624)
X(5663) = barycentric product X(i)*X(j) for these {I,J}: {526,2410}, {2437,3268}
X(5663) = Thomson-isogonal conjugate of X(476)
X(5663) = Lucas-isogonal conjugate of X(476)
X(5663) = X(952)-of-orthic-triangle if ABC is acute
X(5663) = Cundy-Parry Phi transform of X(14385)
X(5663) = Cundy-Parry Psi transform of X(14254)
X(5663) = X(92)-isoconjugate of X(32663)


X(5664) =  CENTER OF CIRCLE {X(3), X(5613), X(5617)}

Barycentrics    f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b2 - c2)(2a4 - b4 - c4 - a2b2 - a2c2 + 2b2c2)(b2 + c2 - a2 - bc)(b2 + c2 - a2 + bc) (Peter Moses, June 20, 2014)

Let U be the circle (X(5617), R) and V the circle (X(5613),R), so that U passes through X(14) and V passes through X(13), and let Γ be the circumcircle of ABC. Then X(5664) is the radical center of the circles U, V, and Γ. (Dao Thanh Oai, ADGEOM #1256, April 23, 2014)

X(5664) is the isotomic conjugate of the trilinear pole of line X(30)X(74). (Randy Hutson, July 7, 2014)

X(5664) lies on these lines: {2, 525}, {3, 523}, {39, 2485}, {99, 5649}, {113, 114}, {140, 5489}, {323, 2411}, {2407, 2420}, {2482, 2799}, {2848, 3184}

X(5664) = isotomic conjugate of X(39290)
X(5664) = complement of X(2394)
X(5664) = anticomplement of X(14566)


X(5665) =  ISOGONAL CONJUGATE OF X(3601)

Trilinears   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 1/[(s - a)(s2 - SA)]

Let A′B′C′ be the intouch triangle of a triangle ABC. Let (BA′) be the circle having diameter BA′, and likewise for (A′C); define circles (CB′) and (AC′) cyclically, and define circles (B′A) and (C′B) cyclically. Let U be the point, other than A′, in which (BA′) meets the incircle, and define V and W cyclically. Let U′ be the point, other than A′, in which (A′C) meets the incircle, and define V′ and W′ cyclically. Let A″B″C″ be the triangle formed by the lines UU′, VV′, WW′. Let A″' be the point, other than A, in which the circles (AB′) and (AC′) meet, and define B‴ and C‴ cyclically. Then A″B″C″ is perspective to ABC, and the perspector is X(5665). Moreover, A″B″C″ is perspective to A″B″C″, and the perspector is X(5666). (César Lozada ADGEOM #1155, March 8, 2014)

X(5665) lies on the Feuerbach hyperbola and these lines: (1, 1427), (4, 3671), (7, 950), (8, 226), (9, 65), (21, 57), (34, 1172), (40, 943), (72, 4866), (79, 3586), (84, 942), (85, 314), (104, 3333), (388, 3243), (405, 3339), (728, 2171), (946, 3427), (1000, 3487), (1420, 2320), (1490, 3577), (1697, 2346), (1728, 3467), (1896, 5342), (2099, 2900), (2263, 2298), (2335, 3247), (3296, 3488), (3419, 5290), (3600, 5558), (3612, 5424), (4332, 5269), (4355, 5557)

X(5665) = isogonal conjugate of X(3601)


X(5666) =  INTERSECTION OF LINES X(1)X(1427) AND X(1054)X(3339)

Trilinears   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = [s(s2 + 4r2 + 2bc) - (b + c)(s2 + 2r2)]/(s - a)

Let A′B′C′ be the intouch triangle of a triangle ABC. Let (BA′) be the circle having diameter BA′, and likewise for (A′C); define circles (CB′) and (AC′) cyclically, and define circles (B′A) and (C′B) cyclically. Let U be the point, other than A′, in which (BA′) meets the incircle, and define V and W cyclically. Let U′ be the point, other than A′, in which (A′C) meets the incircle, and define V′ and W′ cyclically. Let A″B″C″ be the triangle formed by the lines UU′, VV′, WW′. Let A‴ be the point, other than A, in which the circles (AB′) and (AC′) meet, and define B‴ and C‴ cyclically. Then A″B″C″ is perspective to ABC, and the perspector is X(5665). Moreover, A″B″C″ is perspective to A″B″C″, and the perspector is X(5666). (César Lozada ADGEOM #1155, March 8, 2014)

X(5666) lies on these lines: (1, 1427), (1054, 3339), (1707, 3361)


X(5667) =  X(30)-CEVA CONJUGATE OF X(4)

Barycentrics    [a^12 - a^10(b^2 + c^2) + a^8(3b^4 - 5b^2c^2 + 3c^4) - 6a^6(b^2 - c^2)^2(b^2 + c^2) + a^4(b^2 - c^2)^2(3b^4 + 20b^2c^2 + 3c^4) - a^2(b - c)^2(b + c)^2(b^2 + c^2)(b^4 + 6b^2c^2 + c^4) + (b^2 - c^2)^4(b^4 - 5b^2c^2 + c^4)]/(b^2 - c^2) : :

As X(30)-Ceva conjugates of points on the Neuberg cubic (K001), the points X(5667) - X(5685) are also on the Neuberg cubic. Specifically, if P is a point on the Neuberg cubic, then the points X(74), P, and the X(30)-Ceva conjugate of P are collinear, since X(74) is the isopivot (or secondary pivot) of the cubic. See Table 9: Points on the Neuberg Cubic.

X(5667) inverse-in-circumconic-centered-at-X(4) of X(133); also, X(5667) is the antipode of X(4) in the bianticevian conic of X(1) and X(4). (Randy Hutson, July 7, 2014)

X(5667) lies on the Neuberg cubic and these lines: {1,2816}, {3,3462}, {4,74}, {19,2822}, {20,1075}, {112,376}, {122,631}, {146,4240}, {399,2133}, {1138,1157}, {1148,4302}, {1263,3481}, {2790,3186}, {3087,3269}, {3183,3529}, {3324,4293}, {3440,3479}, {3441,3480}

X(5667) = reflection of X(I() in X(j) for these (i,j): (4,107), (1294,3184)
X(5667) = antigonal conjugate of X(34298)


X(5668) =  X(30)-CEVA CONJUGATE OF X(15)

Barycentrics a^2*(2*S+(-a^2+b^2+c^2)*sqrt(3))*(-2*(a^10+(b^2+c^2)*a^8-(8*b^4-9*b^2*c^2+8*c^4)*a^6+2*(b^2+c^2)*(4*b^4-7*b^2*c^2+4*c^4)*a^4-(b^2-c^2)^2*(b^4+9*b^2*c^2+c^4)*a^2-(b^4-c^4)*(b^2-c^2)^3)*S+sqrt(3)*(a^2+b^2-c^2)*(a^8-4*(b^2+c^2)*a^6+(6*b^4+b^2*c^2+6*c^4)*a^4-(b^2+c^2)*(4*b^4-5*b^2*c^2+4*c^4)*a^2+(b^4+4*b^2*c^2+c^4)*(b^2-c^2)^2)*(a^2-b^2+c^2)) : :

X(5668) lies on the Neuberg cubic and these lines: {3,3166}, {4,14}, {13,3479}, {15,74}, {16,1495}, {61,185}, {1277,3466}, {2133,5623}, {3284,5669}

X(5668) = reflection of X(5669) in X(3284)
X(5668) = anticomplement of X(33501)
X(5668) = polar-circle-inverse of X(35715)
X(5668) = homothetic center of X(14)- and X(16)-Ehrmann triangles; see X(25)


X(5669) =  X(30)-CEVA CONJUGATE OF X(16)

Barycentrics  a^2*(-2*S+(-a^2+b^2+c^2)*sqrt(3))*(2*(a^10+(b^2+c^2)*a^8-(8*b^4-9*b^2*c^2+8*c^4)*a^6+2*(b^2+c^2)*(4*b^4-7*b^2*c^2+4*c^4)*a^4-(b^2-c^2)^2*(b^4+9*b^2*c^2+c^4)*a^2-(b^4-c^4)*(b^2-c^2)^3)*S+sqrt(3)*(a^2+b^2-c^2)*(a^8-4*(b^2+c^2)*a^6+(6*b^4+b^2*c^2+6*c^4)*a^4-(b^2+c^2)*(4*b^4-5*b^2*c^2+4*c^4)*a^2+(b^4+4*b^2*c^2+c^4)*(b^2-c^2)^2)*(a^2-b^2+c^2)) : :

X(5669) lies on the Neuberg cubic and these lines: {3,3165}, {4,13}, {14,3480}, {15,1495}, {16,74}, {62,185}, {1276,3466}, {2133,5624}, {3284,5668}

X(5669) = reflection of X(5668) in X(3284)
X(5669) = anticomplement of X(33499)
X(5669) = polar-circle-inverse of X(35714)
X(5669) = homothetic center of X(13)-Ehrmann triangle and X(15) triangle; see X(25)


X(5670) =  X(30)-CEVA CONJUGATE OF X(1138)

Barycentrics    (a^8+2*(b^2-2*c^2)*a^6-(6*b^4-b^2*c^2-6*c^4)*a^4+(b^2-c^2)*(2*b^4+3*b^2*c^2+4*c^4)*a^2+(b^2-c^2)^4)*(a^8-2*(2*b^2-c^2)*a^6+(6*b^4+b^2*c^2-6*c^4)*a^4-(b^2-c^2)*(4*b^4+3*b^2*c^2+2*c^4)*a^2+(b^2-c^2)^4)*(5*a^24-27*(b^2+c^2)*a^22+3*(10*b^4+53*b^2*c^2+10*c^4)*a^20+(b^2+c^2)*(121*b^4-472*b^2*c^2+121*c^4)*a^18-3*(153*b^8+153*c^8-(81*b^4+329*b^2*c^2+81*c^4)*b^2*c^2)*a^16+3*(b^2+c^2)*(222*b^8+222*c^8-(78*b^4+353*b^2*c^2+78*c^4)*b^2*c^2)*a^14-(420*b^12+420*c^12+(1260*b^8+1260*c^8-(1143*b^4+1223*b^2*c^2+1143*c^4)*b^2*c^2)*b^2*c^2)*a^12-6*(b^2+c^2)*(9*b^12+9*c^12-(261*b^8+261*c^8-(389*b^4-272*b^2*c^2+389*c^4)*b^2*c^2)*b^2*c^2)*a^10+3*(b^2-c^2)^2*(93*b^12+93*c^12-2*(81*b^8+81*c^8+(199*b^4+80*b^2*c^2+199*c^4)*b^2*c^2)*b^2*c^2)*a^8-(b^4-c^4)*(b^2-c^2)*(191*b^12+191*c^12-2*(98*b^8+98*c^8+(232*b^4-307*b^2*c^2+232*c^4)*b^2*c^2)*b^2*c^2)*a^6+3*(b^2-c^2)^4*(18*b^12+18*c^12+(63*b^8+63*c^8+(17*b^4-61*b^2*c^2+17*c^4)*b^2*c^2)*b^2*c^2)*a^4-3*(b^2-c^2)^6*(b^2+c^2)*(b^8+c^8+4*(4*b^4+5*b^2*c^2+4*c^4)*b^2*c^2)*a^2-(b^6-c^6)*(b^2-c^2)^9) : :

X(5670) lies on the Neuberg cubic and these lines: {3,2133}, {74,1138}


X(5671) =  X(30)-CEVA CONJUGATE OF X(1263)

Barycentrics    (a^6-(b^2+3*c^2)*a^4-(b^4-b^2*c^2-3*c^4)*a^2+(b^2-c^2)^3)*(a^6-(3*b^2+c^2)*a^4+(3*b^4+b^2*c^2-c^4)*a^2-(b^2-c^2)^3)*(4*a^16-17*(b^2+c^2)*a^14+(19*b^4+58*b^2*c^2+19*c^4)*a^12+(b^2+c^2)*(19*b^4-100*b^2*c^2+19*c^4)*a^10-(65*b^8+65*c^8-2*(38*b^4+27*b^2*c^2+38*c^4)*b^2*c^2)*a^8+(b^2+c^2)*(61*b^8+61*c^8-(120*b^4-109*b^2*c^2+120*c^4)*b^2*c^2)*a^6-(b^2-c^2)^2*(23*b^8+23*c^8+(28*b^4-3*b^2*c^2+28*c^4)*b^2*c^2)*a^4+(b^4-c^4)*(b^2-c^2)^3*(b^4+16*b^2*c^2+c^4)*a^2+(b^2-c^2)^8) : :

X(5671) is the tangential of X(3065) on the Neuberg cubic.

X(5671) lies on the Neuberg cubic, the Lester circle, and these lines: {3,1138}, {30,1117}, {74,1263}, {2133,3484}>

X(5671) = X(1117)-Ceva conjugate of X(3471)


X(5672) =  X(30)-CEVA CONJUGATE OF X(1276)

Barycentrics    a*(2*(-a+b+c)*S+(a^3+(b+c)*a^2-(b+c)^2*a-(b^2-c^2)*(b-c))*sqrt(3))*(-2*(a^10-3*(b+c)*a^9+(b^2-4*b*c+c^2)*a^8+6*(b^3+c^3)*a^7-(8*b^4+8*c^4-b*c*(4*b^2+9*b*c+4*c^2))*a^6+3*(b+c)*(3*b^2-7*b*c+3*c^2)*b*c*a^5+(8*b^4+8*c^4+b*c*(19*b^2+24*b*c+19*c^2))*(b-c)^2*a^4-6*(b^2-c^2)*(b-c)*(b^4+c^4+b*c*(2*b^2+b*c+2*c^2))*a^3-(b^2-c^2)^2*(b^4+c^4+b*c*(2*b^2+9*b*c+2*c^2))*a^2+3*(b^2-c^2)^2*(b+c)*(b^4+c^4-b*c*(b^2-3*b*c+c^2))*a-(b^2-c^2)^3*(b+c)*(b^3-c^3))*S+sqrt(3)*(a^12-(b+c)*a^11-2*(2*b^2-b*c+2*c^2)*a^10+(b+c)*(5*b^2-8*b*c+5*c^2)*a^9+(b^2+b*c+c^2)*(5*b^2-7*b*c+5*c^2)*a^8-(b+c)*(10*b^4+10*c^4-b*c*(23*b^2-27*b*c+23*c^2))*a^7-(3*b^4+3*c^4+b*c*(3*b^2-8*b*c+3*c^2))*b*c*a^6+(b^2-c^2)*(b-c)*(10*b^4+10*c^4-b*c*(b^2-21*b*c+c^2))*a^5-(b^2-c^2)^2*(5*b^4+5*c^4-b*c*(b^2+3*b*c+c^2))*a^4-(b^2-c^2)*(b-c)*(5*b^6+5*c^6+(5*b^4+5*c^4+2*b*c*(5*b^2-2*b*c+5*c^2))*b*c)*a^3+(b^2-c^2)*(b+c)^3*(b^3-c^3)*(4*b^2-7*b*c+4*c^2)*a^2+(b^2-c^2)^3*(b-c)*(b^4+c^4+b*c*(3*b^2+b*c+3*c^2))*a-(b^2-c^2)^3*(b+c)^3*(b^3-c^3))) : :

X(5672) is the Gibert-Burek-Moses-concurrent-circles image of X(13). (Randy Hutson, July 7, 2014)

X(5672) lies on the Neuberg cubic and these lines: {1,13}, {16,3065}, {74,1276}, {1277,3440}, {1138,5673}, {2940,2953}


X(5673) =  X(30)-CEVA CONJUGATE OF X(1277)

Barycentrics    a*(-2*(-a+b+c)*S+(a^3+(b+c)*a^2-(b+c)^2*a-(b^2-c^2)*(b-c))*sqrt(3))*(2*(a^10-3*(b+c)*a^9+(b^2-4*b*c+c^2)*a^8+6*(b^3+c^3)*a^7-(8*b^4+8*c^4-b*c*(4*b^2+9*b*c+4*c^2))*a^6+3*(b+c)*(3*b^2-7*b*c+3*c^2)*b*c*a^5+(8*b^4+8*c^4+b*c*(19*b^2+24*b*c+19*c^2))*(b-c)^2*a^4-6*(b^2-c^2)*(b-c)*(b^4+c^4+b*c*(2*b^2+b*c+2*c^2))*a^3-(b^2-c^2)^2*(b^4+c^4+b*c*(2*b^2+9*b*c+2*c^2))*a^2+3*(b^2-c^2)^2*(b+c)*(b^4+c^4-b*c*(b^2-3*b*c+c^2))*a-(b^2-c^2)^3*(b+c)*(b^3-c^3))*S+sqrt(3)*(a^12-(b+c)*a^11-2*(2*b^2-b*c+2*c^2)*a^10+(b+c)*(5*b^2-8*b*c+5*c^2)*a^9+(b^2+b*c+c^2)*(5*b^2-7*b*c+5*c^2)*a^8-(b+c)*(10*b^4+10*c^4-b*c*(23*b^2-27*b*c+23*c^2))*a^7-(3*b^4+3*c^4+b*c*(3*b^2-8*b*c+3*c^2))*b*c*a^6+(b^2-c^2)*(b-c)*(10*b^4+10*c^4-b*c*(b^2-21*b*c+c^2))*a^5-(b^2-c^2)^2*(5*b^4+5*c^4-b*c*(b^2+3*b*c+c^2))*a^4-(b^2-c^2)*(b-c)*(5*b^6+5*c^6+(5*b^4+5*c^4+2*b*c*(5*b^2-2*b*c+5*c^2))*b*c)*a^3+(b^2-c^2)*(b+c)^3*(b^3-c^3)*(4*b^2-7*b*c+4*c^2)*a^2+(b^2-c^2)^3*(b-c)*(b^4+c^4+b*c*(3*b^2+b*c+3*c^2))*a-(b^2-c^2)^3*(b+c)^3*(b^3-c^3))) : :

X(5673) is the Gibert-Burek-Moses-concurrent-circles image of X(14). (Randy Hutson, July 7, 2014)

X(5673) lies on the Neuberg cubic and these lines: {1,14}, {15,3065}, {74,1277}, {1276,3441}, {1138,5672}, {2940,2952}


X(5674) =  X(30)-CEVA CONJUGATE OF X(1337)

Barycentrics    a^2*(2*(a^6-6*(b^2+c^2)*a^4+(3*b^4-b^2*c^2+3*c^4)*a^2+(b^2+c^2)*(2*b^4-b^2*c^2+2*c^4))*S+(a^8-(b^2+c^2)*a^6-3*(b^4+3*b^2*c^2+c^4)*a^4+(b^2+c^2)*(5*b^4-2*b^2*c^2+5*c^4)*a^2-(2*b^4-3*b^2*c^2+2*c^4)*(b^2-c^2)^2)*sqrt(3))*(2*(a^16-3*(b^2+c^2)*a^14+2*(b^4+13*b^2*c^2+c^4)*a^12+(b^2+c^2)*((b^2+c^2)^2-36*b^2*c^2)*a^10+3*(4*b^4+11*b^2*c^2+4*c^4)*b^2*c^2*a^8-(b^2+c^2)*(b^8+c^8+b^2*c^2*(9*b^4-11*b^2*c^2+9*c^4))*a^6-(b^2-c^2)^2*(2*b^8+2*c^8-b^2*c^2*(11*b^4-15*b^2*c^2+11*c^4))*a^4+3*(b^4-c^4)*(b^2-c^2)*(b^8+c^8-b^2*c^2*(5*b^4-11*b^2*c^2+5*c^4))*a^2-(b^2-c^2)^4*(b^8+c^8-b^2*c^2*(7*b^4+24*b^2*c^2+7*c^4)))*S+(a^18-6*(b^2+c^2)*a^16+3*(5*b^4+8*b^2*c^2+5*c^4)*a^14-(b^2+c^2)*(21*b^4+8*b^2*c^2+21*c^4)*a^12+3*(7*b^8+7*c^8-b^2*c^2*(4*b^4-21*b^2*c^2+4*c^4))*a^10-3*(b^2+c^2)*(7*b^8+7*c^8-b^2*c^2*(29*b^4-48*b^2*c^2+29*c^4))*a^8+(21*b^8+21*c^8-2*b^2*c^2*(13*b^4+48*b^2*c^2+13*c^4))*(b^2-c^2)^2*a^6-3*(b^4-c^4)*(b^2-c^2)*(5*b^8+5*c^8-2*b^2*c^2*(2*b^4+7*b^2*c^2+2*c^4))*a^4+3*(b^2-c^2)^4*(2*b^8+2*c^8+b^2*c^2*(8*b^4+7*b^2*c^2+8*c^4))*a^2-(b^2-c^2)^6*(b^2+c^2)*(b^4+7*b^2*c^2+c^4))*sqrt(3)) : :

X(5674) is the tangential of X(13) on the Neuberg cubic.

X(5674) lies on the Neuberg cubic and these lines: {3,3440}, {13,2981}, {74,1337}, {617,1138}, {1263,3480}


X(5675) =  X(30)-CEVA CONJUGATE OF X(1338)

Barycentrics    a^2*(-2*(a^6-6*(b^2+c^2)*a^4+(3*b^4-b^2*c^2+3*c^4)*a^2+(b^2+c^2)*(2*b^4-b^2*c^2+2*c^4))*S+(a^8-(b^2+c^2)*a^6-3*(b^4+3*b^2*c^2+c^4)*a^4+(b^2+c^2)*(5*b^4-2*b^2*c^2+5*c^4)*a^2-(2*b^4-3*b^2*c^2+2*c^4)*(b^2-c^2)^2)*sqrt(3))*(-2*(a^16-3*(b^2+c^2)*a^14+2*(b^4+13*b^2*c^2+c^4)*a^12+(b^2+c^2)*((b^2+c^2)^2-36*b^2*c^2)*a^10+3*(4*b^4+11*b^2*c^2+4*c^4)*b^2*c^2*a^8-(b^2+c^2)*(b^8+c^8+b^2*c^2*(9*b^4-11*b^2*c^2+9*c^4))*a^6-(b^2-c^2)^2*(2*b^8+2*c^8-b^2*c^2*(11*b^4-15*b^2*c^2+11*c^4))*a^4+3*(b^4-c^4)*(b^2-c^2)*(b^8+c^8-b^2*c^2*(5*b^4-11*b^2*c^2+5*c^4))*a^2-(b^2-c^2)^4*(b^8+c^8-b^2*c^2*(7*b^4+24*b^2*c^2+7*c^4)))*S+(a^18-6*(b^2+c^2)*a^16+3*(5*b^4+8*b^2*c^2+5*c^4)*a^14-(b^2+c^2)*(21*b^4+8*b^2*c^2+21*c^4)*a^12+3*(7*b^8+7*c^8-b^2*c^2*(4*b^4-21*b^2*c^2+4*c^4))*a^10-3*(b^2+c^2)*(7*b^8+7*c^8-b^2*c^2*(29*b^4-48*b^2*c^2+29*c^4))*a^8+(21*b^8+21*c^8-2*b^2*c^2*(13*b^4+48*b^2*c^2+13*c^4))*(b^2-c^2)^2*a^6-3*(b^4-c^4)*(b^2-c^2)*(5*b^8+5*c^8-2*b^2*c^2*(2*b^4+7*b^2*c^2+2*c^4))*a^4+3*(b^2-c^2)^4*(2*b^8+2*c^8+b^2*c^2*(8*b^4+7*b^2*c^2+8*c^4))*a^2-(b^2-c^2)^6*(b^2+c^2)*(b^4+7*b^2*c^2+c^4))*sqrt(3)) : :

X(5675) is the tangential of X(14) on the Neuberg cubic.

X(5675) lies on the Neuberg cubic and these lines: {3,3441}, {74,1338}, {616,1138}, {1263,3479}


X(5676) =  X(30)-CEVA CONJUGATE OF X(2133)

Barycentrics    (2*a^4-(b^2+c^2)*a^2-(b^2-c^2)^2)*(a^18-2*(3*b^2-c^2)*a^16+(15*b^4+16*b^2*c^2-25*c^4)*a^14-(21*b^6-53*c^6+3*(17*b^2-5*c^2)*b^2*c^2)*a^12+(21*b^8-31*c^8+(20*b^4+99*b^2*c^2-108*c^4)*b^2*c^2)*a^10-(b^2-c^2)*(21*b^8-31*c^8-(25*b^4-72*b^2*c^2-135*c^4)*b^2*c^2)*a^8+(b^2-c^2)*(21*b^10-53*c^10-(15*b^6-55*c^6+2*(39*b^2-59*c^2)*b^2*c^2)*b^2*c^2)*a^6-(b^2-c^2)^3*(15*b^8-25*c^8+2*(20*b^4-3*b^2*c^2-30*c^4)*b^2*c^2)*a^4+(6*b^8+2*c^8+(16*b^4+33*b^2*c^2+24*c^4)*b^2*c^2)*(b^2-c^2)^4*a^2-(b^4+b^2*c^2+c^4)*(b^2-c^2)^7)*(3*a^36-20*(b^2+c^2)*a^34+2*(11*b^4+84*b^2*c^2+11*c^4)*a^32+2*(b^2+c^2)*(101*b^4-356*b^2*c^2+101*c^4)*a^30-(971*b^8+971*c^8-8*(38*b^4+305*b^2*c^2+38*c^4)*b^2*c^2)*a^28+2*(b^2+c^2)*(1034*b^8+1034*c^8+5*(23*b^4-524*b^2*c^2+23*c^4)*b^2*c^2)*a^26-(2405*b^12+2405*c^12+3*(2550*b^8+2550*c^8-(1413*b^4+4204*b^2*c^2+1413*c^4)*b^2*c^2)*b^2*c^2)*a^24+2*(b^2+c^2)*(611*b^12+611*c^12+5*(1047*b^8+1047*c^8-2*(383*b^4+415*b^2*c^2+383*c^4)*b^2*c^2)*b^2*c^2)*a^22+(715*b^16+715*c^16-(10098*b^12+10098*c^12+(13348*b^8+13348*c^8-(17962*b^4+9669*b^2*c^2+17962*c^4)*b^2*c^2)*b^2*c^2)*b^2*c^2)*a^20-2*(b^2+c^2)*(1144*b^16+1144*c^16-(4180*b^12+4180*c^12+(4511*b^8+4511*c^8-(12977*b^4-10856*b^2*c^2+12977*c^4)*b^2*c^2)*b^2*c^2)*b^2*c^2)*a^18+(b^2-c^2)^2*(3575*b^16+3575*c^16-(66*b^12+66*c^12+(8741*b^8+8741*c^8+2*(11609*b^4-1956*b^2*c^2+11609*c^4)*b^2*c^2)*b^2*c^2)*b^2*c^2)*a^16-2*(b^4-c^4)*(b^2-c^2)*(2405*b^16+2405*c^16-2*(2180*b^12+2180*c^12-(2787*b^8+2787*c^8-(8472*b^4-11243*b^2*c^2+8472*c^4)*b^2*c^2)*b^2*c^2)*b^2*c^2)*a^14+(b^2-c^2)^2*(5135*b^20+5135*c^20-(6518*b^16+6518*c^16-(2337*b^12+2337*c^12-2*(1678*b^8+1678*c^8+(10631*b^4-22512*b^2*c^2+10631*c^4)*b^2*c^2)*b^2*c^2)*b^2*c^2)*b^2*c^2)*a^12-2*(b^4-c^4)*(b^2-c^2)^3*(1958*b^16+1958*c^16-(499*b^12+499*c^12+(1190*b^8+1190*c^8-(5985*b^4-11968*b^2*c^2+5985*c^4)*b^2*c^2)*b^2*c^2)*b^2*c^2)*a^10+(b^2-c^2)^6*(2009*b^16+2009*c^16+2*(3114*b^12+3114*c^12+(2208*b^8+2208*c^8+(3512*b^4+7701*b^2*c^2+3512*c^4)*b^2*c^2)*b^2*c^2)*b^2*c^2)*a^8-2*(b^2-c^2)^6*(b^2+c^2)*(323*b^16+323*c^16+(931*b^12+931*c^12-(439*b^8+439*c^8+(685*b^4-2656*b^2*c^2+685*c^4)*b^2*c^2)*b^2*c^2)*b^2*c^2)*a^6+(b^2-c^2)^8*(110*b^16+110*c^16+(870*b^12+870*c^12+(1904*b^8+1904*c^8+(1154*b^4-57*b^2*c^2+1154*c^4)*b^2*c^2)*b^2*c^2)*b^2*c^2)*a^4-2*(b^2-c^2)^10*(b^2+c^2)*(2*b^12+2*c^12+(54*b^8+54*c^8+(171*b^4+275*b^2*c^2+171*c^4)*b^2*c^2)*b^2*c^2)*a^2-(b^2-c^2)^14*(b^2+b*c+c^2)^2*(b^2-b*c+c^2)^2)*(a^18+2*(b^2-3*c^2)*a^16-(25*b^4-16*b^2*c^2-15*c^4)*a^14+(53*b^6-21*c^6+3*(5*b^2-17*c^2)*b^2*c^2)*a^12-(31*b^8-21*c^8+(108*b^4-99*b^2*c^2-20*c^4)*b^2*c^2)*a^10-(b^2-c^2)*(31*b^8-21*c^8-(135*b^4+72*b^2*c^2-25*c^4)*b^2*c^2)*a^8+(b^2-c^2)*(53*b^10-21*c^10-(55*b^6-15*c^6+2*(59*b^2-39*c^2)*b^2*c^2)*b^2*c^2)*a^6-(b^2-c^2)^3*(25*b^8-15*c^8+2*(30*b^4+3*b^2*c^2-20*c^4)*b^2*c^2)*a^4+(2*b^8+6*c^8+(24*b^4+33*b^2*c^2+16*c^4)*b^2*c^2)*(b^2-c^2)^4*a^2+(b^4+b^2*c^2+c^4)*(b^2-c^2)^7) : :

X(5676) lies on the Neuberg cubic and this line: {74,2133}


X(5677) =  X(30)-CEVA CONJUGATE OF X(3065)

Barycentrics    a*(a^3-(b-c)*a^2-(b^2-b*c+c^2)*a+(b+c)*(b^2-c^2))*(a^3+(b-c)*a^2-(b^2-b*c+c^2)*a-(b+c)*(b^2-c^2))*(a^15-2*(b+c)*a^14-4*(b^2+b*c+c^2)*a^13+(b+c)*(11*b^2-10*b*c+11*c^2)*a^12+3*(b^4+c^4+2*(b+c)^2*b*c)*a^11-3*(b+c)*(8*b^4+8*c^4-(11*b^2-14*b*c+11*c^2)*b*c)*a^10+2*(5*b^6+5*c^6+3*(2*b^4+2*c^4-3*(b+c)^2*b*c)*b*c)*a^9+(b+c)*(25*b^6+25*c^6-3*(11*b^4+11*c^4-6*(3*b^2-4*b*c+3*c^2)*b*c)*b*c)*a^8-(25*b^8+25*c^8+(28*b^6+28*c^6-(23*b^4+23*c^4+3*(10*b^2+3*b*c+10*c^2)*b*c)*b*c)*b*c)*a^7-(b+c)*(10*b^8+10*c^8-(2*b^6+2*c^6-(25*b^4+25*c^4-3*(19*b^2-18*b*c+19*c^2)*b*c)*b*c)*b*c)*a^6+3*(b^2-c^2)^2*(8*b^6+8*c^6+(4*b^4+4*c^4+9*(b+c)^2*b*c)*b*c)*a^5-3*(b^6-c^6)*(b-c)*(b^4+c^4-2*(b^2+4*b*c+c^2)*b*c)*a^4-(b^2-c^2)^2*(11*b^8+11*c^8-(6*b^6+6*c^6-(13*b^4+13*c^4+3*(8*b^2-b*c+8*c^2)*b*c)*b*c)*b*c)*a^3+(b^2-c^2)^3*(b-c)*(4*b^6+4*c^6+(5*b^4+5*c^4+(5*b^2-b*c+5*c^2)*b*c)*b*c)*a^2+(b^2-c^2)^4*(b-c)^2*(2*b^2+c^2)*(b^2+2*c^2)*a-(b^2-c^2)^6*(b+c)*(b^2+b*c+c^2)) : :

X(5677) lies on the Neuberg cubic and these lines: {1,1138}, {74,3065}, {1263,3466}, {2133,3465}


X(5678) =  X(30)-CEVA CONJUGATE OF X(3440)

Barycentrics    a^2*(2*sqrt(3)*(a^2+b^2-c^2)*S+a^4-2*(b^2-2*c^2)*a^2+(b^2-c^2)*(b^2+5*c^2))*(-2*sqrt(3)*(a^16-6*(b^2+c^2)*a^14+(14*b^4+9*b^2*c^2+14*c^4)*a^12-(b^2+c^2)*(14*b^4-11*b^2*c^2+14*c^4)*a^10+36*(b^2-c^2)^2*b^2*c^2*a^8+2*(b^2+c^2)*(7*b^8+7*c^8-(49*b^4-86*b^2*c^2+49*c^4)*b^2*c^2)*a^6-(b^2-c^2)^2*(14*b^8+14*c^8-(29*b^4+102*b^2*c^2+29*c^4)*b^2*c^2)*a^4+3*(b^4-c^4)*(b^2-c^2)*(2*b^8+2*c^8+(b^2-4*b*c-c^2)*(b^2+4*b*c-c^2)*b^2*c^2)*a^2-(b^2-c^2)^4*(b^8+c^8+2*(5*b^4+7*b^2*c^2+5*c^4)*b^2*c^2))*S+a^18-3*(b^2+c^2)*a^16-(6*b^4-59*b^2*c^2+6*c^4)*a^14+2*(b^2+c^2)*(21*b^4-82*b^2*c^2+21*c^4)*a^12-3*(28*b^8+28*c^8+(5*b^4-132*b^2*c^2+5*c^4)*b^2*c^2)*a^10+4*(b^2+c^2)*(21*b^8+21*c^8+4*(8*b^4-29*b^2*c^2+8*c^4)*b^2*c^2)*a^8-(b^2-c^2)^2*(42*b^8+42*c^8+(239*b^4+474*b^2*c^2+239*c^4)*b^2*c^2)*a^6+6*(b^4-c^4)*(b^2-c^2)*(b^4+c^4-2*(b^2-2*b*c-c^2)*b*c)*(b^4+c^4+2*(b^2+2*b*c-c^2)*b*c)*a^4+(3*b^8+3*c^8+(11*b^4+26*b^2*c^2+11*c^4)*b^2*c^2)*(b^2-c^2)^4*a^2-(b^2+c^2)*(b^2-c^2)^8)*(2*sqrt(3)*(a^2-b^2+c^2)*S+a^4+2*(2*b^2-c^2)*a^2-(b^2-c^2)*(5*b^2+c^2)) : :

X(5678) lies on the Neuberg cubic and these lines: {74,3440}, {617,2133}, {1138,3480}


X(5679) =  X(30)-CEVA CONJUGATE OF X(3441)

Barycentrics    a^2*(-2*sqrt(3)*(a^2+b^2-c^2)*S+a^4-2*(b^2-2*c^2)*a^2+(b^2-c^2)*(b^2+5*c^2))*(2*sqrt(3)*(a^16-6*(b^2+c^2)*a^14+(14*b^4+9*b^2*c^2+14*c^4)*a^12-(b^2+c^2)*(14*b^4-11*b^2*c^2+14*c^4)*a^10+36*(b^2-c^2)^2*b^2*c^2*a^8+2*(b^2+c^2)*(7*b^8+7*c^8-(49*b^4-86*b^2*c^2+49*c^4)*b^2*c^2)*a^6-(b^2-c^2)^2*(14*b^8+14*c^8-(29*b^4+102*b^2*c^2+29*c^4)*b^2*c^2)*a^4+3*(b^4-c^4)*(b^2-c^2)*(2*b^8+2*c^8+(b^2-4*b*c-c^2)*(b^2+4*b*c-c^2)*b^2*c^2)*a^2-(b^2-c^2)^4*(b^8+c^8+2*(5*b^4+7*b^2*c^2+5*c^4)*b^2*c^2))*S+a^18-3*(b^2+c^2)*a^16-(6*b^4-59*b^2*c^2+6*c^4)*a^14+2*(b^2+c^2)*(21*b^4-82*b^2*c^2+21*c^4)*a^12-3*(28*b^8+28*c^8+(5*b^4-132*b^2*c^2+5*c^4)*b^2*c^2)*a^10+4*(b^2+c^2)*(21*b^8+21*c^8+4*(8*b^4-29*b^2*c^2+8*c^4)*b^2*c^2)*a^8-(b^2-c^2)^2*(42*b^8+42*c^8+(239*b^4+474*b^2*c^2+239*c^4)*b^2*c^2)*a^6+6*(b^4-c^4)*(b^2-c^2)*(b^4+c^4-2*(b^2-2*b*c-c^2)*b*c)*(b^4+c^4+2*(b^2+2*b*c-c^2)*b*c)*a^4+(3*b^8+3*c^8+(11*b^4+26*b^2*c^2+11*c^4)*b^2*c^2)*(b^2-c^2)^4*a^2-(b^2+c^2)*(b^2-c^2)^8)*(-2*sqrt(3)*(a^2-b^2+c^2)*S+a^4+2*(2*b^2-c^2)*a^2-(b^2-c^2)*(5*b^2+c^2)) : :

X(5679) lies on the Neuberg cubic and these lines: {74,3441}, {616,2133}, {1138,3479}


X(5680) =  X(30)-CEVA CONJUGATE OF X(3466)

Barycentrics    a*(a^6+(b-c)*a^5-(b^2-b*c+c^2)*a^4-2*(b^3-c^3)*a^3-(b^2-c^2)^2*a^2+(b^4-c^4)*(b+c)*a+(b^2-c^2)*(b-c)*(b^3+c^3))*(a^6-(b-c)*a^5-(b^2-b*c+c^2)*a^4+2*(b^3-c^3)*a^3-(b^2-c^2)^2*a^2-(b^4-c^4)*(b+c)*a+(b^2-c^2)*(b-c)*(b^3+c^3))*(a^21+2*(b+c)*a^20-4*(b^2+b*c+c^2)*a^19-(b+c)*(11*b^2-10*b*c+11*c^2)*a^18+(3*b^4+3*c^4+10*(b+c)^2*b*c)*a^17+(b+c)*(24*b^4+24*c^4-(41*b^2-58*b*c+41*c^2)*b*c)*a^16+(9*b^6+9*c^6+(10*b^4+10*c^4-(29*b^2+56*b*c+29*c^2)*b*c)*b*c)*a^15-(b+c)*(27*b^6+27*c^6-(49*b^4+49*c^4-4*(27*b^2-38*b*c+27*c^2)*b*c)*b*c)*a^14-(21*b^8+21*c^8+(50*b^6+50*c^6+(3*b^4+3*c^4-(64*b^2+77*b*c+64*c^2)*b*c)*b*c)*b*c)*a^13+(b+c)*(21*b^8+21*c^8+(10*b^6+10*c^6+(65*b^4+65*c^4-3*(63*b^2-64*b*c+63*c^2)*b*c)*b*c)*b*c)*a^12+(21*b^8+21*c^8-2*(4*b^6+4*c^6-3*(4*b^4+4*c^4+(8*b^2-29*b*c+8*c^2)*b*c)*b*c)*b*c)*(b+c)^2*a^11-(b^2-c^2)*(b-c)*(21*b^8+21*c^8+5*(b^2+c^2)*(19*b^4+19*c^4+(27*b^2+8*b*c+27*c^2)*b*c)*b*c)*a^10-(b^2-c^2)^2*(21*b^8+21*c^8-(34*b^6+34*c^6-(23*b^4+23*c^4+3*(48*b^2+29*b*c+48*c^2)*b*c)*b*c)*b*c)*a^9+(b^2-c^2)*(b-c)*(21*b^10+21*c^10+(52*b^8+52*c^8+(44*b^6+44*c^6+(149*b^4+149*c^4+(203*b^2+102*b*c+203*c^2)*b*c)*b*c)*b*c)*b*c)*a^8+(b^2-c^2)^2*(27*b^10+27*c^10-(50*b^8+50*c^8+(21*b^6+21*c^6+2*(6*b^4+6*c^4-(13*b^2+102*b*c+13*c^2)*b*c)*b*c)*b*c)*b*c)*a^7-(b^2-c^2)^2*(b+c)*(9*b^10+9*c^10-(31*b^8+31*c^8-(46*b^6+46*c^6+(34*b^4+34*c^4-(67*b^2-114*b*c+67*c^2)*b*c)*b*c)*b*c)*b*c)*a^6-(b^2-c^2)^4*(24*b^8+24*c^8-(10*b^6+10*c^6-(37*b^4+37*c^4-(104*b^2-7*b*c+104*c^2)*b*c)*b*c)*b*c)*a^5-(b^2-c^2)^4*(b+c)*(3*b^8+3*c^8+(14*b^6+14*c^6-(31*b^4+31*c^4-(55*b^2-64*b*c+55*c^2)*b*c)*b*c)*b*c)*a^4+(b^2-c^2)^4*(b-c)^2*(11*b^8+11*c^8+2*(16*b^6+16*c^6+(40*b^4+40*c^4+(56*b^2+71*b*c+56*c^2)*b*c)*b*c)*b*c)*a^3+(b^2-c^2)^5*(b-c)*(4*b^8+4*c^8+(3*b^6+3*c^6+(3*b^4+3*c^4+(15*b^2+4*b*c+15*c^2)*b*c)*b*c)*b*c)*a^2-(b^2-c^2)^6*(b^2+b*c+c^2)^2*(2*b^2+c^2)*(b^2+2*c^2)*a-(b^3-c^3)*(b^2-c^2)^7*(b^2-b*c+c^2)^2) : :

X(5680) lies on the Neuberg cubic and these lines: {74,3466}, {484,2133}


X(5681) =  X(30)-CEVA CONJUGATE OF X(3479)

Barycentrics    324*sqrt(3)*((24*a^22-288*(b^2+c^2)*a^20+6*(145*b^4+266*b^2*c^2+145*c^4)*a^18-18*(b^2+c^2)*(51*b^4+70*b^2*c^2+51*c^4)*a^16+6*(45*b^8+45*c^8+2*(65*b^4-b^2*c^2+65*c^4)*b^2*c^2)*a^14-6*(b^2+c^2)*(141*b^8+141*c^8+2*(44*b^4-465*b^2*c^2+44*c^4)*b^2*c^2)*a^12+6*(447*b^12+447*c^12+2*(144*b^8+144*c^8-(417*b^4+419*b^2*c^2+417*c^4)*b^2*c^2)*b^2*c^2)*a^10-6*(b^2+c^2)*(495*b^12+495*c^12-2*(443*b^8+443*c^8-(492*b^4-671*b^2*c^2+492*c^4)*b^2*c^2)*b^2*c^2)*a^8+6*(243*b^12+243*c^12-(184*b^8+184*c^8+(213*b^4+328*b^2*c^2+213*c^4)*b^2*c^2)*b^2*c^2)*(b^2-c^2)^2*a^6-6*(b^4-c^4)*(b^2-c^2)*(55*b^12+55*c^12-(182*b^8+182*c^8+(217*b^4-76*b^2*c^2+217*c^4)*b^2*c^2)*b^2*c^2)*a^4+6*(12*b^12+12*c^12+(34*b^8+34*c^8-(187*b^4+222*b^2*c^2+187*c^4)*b^2*c^2)*b^2*c^2)*(b^2-c^2)^4*a^2-6*(b^2-c^2)^6*(b^2+c^2)*(2*b^4-7*b^2*c^2+2*c^4)*(2*b^4+11*b^2*c^2+2*c^4))*S+sqrt(3)*(12*a^24-52*(b^2+c^2)*a^22+(17*b^4-78*b^2*c^2+17*c^4)*a^20+2*(b^2+c^2)*(97*b^4+410*b^2*c^2+97*c^4)*a^18-4*(42*b^8+42*c^8+(468*b^4+799*b^2*c^2+468*c^4)*b^2*c^2)*a^16-2*(b^2+c^2)*(237*b^8+237*c^8-(933*b^4+806*b^2*c^2+933*c^4)*b^2*c^2)*a^14+(930*b^12+930*c^12-(1560*b^8+1560*c^8+(1329*b^4+454*b^2*c^2+1329*c^4)*b^2*c^2)*b^2*c^2)*a^12-2*(b^2+c^2)*(213*b^12+213*c^12-(1677*b^8+1677*c^8-(2321*b^4-1786*b^2*c^2+2321*c^4)*b^2*c^2)*b^2*c^2)*a^10-(264*b^16+264*c^16+(2496*b^12+2496*c^12-(2863*b^8+2863*c^8-2*(863*b^4-1767*b^2*c^2+863*c^4)*b^2*c^2)*b^2*c^2)*b^2*c^2)*a^8+6*(b^4-c^4)*(b^2-c^2)*(53*b^12+53*c^12+(183*b^8+183*c^8-(91*b^4-226*b^2*c^2+91*c^4)*b^2*c^2)*b^2*c^2)*a^6-(b^2-c^2)^2*(83*b^16+83*c^16+(360*b^12+360*c^12-(67*b^8+67*c^8+4*(319*b^4-234*b^2*c^2+319*c^4)*b^2*c^2)*b^2*c^2)*b^2*c^2)*a^4-2*(b^4-c^4)*(b^2-c^2)^3*(4*b^12+4*c^12-(93*b^8+93*c^8-2*(15*b^4+113*b^2*c^2+15*c^4)*b^2*c^2)*b^2*c^2)*a^2+(4*b^12+4*c^12-(48*b^8+48*c^8+(15*b^4-172*b^2*c^2+15*c^4)*b^2*c^2)*b^2*c^2)*(b^2-c^2)^6))*((-4*a^6-2*(3*b^2+c^2)*a^4+2*(2*b^2+c^2)*(3*b^2-c^2)*a^2-2*(b^2-c^2)*(b^4-5*b^2*c^2-2*c^4))*S+sqrt(3)*(2*a^8-(5*b^2+7*c^2)*a^6+(3*b^4-3*b^2*c^2+10*c^4)*a^4+(b^2-c^2)*(b^4+10*b^2*c^2+7*c^4)*a^2-(b^2+2*c^2)*(b^2-c^2)^3))*((-4*a^6-2*(b^2+3*c^2)*a^4-2*(b^2-3*c^2)*(b^2+2*c^2)*a^2-2*(b^2-c^2)*(2*b^4+5*b^2*c^2-c^4))*S+sqrt(3)*(2*a^8-(7*b^2+5*c^2)*a^6+(10*b^4-3*b^2*c^2+3*c^4)*a^4-(b^2-c^2)*(7*b^4+10*b^2*c^2+c^4)*a^2+(2*b^2+c^2)*(b^2-c^2)^3)) : :

X(5681) lies on the Neuberg cubic and these lines: {4,3441}, {74,3479}


X(5682) =  X(30)-CEVA CONJUGATE OF X(3480)

Barycentrics    (-2*sqrt(3)*(4*a^22-48*(b^2+c^2)*a^20+(145*b^4+266*b^2*c^2+145*c^4)*a^18-3*(b^2+c^2)*(51*b^4+70*b^2*c^2+51*c^4)*a^16+(45*b^8+45*c^8+2*(65*b^4-b^2*c^2+65*c^4)*b^2*c^2)*a^14-(b^2+c^2)*(141*b^8+141*c^8+2*(44*b^4-465*b^2*c^2+44*c^4)*b^2*c^2)*a^12+(447*b^12+447*c^12+2*(144*b^8+144*c^8-(417*b^4+419*b^2*c^2+417*c^4)*b^2*c^2)*b^2*c^2)*a^10-(b^2+c^2)*(495*b^12+495*c^12-2*(443*b^8+443*c^8-(492*b^4-671*b^2*c^2+492*c^4)*b^2*c^2)*b^2*c^2)*a^8+(243*b^12+243*c^12-(184*b^8+184*c^8+(213*b^4+328*b^2*c^2+213*c^4)*b^2*c^2)*b^2*c^2)*(b^2-c^2)^2*a^6-(b^4-c^4)*(b^2-c^2)*(55*b^12+55*c^12-(182*b^8+182*c^8+(217*b^4-76*b^2*c^2+217*c^4)*b^2*c^2)*b^2*c^2)*a^4+(12*b^12+12*c^12+(34*b^8+34*c^8-(187*b^4+222*b^2*c^2+187*c^4)*b^2*c^2)*b^2*c^2)*(b^2-c^2)^4*a^2-(b^2-c^2)^6*(b^2+c^2)*(2*b^4-7*b^2*c^2+2*c^4)*(2*b^4+11*b^2*c^2+2*c^4))*S+12*a^24-52*(b^2+c^2)*a^22+(17*b^4-78*b^2*c^2+17*c^4)*a^20+2*(b^2+c^2)*(97*b^4+410*b^2*c^2+97*c^4)*a^18-4*(42*b^8+42*c^8+(468*b^4+799*b^2*c^2+468*c^4)*b^2*c^2)*a^16-2*(b^2+c^2)*(237*b^8+237*c^8-(933*b^4+806*b^2*c^2+933*c^4)*b^2*c^2)*a^14+(930*b^12+930*c^12-(1560*b^8+1560*c^8+(1329*b^4+454*b^2*c^2+1329*c^4)*b^2*c^2)*b^2*c^2)*a^12-2*(b^2+c^2)*(213*b^12+213*c^12-(1677*b^8+1677*c^8-(2321*b^4-1786*b^2*c^2+2321*c^4)*b^2*c^2)*b^2*c^2)*a^10-(264*b^16+264*c^16+(2496*b^12+2496*c^12-(2863*b^8+2863*c^8-2*(863*b^4-1767*b^2*c^2+863*c^4)*b^2*c^2)*b^2*c^2)*b^2*c^2)*a^8+6*(b^4-c^4)*(b^2-c^2)*(53*b^12+53*c^12+(183*b^8+183*c^8-(91*b^4-226*b^2*c^2+91*c^4)*b^2*c^2)*b^2*c^2)*a^6-(b^2-c^2)^2*(83*b^16+83*c^16+(360*b^12+360*c^12-(67*b^8+67*c^8+4*(319*b^4-234*b^2*c^2+319*c^4)*b^2*c^2)*b^2*c^2)*b^2*c^2)*a^4-2*(b^4-c^4)*(b^2-c^2)^3*(4*b^12+4*c^12-(93*b^8+93*c^8-2*(15*b^4+113*b^2*c^2+15*c^4)*b^2*c^2)*b^2*c^2)*a^2+(4*b^12+4*c^12-(48*b^8+48*c^8+(15*b^4-172*b^2*c^2+15*c^4)*b^2*c^2)*b^2*c^2)*(b^2-c^2)^6)*(2*(2*a^6+(3*b^2+c^2)*a^4-(2*b^2+c^2)*(3*b^2-c^2)*a^2+(b^2-c^2)*(b^4-5*b^2*c^2-2*c^4))*S+sqrt(3)*(2*a^8-(5*b^2+7*c^2)*a^6+(3*b^4-3*b^2*c^2+10*c^4)*a^4+(b^2-c^2)*(b^4+10*b^2*c^2+7*c^4)*a^2-(b^2+2*c^2)*(b^2-c^2)^3))*(2*(2*a^6+(b^2+3*c^2)*a^4+(b^2-3*c^2)*(b^2+2*c^2)*a^2+(b^2-c^2)*(2*b^4+5*b^2*c^2-c^4))*S+sqrt(3)*(2*a^8-(7*b^2+5*c^2)*a^6+(10*b^4-3*b^2*c^2+3*c^4)*a^4-(b^2-c^2)*(7*b^4+10*b^2*c^2+c^4)*a^2+(2*b^2+c^2)*(b^2-c^2)^3)) : :

X(5682) lies on the Neuberg cubic and these lines: {4,3440}, {74,3480}


X(5683) =  X(30)-CEVA CONJUGATE OF X(3481)

Barycentrics    a^2*(a^12-3*(b^2+c^2)*a^10+(3*b^4+5*b^2*c^2+c^4)*a^8-2*(b^2-c^2)*(b^4+2*b^2*c^2+3*c^4)*a^6+(b^2-c^2)*(3*b^6+9*c^6+(b^2+3*c^2)*b^2*c^2)*a^4-(b^2-c^2)^3*(3*b^4+4*b^2*c^2+5*c^4)*a^2+(b^4+b^2*c^2-c^4)*(b^2-c^2)^4)*(a^12-3*(b^2+c^2)*a^10+(b^4+5*b^2*c^2+3*c^4)*a^8+2*(b^2-c^2)*(3*b^4+2*b^2*c^2+c^4)*a^6-(b^2-c^2)*(9*b^6+3*c^6+(3*b^2+c^2)*b^2*c^2)*a^4+(5*b^4+4*b^2*c^2+3*c^4)*(b^2-c^2)^3*a^2-(b^4-b^2*c^2-c^4)*(b^2-c^2)^4)*(-a^2+b^2+c^2)*(a^24-6*(b^2+c^2)*a^22+(15*b^4+28*b^2*c^2+15*c^4)*a^20-22*(b^4+b^2*c^2+c^4)*(b^2+c^2)*a^18+(27*b^8+27*c^8+(22*b^4+35*b^2*c^2+22*c^4)*b^2*c^2)*a^16-12*(b^2+c^2)*(3*b^8+3*c^8-2*(b^4+c^4)*b^2*c^2)*a^14+2*(b^2-c^2)^2*(21*b^8+21*c^8+2*(35*b^4+36*b^2*c^2+35*c^4)*b^2*c^2)*a^12-4*(b^4-c^4)*(b^2-c^2)*(9*b^8+9*c^8+(23*b^4+10*b^2*c^2+23*c^4)*b^2*c^2)*a^10+(b^2-c^2)^2*(27*b^12+27*c^12+(18*b^8+18*c^8+83*(b^4+c^4)*b^2*c^2)*b^2*c^2)*a^8-2*(b^4-c^4)*(b^2-c^2)^3*(11*b^8+11*c^8-2*(8*b^4-15*b^2*c^2+8*c^4)*b^2*c^2)*a^6+(b^2-c^2)^6*(15*b^8+15*c^8+2*(11*b^4+9*b^2*c^2+11*c^4)*b^2*c^2)*a^4-2*(b^2-c^2)^6*(b^2+c^2)*(3*b^8+3*c^8+(5*b^4-4*b^2*c^2+5*c^4)*b^2*c^2)*a^2+(b^6-c^6)*(b^2-c^2)^7*(b^4+5*b^2*c^2+c^4)) : :

X(5683) lies on the Neuberg cubic and these lines: {4,3463}, {74,3481}


X(5684) =  X(30)-CEVA CONJUGATE OF X(3482)

Barycentrics    a^2 (SA - S (3 / (Sqrt[3] + 3 Cot[w])) ) : :

X(5684) lies on the Neuberg cubic and these lines: {3,1263}, {74,3482}, {1138,3484}, {3065,3483}


X(5685) =  X(30)-CEVA CONJUGATE OF X(3483)

Barycentrics    a^2 (SA + S (3 / (Sqrt[3] - 3 Cot[w])) ) : :

X(5685) lies on the Neuberg cubic and these lines: {1,1263}, {3,3065}, {74,3483}, {1138,3465}, {3466,3482}


X(5686) =  INTERSECTION OF LINES X(7)X(10) and X(8)X(9)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a3 + 3b3 + 3c3 + 5a2b + 5a2c - ab2 - ac2 + 2abc + 5b2c + 5bc2

X(5686) lies on these lines: {1, 4924}, {2, 210}, {7, 10}, {8, 9}, {144, 1654}, {145, 1001}, {200, 5273}, {405, 2346}, {480, 958}, {497, 3715}, {516, 3543}, {936, 5265}, {971, 5657}, {984, 3672}, {1145, 1156}, {1445, 3600}, {1698, 5542}, {1738, 4346}, {1743, 4344}, {1757, 4307}, {1788, 3983}, {3059, 4662}, {3158, 5325}, {3189, 5302}, {3243, 3616}, {3485, 4005}, {3696, 4461}, {3711, 5218}, {3751, 3945}, {3974, 4042}, {4313, 5234}, {4321, 5435}, {4326, 4882}, {4384, 4899}, {4678, 5086}, {4847, 5274}, {5231, 5328}

X(5686) = anticomplement of X(38053)


X(5687) =  PERSPECTOR OF OUTER GARCIA TRIANGLE AND TANGENTIAL 1ST CIRCUMPERP TRIANGLE

Barycentrics   a*(a^3-(b+c)^2*a+2*b*c*(b+c)) : :

The outer Garcia triangle is defined at X(5587). The definition is re-stated here. Let TATBTC be the extouch triangle of a triangle ABC, and let LA be the line perpendicular to line BC at TA. Of the two points on LA at distance r from TA, let A′ be the one farther from A and let A″ be the closer. Define B′, C′ and B″, C″ cyclically. Then A′B′C′ is the outer Garcia triangle, and A″B″C″ the inner Garcia triangle. The outer triangle is introduced by Emmanuel Garcia in ADGEOM #1205 (April 2, 2014), and the inner by Garcia in ADGEOM #1212 (April 3, 2014).

X(5687) lies on the cubic K844 and these lines: {1, 474}, {2, 496}, {3, 8}, {4, 1260}, {5, 3434}, {6, 3293}, {9, 3697}, {10, 55}, {19, 3694}, {20, 3421}, {21, 3617}, {25, 3695}, {30, 3436}, {31, 3214}, {35, 958}, {36, 3632}, {40, 64}, {43, 5255}, {46, 518}, {56, 519}, {57, 3555}, {63, 3579}, {65, 3689}, {78, 517}, {101, 4513}, {144, 3650}, {145, 404}, {149, 4193}, {165, 3916}, {169, 3693}, {191, 4436}, {197, 2915}, {198, 2321}, {210, 1898}, {214, 1388}, {218, 3501}, {219, 3362}, {220, 1018}, {221, 4551}, {228, 5295}, {346, 4222}, {355, 1012}, {377, 495}, {382, 5080}, {390, 5084}, {392, 936}, {442, 954}, {480, 516}, {497, 4187}, {498, 2886}, {499, 3035}, {528, 1329}, {529, 4299}, {573, 3713}, {595, 4383}, {612, 3931}, {668, 1975}, {859, 1043}, {899, 3915}, {910, 4515}, {942, 3870}, {960, 5119}, {976, 4642}, {986, 3961}, {993, 3626}, {997, 3057}, {1001, 1698}, {1004, 3868}, {1011, 4651}, {1054, 3976}, {1071, 3359}, {1089, 4557}, {1125, 3303}, {1148, 1897}, {1191, 3216}, {1319, 3893}, {1377, 2066}, {1378, 5414}, {1385, 3872}, {1482, 4511}, {1486, 3932}, {1500, 5275}, {1574, 2241}, {1617, 1788}, {1696, 3950}, {1722, 3749}, {1724, 3052}, {1759, 4006}, {1766, 3965}, {1783, 3172}, {2093, 4018}, {2098, 2802}, {2222, 2756}, {2271, 2295}, {2345, 4254}, {2478, 3820}, {2551, 4294}, {2894, 4197}, {3053, 5291}, {3185, 3714}, {3220, 4901}, {3241, 5253}, {3242, 3670}, {3244, 3304}, {3306, 4917}, {3550, 5247}, {3560, 5086}, {3576, 4853}, {3621, 4188}, {3625, 5204}, {3633, 5563}, {3634, 4423}, {3678, 3711}, {3681, 3927}, {3683, 3983}, {3701, 4186}, {3705, 5100}, {3715, 4015}, {3780, 5021}, {3869, 3940}, {3874, 5221}, {3881, 4860}, {3921, 4512}, {3924, 4695}, {3962, 5183}, {4185, 5300}, {4189, 4678}, {4225, 4720}, {4428, 5259}, {4640, 4662}, {4668, 5010}, {4669, 5267}, {4677, 5288}, {5044, 5250}, {5289, 5541}

X(5687) = anticomplement of X(496)
X(5687) = extouch-isogonal conjugate of X(72)
X(5687) = X(56)-of-inner-Garcia-triangle

X(5688) =  PERSPECTOR OF OUTER GARCIA TRIANGLE AND OUTER GREBE TRIANGLE

Barycentrics    f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b3 + c3 - a3 + b2c + bc2 + (b + c)S

The outer Garcia triangle is defined at X(5587).

X(5688) lies on these lines: {1, 5590}, {6, 10}, {8, 175}, {355, 1160}, {519, 5604}, {3679, 5588}


X(5689) =  PERSPECTOR OF OUTER GARCIA TRIANGLE AND INNER GREBE TRIANGLE

Barycentrics    f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b3 + c3 - a3 + b2c + bc2 - (b + c)S

The outer Garcia triangle is defined at X(5587).

X(5689) lies on these lines: {{1, 5591}, {6, 10}, {8, 176}, {355, 1161}, {519, 5605}, {3679, 5589}


X(5690) = NINE-POINT CENTER OF OUTER GARCIA TRIANGLE

Barycentrics    2*(b+c)*a^3-(b^2+4*b*c+c^2)*a^2-2*(b^2-c^2)*(b-c)*a+(b^2-c^2)^2 : :
X(5690) = X[1] - 3 X[26446], 3 X[1] - 7 X[31423], 2 X[1] - 3 X[38028], 3 X[1] - 4 X[51700], 3 X[1] - 2 X[61597], X[1] + 3 X[63143], 2 X[140] - 3 X[26446], 6 X[140] - 7 X[31423], 4 X[140] - 3 X[38028], 3 X[140] - 2 X[51700], 3 X[140] - X[61597], 2 X[140] + 3 X[63143], 9 X[26446] - 7 X[31423], 9 X[26446] - 4 X[51700], 9 X[26446] - 2 X[61597], 14 X[31423] - 9 X[38028], 7 X[31423] - 4 X[51700], 7 X[31423] - 2 X[61597], 7 X[31423] + 9 X[63143], 3 X[34352] - 2 X[45081], 9 X[38028] - 8 X[51700], 9 X[38028] - 4 X[61597], X[38028] + 2 X[63143], 4 X[51700] + 9 X[63143], 2 X[61597] + 9 X[63143], and many others

The outer Garcia triangle is defined at X(5587).

X(5690) lies on these lines: {1, 140}, {2, 1482}, {3, 8}, {4, 3617}, {5, 10}, {6, 38116}, {7, 38121}, {9, 38126}, {11, 5697}, {12, 5903}, {20, 4678}, {21, 11849}, {24, 12135}, {26, 8193}, {30, 40}, {35, 7508}, {36, 10944}, {46, 5252}, {55, 10573}, {56, 12647}, {63, 31775}, {65, 495}, {72, 6735}, {78, 52265}, {80, 3467}, {119, 5692}, {142, 38041}, {145, 631}, {149, 6902}, {153, 12849}, {165, 548}, {182, 5846}, {200, 37700}, {201, 24028}, {210, 5887}, {219, 59594}, {226, 50193}, {281, 7524}, {333, 15952}, {371, 49233}, {372, 49232}, {376, 50798}, {381, 962}, {382, 6361}, {388, 24470}, {390, 59381}, {392, 17527}, {404, 22765}, {405, 5554}, {411, 18524}, {427, 41722}, {443, 2095}, {474, 10680}, {484, 7354}, {496, 1737}, {498, 2099}, {499, 1387}, {511, 49524}, {515, 550}, {516, 3627}, {518, 10915}, {519, 549}, {528, 60912}, {537, 51048}, {542, 50949}, {546, 5587}, {547, 3656}, {551, 11539}, {572, 17362}, {573, 594}, {590, 35641}, {615, 35642}, {632, 1125}, {730, 32448}, {740, 51046}, {758, 5499}, {900, 59898}, {912, 6736}, {936, 45080}, {938, 6767}, {942, 4848}, {950, 10386}, {958, 6914}, {971, 24393}, {993, 26285}, {997, 37828}, {999, 1788}, {1000, 14986}, {1001, 37622}, {1006, 3871}, {1012, 35448}, {1018, 40997}, {1056, 5708}, {1064, 3214}, {1146, 3730}, {1155, 45287}, {1159, 3487}, {1210, 9957}, {1211, 30449}, {1317, 21842}, {1320, 57298}, {1350, 59407}, {1351, 59406}, {1353, 5847}, {1376, 6924}, {1386, 38110}, {1388, 12735}, {1478, 37567}, {1479, 12019}, {1484, 2802}, {1512, 3697}, {1532, 3876}, {1537, 6941}, {1565, 33298}, {1574, 34460}, {1595, 1829}, {1596, 1902}, {1656, 5603}, {1657, 9778}, {1658, 15177}, {1697, 5722}, {1698, 3628}, {1699, 3850}, {1706, 5709}, {1766, 17275}, {1770, 5183}, {1836, 10827}, {1837, 5119}, {1872, 46878}, {1953, 21012}, {2077, 5258}, {2080, 12195}, {2093, 9578}, {2102, 57323}, {2103, 57322}, {2136, 61122}, {2361, 54350}, {2475, 16150}, {2476, 38058}, {2550, 5762}, {2551, 6929}, {2646, 36920}, {2800, 3678}, {2807, 5876}, {2826, 24093}, {2829, 33559}, {3035, 19907}, {3036, 5840}, {3058, 37563}, {3070, 35611}, {3071, 35610}, {3085, 5719}, {3090, 18493}, {3091, 61262}, {3097, 61625}, {3109, 35193}, {3146, 28182}, {3189, 28466}, {3219, 35460}, {3241, 5054}, {3243, 38122}, {3244, 10165}, {3245, 3585}, {3293, 5396}, {3295, 6883}, {3311, 19065}, {3312, 19066}, {3336, 5434}, {3340, 11374}, {3359, 24467}, {3416, 3564}, {3419, 31789}, {3421, 3927}, {3428, 11499}, {3434, 6928}, {3436, 6923}, {3474, 9655}, {3485, 31479}, {3517, 7718}, {3523, 3621}, {3524, 31145}, {3525, 3622}, {3526, 3616}, {3530, 3576}, {3533, 46934}, {3534, 34627}, {3541, 11396}, {3555, 10202}, {3560, 9708}, {3577, 11530}, {3587, 5787}, {3589, 38040}, {3600, 37545}, {3601, 37739}, {3612, 37740}, {3614, 18393}, {3623, 10303}, {3624, 16200}, {3625, 5882}, {3633, 12108}, {3634, 11230}, {3635, 58441}, {3636, 61853}, {3649, 37719}, {3653, 11812}, {3655, 4677}, {3681, 37401}, {3696, 29010}, {3703, 37619}, {3704, 48930}, {3717, 29327}, {3751, 34380}, {3753, 8728}, {3754, 25466}, {3756, 56804}, {3816, 3884}, {3826, 3918}, {3828, 15699}, {3830, 34632}, {3843, 9812}, {3845, 4745}, {3847, 6702}, {3853, 28216}, {3857, 61260}, {3858, 18483}, {3861, 9589}, {3869, 6842}, {3870, 37615}, {3874, 5885}, {3877, 4187}, {3880, 10916}, {3897, 37298}, {3911, 24928}, {3913, 10267}, {3925, 15104}, {3932, 31394}, {3940, 6825}, {4004, 5249}, {4015, 20117}, {4018, 10273}, {4026, 31395}, {4046, 10434}, {4192, 4651}, {4193, 34122}, {4220, 33091}, {4295, 9654}, {4297, 4669}, {4300, 49984}, {4311, 5122}, {4314, 51787}, {4324, 37006}, {4384, 19512}, {4420, 21740}, {4424, 50067}, {4437, 29697}, {4512, 50243}, {4646, 48847}, {4662, 6001}, {4665, 29069}, {4701, 17502}, {4711, 9943}, {4732, 29054}, {4746, 28236}, {4769, 50772}, {4816, 61792}, {4847, 31786}, {4853, 37611}, {4882, 5534}, {4995, 37571}, {4999, 46920}, {5010, 37706}, {5046, 10738}, {5050, 51192}, {5066, 7989}, {5067, 46932}, {5070, 5734}, {5071, 50872}, {5072, 9779}, {5079, 61267}, {5082, 6827}, {5086, 7491}, {5090, 6756}, {5128, 9613}, {5174, 7510}, {5176, 56288}, {5178, 28459}, {5179, 21872}, {5220, 6256}, {5223, 5843}, {5260, 7489}, {5263, 37510}, {5264, 5398}, {5267, 26086}, {5270, 11246}, {5288, 37561}, {5289, 11729}, {5305, 9620}, {5399, 37558}, {5418, 44635}, {5420, 44636}, {5426, 44254}, {5428, 8715}, {5439, 58561}, {5443, 11280}, {5446, 23841}, {5453, 37698}, {5493, 28146}, {5531, 16132}, {5541, 62354}, {5542, 38111}, {5550, 46219}, {5552, 5730}, {5599, 11253}, {5600, 11252}, {5686, 5779}, {5688, 5874}, {5689, 5875}, {5693, 37725}, {5698, 38211}, {5703, 11041}, {5710, 36754}, {5711, 44414}, {5727, 61763}, {5732, 59414}, {5752, 31785}, {5759, 59413}, {5777, 31798}, {5780, 6848}, {5791, 9623}, {5794, 54286}, {5795, 31445}, {5805, 38200}, {5853, 31658}, {5854, 6713}, {5855, 22836}, {5883, 6583}, {5884, 13145}, {5902, 15888}, {5946, 58487}, {6003, 62323}, {6175, 61552}, {6191, 7026}, {6192, 7043}, {6197, 7511}, {6200, 35843}, {6210, 33165}, {6211, 33076}, {6246, 38213}, {6259, 54156}, {6265, 11014}, {6396, 35842}, {6642, 12410}, {6666, 38043}, {6667, 38044}, {6668, 38045}, {6675, 19860}, {6690, 30147}, {6734, 6922}, {6738, 15935}, {6762, 37534}, {6765, 18443}, {6789, 53799}, {6853, 59382}, {6862, 19843}, {6868, 17784}, {6882, 14923}, {6889, 10528}, {6892, 18231}, {6906, 35000}, {6909, 26321}, {6911, 9709}, {6916, 54398}, {6918, 8158}, {6936, 20075}, {6940, 37535}, {6949, 10698}, {6951, 20060}, {6952, 35457}, {6954, 59591}, {6955, 20076}, {6958, 10527}, {6960, 48667}, {6967, 10529}, {6971, 11680}, {6973, 8165}, {6980, 11681}, {6988, 20007}, {6989, 15934}, {6999, 51353}, {7280, 37707}, {7377, 29593}, {7385, 24808}, {7412, 56877}, {7483, 61520}, {7525, 37557}, {7530, 9911}, {7534, 54294}, {7555, 9626}, {7580, 18518}, {7583, 13911}, {7584, 13973}, {7609, 61621}, {7705, 17533}, {7715, 49542}, {7962, 11373}, {7968, 13966}, {7969, 8981}, {7970, 15561}, {7971, 62218}, {7976, 11171}, {7978, 14643}, {7983, 38224}, {7984, 15061}, {7988, 12812}, {8144, 54295}, {8185, 17714}, {8197, 32146}, {8200, 11823}, {8204, 32147}, {8207, 11822}, {8214, 32177}, {8215, 32178}, {8229, 31079}, {8270, 32047}, {8582, 13600}, {8666, 32612}, {8727, 25006}, {9041, 50977}, {9534, 19543}, {9548, 59313}, {9590, 12107}, {9624, 11224}, {9669, 30305}, {9834, 35245}, {9835, 35244}, {9857, 32151}, {9864, 12783}, {9905, 50708}, {9933, 47391}, {9940, 24391}, {9947, 9949}, {10106, 37582}, {10107, 12609}, {10109, 38021}, {10124, 25055}, {10171, 61907}, {10172, 61270}, {10197, 11281}, {10248, 14269}, {10269, 12513}, {10310, 22758}, {10327, 19544}, {10389, 31436}, {10525, 22938}, {10526, 38178}, {10543, 12104}, {10572, 37568}, {10592, 12047}, {10593, 17606}, {10597, 37462}, {10625, 16980}, {10695, 57297}, {10696, 57303}, {10697, 38764}, {10699, 57327}, {10700, 57328}, {10701, 57329}, {10702, 57330}, {10703, 38776}, {10704, 57331}, {10705, 57332}, {10742, 37437}, {10791, 32134}, {10826, 12701}, {10902, 48696}, {10912, 26492}, {10955, 41686}, {10993, 15338}, {11009, 15950}, {11015, 59347}, {11019, 31792}, {11113, 26878}, {11179, 50783}, {11251, 16210}, {11277, 33858}, {11375, 25415}, {11376, 30323}, {11500, 35239}, {11501, 59317}, {11522, 35018}, {11529, 51784}, {11540, 51105}, {11684, 47032}, {11695, 58535}, {11715, 54176}, {11725, 34127}, {11735, 34128}, {11900, 32162}, {11928, 17556}, {11929, 17532}, {12102, 61257}, {12103, 37712}, {12106, 37546}, {12114, 35238}, {12115, 56879}, {12454, 45620}, {12455, 45621}, {12495, 26316}, {12514, 37290}, {12515, 12751}, {12565, 18528}, {12571, 38071}, {12575, 18527}, {12610, 17239}, {12616, 58637}, {12626, 26451}, {12627, 26341}, {12628, 26348}, {12635, 26487}, {12636, 45623}, {12637, 45624}, {12648, 16203}, {12649, 16202}, {12675, 40296}, {12737, 61566}, {12747, 13199}, {12778, 12785}, {12780, 22896}, {12781, 22851}, {12782, 22697}, {12811, 61263}, {12898, 15035}, {13099, 57304}, {13369, 31787}, {13373, 34791}, {13411, 50194}, {13463, 24387}, {13731, 17751}, {13743, 61622}, {13747, 61521}, {13883, 19117}, {13893, 13925}, {13936, 19116}, {13947, 13993}, {13996, 37726}, {14077, 15584}, {14110, 37356}, {14647, 61556}, {14666, 50925}, {14731, 36154}, {14830, 50880}, {14839, 49111}, {14891, 50804}, {14892, 30308}, {14893, 50865}, {14940, 31948}, {15026, 58469}, {15174, 37724}, {15310, 49693}, {15326, 37572}, {15462, 32298}, {15681, 50864}, {15683, 50809}, {15684, 50797}, {15686, 28208}, {15687, 28198}, {15690, 34628}, {15692, 50818}, {15693, 34748}, {15694, 38314}, {15704, 28160}, {15708, 20049}, {15713, 38068}, {15717, 20052}, {15720, 20050}, {15803, 37709}, {15844, 34353}, {15901, 30329}, {15955, 37646}, {15971, 48928}, {15973, 31778}, {16128, 61605}, {16137, 17718}, {16174, 38182}, {16189, 34595}, {16192, 34200}, {16408, 61535}, {16417, 26062}, {16475, 51732}, {16608, 21231}, {16616, 38139}, {17051, 61852}, {17057, 38109}, {17504, 34641}, {17531, 45977}, {17555, 21664}, {17564, 17614}, {17566, 34123}, {17567, 35272}, {17619, 41012}, {18253, 31649}, {18519, 37022}, {18583, 38047}, {18802, 32554}, {18857, 33956}, {18908, 40263}, {19540, 59296}, {19542, 56810}, {19547, 54433}, {19649, 33090}, {19710, 51070}, {19861, 52264}, {19862, 55859}, {19872, 61877}, {19876, 47599}, {19878, 61876}, {19883, 51077}, {20014, 61820}, {20053, 58230}, {20054, 61814}, {20057, 55863}, {20107, 23960}, {20328, 21258}, {20368, 33169}, {20420, 37584}, {20423, 38087}, {20653, 30272}, {21013, 33299}, {21075, 51362}, {21077, 44663}, {21271, 40999}, {21620, 31794}, {21850, 38165}, {22651, 51688}, {22652, 51690}, {22799, 37821}, {22937, 33856}, {24299, 41575}, {25030, 30196}, {25416, 38032}, {25440, 26286}, {25444, 61699}, {25557, 33815}, {26006, 31186}, {26129, 38084}, {26287, 51111}, {26382, 48519}, {26398, 48493}, {26406, 48520}, {26422, 48494}, {26442, 49428}, {26443, 49427}, {26444, 49086}, {26445, 49087}, {26482, 45288}, {26498, 49402}, {26507, 49401}, {26516, 49060}, {26521, 49061}, {26629, 30136}, {26938, 56960}, {27076, 59703}, {27529, 62826}, {27870, 49600}, {28150, 33697}, {28154, 62044}, {28158, 62047}, {28164, 62155}, {28168, 62159}, {28172, 62162}, {28202, 33699}, {28232, 62006}, {28538, 50979}, {28870, 48932}, {28905, 48944}, {29207, 50308}, {29298, 44824}, {29309, 48888}, {29311, 48934}, {29331, 49772}, {29667, 37360}, {30286, 53053}, {30312, 38055}, {30315, 44904}, {30331, 38130}, {30389, 61291}, {30392, 61288}, {30810, 48381}, {31330, 37365}, {31398, 31406}, {31425, 58221}, {31472, 38235}, {31650, 35016}, {31666, 61802}, {31670, 38144}, {31671, 38149}, {31672, 38154}, {31793, 51755}, {31803, 56762}, {31847, 53800}, {31849, 32142}, {31855, 37732}, {31937, 58631}, {32049, 62858}, {32900, 61293}, {33923, 35242}, {34351, 51696}, {34638, 62154}, {34720, 49176}, {34747, 61827}, {34847, 59615}, {35203, 44039}, {35251, 55868}, {35404, 50814}, {36155, 52200}, {37299, 50890}, {37440, 49553}, {37468, 48363}, {37509, 57280}, {37525, 37734}, {37529, 50418}, {37536, 45955}, {37598, 37715}, {37612, 62874}, {37618, 37738}, {37623, 57284}, {37699, 59294}, {37708, 58887}, {37711, 59316}, {37718, 61601}, {37950, 47492}, {38029, 49681}, {38052, 61509}, {38057, 61511}, {38064, 51000}, {38076, 61956}, {38083, 51069}, {38107, 40333}, {38108, 43166}, {38118, 49684}, {38569, 51631}, {39004, 40944}, {39523, 62805}, {41723, 47515}, {42215, 49226}, {42216, 49227}, {42450, 58647}, {43118, 49330}, {43119, 49329}, {43575, 43827}, {43830, 50476}, {44245, 61247}, {44266, 47496}, {44452, 51725}, {44903, 50801}, {45444, 49355}, {45445, 49356}, {45546, 48772}, {45547, 48773}, {45976, 62318}, {46704, 48917}, {46930, 60781}, {46931, 61886}, {47749, 53283}, {48894, 62185}, {49697, 59620}, {50190, 58605}, {50799, 61978}, {50800, 61985}, {50802, 61942}, {50806, 61936}, {50812, 62114}, {50813, 62116}, {50819, 62088}, {50841, 51717}, {50871, 62089}, {51073, 55861}, {51092, 61833}, {51103, 61851}, {51107, 61845}, {51110, 61860}, {51120, 61949}, {52354, 59586}, {55866, 58238}, {58247, 61919}, {59412, 60922}, {59420, 62126}, {61248, 62123}, {61250, 62144}, {61252, 62151}, {61254, 62034}, {61256, 62026}, {61279, 61858}, {61282, 61835}, {61294, 61801}

X(5690) = midpoint of X(i) and X(j) for these {i,j}: {2, 34718}, {3, 8}, {4, 12702}, {10, 11362}, {20, 18525}, {40, 355}, {72, 37562}, {100, 19914}, {376, 50798}, {381, 50810}, {382, 6361}, {549, 50823}, {550, 37705}, {944, 12645}, {1482, 12245}, {3534, 34627}, {3625, 5882}, {3626, 43174}, {3632, 37727}, {3654, 3679}, {3655, 4677}, {3830, 34632}, {3869, 25413}, {3913, 49168}, {3927, 6850}, {4297, 47745}, {5493, 31673}, {5541, 62354}, {5657, 59503}, {5731, 51515}, {5752, 31785}, {5777, 31798}, {5779, 35514}, {5790, 59417}, {5881, 18481}, {6259, 54156}, {7991, 12699}, {9947, 31797}, {10625, 16980}, {10993, 62616}, {11179, 50783}, {11684, 47032}, {12247, 12331}, {12513, 49169}, {12515, 12751}, {12747, 13199}, {12778, 13211}, {13996, 37726}, {14666, 50925}, {14830, 50880}, {15681, 50864}, {15971, 48928}, {16139, 47033}, {18802, 32554}, {20070, 48661}, {26446, 63143}, {31788, 34790}, {32049, 62858}, {34641, 51705}, {46704, 48917}, {48746, 48747}, {48915, 48937}
X(5690) = reflection of X(i) in X(j) for these {i,j}: {1, 140}, {3, 61524}, {4, 18357}, {5, 10}, {145, 61286}, {355, 61510}, {549, 50821}, {550, 3579}, {946, 9956}, {960, 58630}, {962, 40273}, {1385, 6684}, {1482, 5901}, {1483, 1385}, {1484, 12619}, {1537, 61580}, {3244, 15178}, {3579, 43174}, {3627, 18480}, {3655, 12100}, {3656, 547}, {3874, 5885}, {4297, 31663}, {4301, 9955}, {5446, 23841}, {5694, 3678}, {5882, 13624}, {5884, 13145}, {5887, 31835}, {6147, 37438}, {6265, 61562}, {8715, 32157}, {9957, 31838}, {10222, 1125}, {10246, 61614}, {10283, 11231}, {10284, 3884}, {10543, 12104}, {10680, 61530}, {10738, 61553}, {11278, 13464}, {12675, 40296}, {12699, 546}, {12737, 61566}, {13369, 31787}, {13463, 24387}, {13464, 3634}, {13743, 61622}, {15686, 50808}, {15687, 50796}, {15704, 31730}, {16128, 61605}, {18481, 548}, {18525, 61249}, {19907, 3035}, {20117, 4015}, {20330, 3826}, {22758, 61539}, {22791, 5}, {22793, 19925}, {24474, 61541}, {24475, 34339}, {31162, 5066}, {31649, 18253}, {31803, 56762}, {31837, 58643}, {31870, 3918}, {31937, 58631}, {33668, 5499}, {33699, 34648}, {33858, 11277}, {34628, 15690}, {34773, 3}, {34791, 13373}, {37533, 61533}, {38028, 26446}, {38034, 38042}, {38042, 38112}, {38112, 38127}, {38138, 38176}, {40273, 61259}, {41869, 3853}, {42450, 58647}, {44266, 47496}, {48933, 15973}, {50811, 34200}, {50824, 549}, {50865, 14893}, {51709, 3828}, {52200, 36155}, {58535, 11695}, {61148, 4999}, {61245, 47745}, {61283, 10165}, {61295, 5882}, {61597, 51700}, {62036, 31673}, {62041, 33697}, {62154, 34638}
X(5690) = complement of X(1482)
X(5690) = anticomplement of X(5901)
X(5690) = {X(i),X(j)}-harmonic conjugate of X(k) for these (i,j,k): {1, 140, 38028}, {1, 5445, 5433}, {1, 24914, 15325}, {1, 26446, 140}, {2, 1482, 5901}, {2, 12245, 1482}, {3, 956, 32153}, {3, 5657, 61524}, {3, 5687, 32141}, {3, 12331, 11491}, {3, 12645, 944}, {3, 18526, 5731}, {3, 32153, 38602}, {3, 51515, 18526}, {3, 59503, 8}, {4, 3617, 5790}, {4, 5790, 18357}, {4, 20070, 48661}, {4, 59417, 12702}, {5, 10, 38042}, {5, 22791, 38034}, {5, 38112, 10}, {8, 944, 12645}, {8, 5657, 3}, {8, 61524, 34773}, {10, 946, 9956}, {10, 960, 3820}, {10, 3817, 31399}, {10, 3878, 1329}, {10, 4301, 10175}, {10, 5836, 31419}, {10, 5837, 5044}, {10, 10176, 9711}, {10, 21616, 5123}, {12, 5903, 39542}, {20, 4678, 59388}, {20, 59388, 18525}, {35, 41684, 10950}, {40, 3679, 355}, {46, 5252, 18990}, {55, 10573, 37730}, {65, 495, 6147}, {65, 10039, 495}, {80, 11010, 6284}, {140, 61597, 51700}, {145, 631, 10246}, {145, 10246, 61286}, {165, 4668, 5881}, {165, 5881, 18481}, {165, 18481, 548}, {210, 5887, 31835}, {219, 59671, 59594}, {355, 3654, 40}, {355, 3679, 61510}, {355, 16139, 11827}, {381, 962, 40273}, {381, 5818, 61259}, {388, 36279, 24470}, {392, 24982, 17527}, {484, 37710, 7354}, {498, 2099, 37737}, {499, 2098, 1387}, {549, 1483, 1385}, {550, 59400, 37705}, {632, 10283, 1125}, {946, 9956, 5}, {958, 11248, 6914}, {962, 5818, 381}, {962, 53620, 5818}, {997, 37828, 47742}, {999, 1788, 34753}, {1006, 3871, 37621}, {1125, 10222, 10283}, {1125, 11231, 632}, {1376, 11249, 6924}, {1385, 1483, 50824}, {1385, 6684, 549}, {1385, 50821, 6684}, {1482, 34718, 12245}, {1656, 5603, 61272}, {1656, 8148, 5603}, {1697, 5722, 15172}, {1698, 5886, 3628}, {1698, 7982, 5886}, {1699, 61261, 3850}, {1737, 3057, 496}, {1837, 5119, 15171}, {2093, 9578, 57282}, {3090, 18493, 61269}, {3241, 37624, 61281}, {3244, 10165, 15178}, {3244, 15178, 61283}, {3295, 18391, 12433}, {3340, 31434, 11374}, {3359, 57279, 24467}, {3419, 55104, 31789}, {3523, 3621, 7967}, {3526, 10247, 3616}, {3576, 3632, 37727}, {3579, 3626, 37705}, {3616, 10247, 61278}, {3617, 12702, 18357}, {3617, 59417, 4}, {3624, 16200, 61276}, {3625, 10164, 5882}, {3625, 13624, 61295}, {3627, 38138, 18480}, {3632, 9588, 3576}, {3634, 11230, 55856}, {3634, 13464, 11230}, {3656, 19875, 547}, {3753, 24474, 61541}, {3753, 24987, 8728}, {3826, 20330, 38171}, {3828, 51709, 15699}, {3877, 25005, 4187}, {4297, 4669, 47745}, {4297, 31663, 8703}, {4301, 10175, 9955}, {4669, 31663, 61245}, {4677, 7987, 61296}, {4701, 17502, 61297}, {4848, 31397, 942}, {4882, 30503, 5534}, {5303, 34474, 3}, {5493, 38155, 31673}, {5587, 7991, 12699}, {5587, 12699, 546}, {5603, 9780, 1656}, {5686, 35514, 5779}, {5687, 32141, 51525}, {5697, 18395, 11}, {5790, 12702, 4}, {5818, 50810, 962}, {5882, 10164, 13624}, {6361, 59387, 382}, {6734, 51433, 10914}, {6735, 37562, 10942}, {6940, 54391, 37535}, {7987, 61296, 3655}, {8148, 9780, 61272}, {8227, 11531, 3656}, {9588, 37727, 3530}, {9589, 61258, 3861}, {9708, 10306, 3560}, {9709, 22770, 6911}, {9955, 10175, 5}, {10164, 13624, 15712}, {10222, 11231, 1125}, {10738, 59415, 61553}, {10915, 34339, 32213}, {11230, 11278, 13464}, {11362, 38112, 22791}, {11362, 38127, 10}, {11522, 54447, 61268}, {11531, 19875, 8227}, {11545, 15171, 1837}, {12702, 48661, 20070}, {12787, 12788, 3416}, {13911, 35774, 7583}, {13973, 35775, 7584}, {15694, 50805, 38314}, {15908, 21031, 119}, {16189, 34595, 61275}, {17606, 30384, 10593}, {18483, 38140, 3858}, {18525, 59388, 61249}, {19925, 22793, 3845}, {20053, 58230, 61290}, {21271, 40999, 41007}, {22791, 38042, 5}, {24475, 44222, 31657}, {30305, 54361, 9669}, {31423, 61597, 38028}, {34632, 38074, 3830}, {34632, 51068, 38074}, {34718, 38066, 2}, {35610, 35789, 3071}, {35611, 35788, 3070}, {37563, 37702, 3058}, {37724, 59337, 15174}, {37734, 52793, 37525}, {40273, 61259, 381}, {49226, 49602, 42215}, {49227, 49601, 42216}, {50810, 53620, 381}, {50821, 50823, 50824}, {50821, 50824, 50825}, {50821, 50827, 50823}, {50821, 50828, 50826}, {50821, 50830, 50833}, {50821, 51087, 50829}, {50822, 50823, 50821}, {50822, 50827, 50824}, {50823, 50824, 50830}, {50823, 50826, 50831}, {50824, 50825, 50833}, {50825, 50830, 50824}, {50826, 50831, 50828}, {50828, 50831, 50824}, {50829, 51087, 50832}, {50832, 51087, 50824}, {51073, 58240, 61273}, {51111, 54192, 26287}, {51700, 61597, 1}, {54447, 61268, 35018}
X(5690) = pole of line {9957, 10950} with respect to the Feuerbach circumhyperbola
X(5690) = pole of line {10, 10943} with respect to the Feuerbach circumhyperbola of the medial triangle
X(5690) = pole of line {859, 37535} with respect to the Feuerbach circumhyperbola of the tangential triangle
X(5690) = pole of line {572, 2183} with respect to the Kiepert circumhyperbola of the excentral triangle
X(5690) = pole of line {517, 2975} with respect to the Jerabek circumhyperbola of the excentral triangle
X(5690) = pole of line {34589, 35015} with respect to the Mandart parabola
X(5690) = pole of line {900, 48391} with respect to the circumcircle
X(5690) = pole of line {28217, 39540} with respect to the incircle
X(5690) = pole of line {513, 39508} with respect to the nine point circle
X(5690) = pole of line {28217, 39547} with respect to the Conway circle
X(5690) = pole of line {4977, 39534} with respect to the polar circle
X(5690) = pole of line {4784, 39386} with respect to the orthoptic-circle-of-the-Steiner-inellipse
X(5690) = pole of line {18004, 39386} with respect to the orthoptic-circle-of-the-Steiner-circumellipe
X(5690) = pole of line {28217, 44409} with respect to the Suppa Cucoanes circle (see X(53614))


X(5691) =  DE LONGCHAMPS POINT OF OUTER GARCIA TRIANGLE

Trilinears    r - 4 R cos B cos C : :
Barycentrics    3 a^4- a^3 (b + c) - a^2 (b - c)^2 + a (b - c)^2 (b + c) - 2 (b^2 - c^2)^2 : :     (Angel Montesdeoca, January 21, 2015)
X(5691) = X(1) - 2 X(4)

The outer Garcia triangle is defined at X(5587).

Let I = X(1) and O = X(3). Let A″ be the reflection of I in line AO and let IA be the reflection of A″ in line AI. Define IB and IC cyclically. Then ABC and IAIB IC are orthologic triangles, and X(5691) is the ABC-orthology center of IAIB IC.     (Angel Montesdeoca, January 21, 2015)

Let Ja, Jb, Jc be the excenters and I the incenter. Let A′ be the centroid of JbJcI, and define B′ and C′ cyclically. A′B′C′ is also the cross-triangle of the excentral and 2nd circumperp triangles. A′B′C′ is homothetic to the 4th Euler triangle at X(5691). (Randy Hutson, July 31 2018)

X(5691) lies on these lines: {1,4}, {2,4297}, {3,1698}, {5,3576}, {8,144}, {10,20}, {11,1420}, {12,3601}, {30,40}, {35,1012}, {36,3149}, {46,80}, {57,1837}, {63,5086}, {65,971}, {78,5080}, {79,3577}, {5692,5777}

X(5691) = reflection of X(20) in X(10)
X(5691) = {X(1),X(4)}-harmonic conjugate of X(1699)


X(5692) =  CENTROID OF INNER GARCIA TRIANGLE

Trilinears    f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = abc + (b + c)(b2 + c2 - a2)
Barycentrics    g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = a(b3 + c3 - a2b - a2c + abc + b2c + bc2)

The inner Garcia triangle A″B″C″ is defined at X(5587). Another construction of A″ is as the reflection of X(1) in the perpendicular bisector of side BC, so that |OA″| = |X(1)X(3)|, and A″, B″, C″, and X(1) are on a circle with center X(3). (Paul Yiu, ADGEOM #1214, April 3, 2014)

A″ = a2 : c2 - b2 + ac : b2 - c2 + ab
B″ = c2 - a2 + bc : b2 : a2 - c2 + ba
C″ = b2 - a2 + cb : a2 - b2 + ca : c2
(Peter Moses, April 4, 2014)

The appearance of (i,j) in the following list means that (X(i) of A″B″C′) = X(j): (1,8), (3,3), (10,3878), (11,72), (21,191), (35,2975), (36,100), (40,944), (55,956), (63,4302), (78,1479), (80,3869), (100,1), (104,40), (214,10), (238,190), (662,2607), (663,3762), (667,659), (976,4894), (1001,5220), (1125,3678), (1145,3057), (1149,4738), (1193,1089), (1319,1145), (1320,3632), (1325,2948), (1376,5289), (1459,4768), (1734,3904), (1768,20), (1818,4858), (2077,104), (2932,56), (3032,2901), (3035,960), (3065,3648), (3220,1633), (3286,4436), (4057,4491), (4367,4730), (4511,80), (4855,499), (4996,35), (5150,3923), (5313,4671), (5440,11), (5531,962), (5541,145). (Peter Moses, April 3, 2014)

X(5692) lies on these lines: {1,6}, {2,758}, {3,191}, {8,80}, {10,908}, {119,5690}, {5691,5777}, {2805,5695}, {4302,5696} et al.

X(5692) = reflection of X(1) in X(392)
X(5692) = anticomplement of X(5883)
X(5692) = {X(1),X(72)}-harmonic conjugate of X(5904)
X(5692) = X(1)-of-X(2)-anti-altimedial-triangle
X(5692) = X(2)-of-X(1)-adjunct-anti-altimedial-triangle
X(5692) = X(12022)-of-excentral-triangle
X(5692) = homothetic center of inner Garcia triangle and X(1)-adjunct anti-altimedial triangle


X(5693) =  ORTHOCENTER OF INNER GARCIA TRIANGLE

Barycentrics    f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b6 + c6 - a5b - a5c + a4b2 + a4c2 + a4bc + 2a3b3 + 2a3c3 - a3b2c - a3bc2 - 2a2b4 - 2a2c4 - a2b3c - a2bc3 + 2a2b2c2 - ab5 - ac5 + 2ab4c + 2abc4 - ab3c2 - ab2c3 - b4c2 - b2c4)

The inner Garcia triangle A″B″C″ is defined at X(5587); see also X(5692).

X(5693) is the incenter of the X(3)-Fuhrmann triangle, defined at X(5613).

X(5693) lies on these lines: {1,90}, {2,5884}, {3,191}, {4,758}, {5,3649}, {8,153}, {10,6937}, {944,2801}, {952,5697} et al.

X(5693) = anticomplement of X(5884)


X(5694) =  NINE-POINT CENTER OF INNER GARCIA TRIANGLE

Barycentrics    f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b6 + c6 - a5b - a5c + a4b2 + a4c2 + 2a4bc + 2a3b3 + 2a3c3 - a3b2c - a3bc2 - 2a2b4 - 2a2c4 - 2a2b3c - 2a2bc3 + 2a2b2c2 - ab5 - ac5 + 2ab4c + 2abc4 - ab3c2 - ab2c3 - b4c2 - b2c4)

The inner Garcia triangle A″B″C″ is defined at X(5587); see also X(5692).

Let A* be the reflection of X(5) in the perpendicular bisector of segment BC, and define B* and C* cyclically. Triangle A*B*C* is inversely similar to ABC, with similitude center X(3); also, A*B*C* is perspective to ABC, with perspector X(3519), and X(5694) is the incenter of A*B*C*.

X(5694) lies on these lines: {1,195}, {2,5885}, {3,191}, {4,8}, {5,758} et al.

X(5694) = anticomplement of X(5885)


X(5695) =  SYMMEDIAN POINT OF INNER GARCIA TRIANGLE

Barycentrics    f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a3 - a2b - a2c + 2b2c + 2bc2

The inner Garcia triangle A″B″C″ is defined at X(5587); see also X(5692).

X(5695) lies on these lines: {1,536}, {2,3712}, {3,2783}, {4,3704}, {6,740}, {8,190}, {9,3696}, {10,45}, {2805,5692} et al.


X(5696) =  X(7) OF INNER GARCIA TRIANGLE

Barycentrics    f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b5 + c5 - a4b - a4c + 2a3b2 + 2a3c2 - a3bc + 2a2b2c + 2a2bc2 - ab3c - abc3 -2ab4 -2ac4 + b4c + bc4 - 2b3c2 - 2b2c3 - 2ab2c2)

The inner Garcia triangle A″B″C″ is defined at X(5587); see also X(5692).

X(5696) lies on these lines: {1,5784}, {7,2894}, {8,2801}, {9,35}, {528,5697}, {4302,5692} et al.


X(5697) =  X(8) OF INNER GARCIA TRIANGLE

Barycentrics    f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b3 + c3 - a2b - a2c + 3abc - b2c - bc2)

The inner Garcia triangle A″B″C″ is defined at X(5587); see also X(5692).

X(5697) lies on these lines: {1,3}, {2,3884}, {4,5559}, {7,7278}, {8,80}, {10,4193}, {11,5690}, {528,5696}, {952,5693} et al.

X(5697) = X(20)-of-reflection-triangle-of-X(1)
X(5697) = {X(1),X(40)}-harmonic conjugate of X(36)
X(5697) = X(1)-of-X(1)-anti-altimedial-triangle
X(5697) = endo-homothetic center of Ehrmann vertex-triangle and anti-Hutson intouch triangle; the homothetic center is X(382)


X(5698) =  X(9) OF INNER GARCIA TRIANGLE

Barycentrics    f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b3 + c3 - 3a3 + a2b + a2c + ab2 + ac2 + 2abc - b2c - bc2

The inner Garcia triangle A″B″C″ is defined at X(5587); see also X(5692).

X(5698) lies on these lines: {1,527}, {2,1155}, {3,1633}, {4,9}, {7,21}, {8,190}, {11,5744}, {944,2801}, {4302,5692} et al.

X(5698) = anticomplement of X(5880)


X(5699) =  X(15) OF INNER GARCIA TRIANGLE

Barycentrics    f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 3a2(a + b + c)(a2 - b2 - c2) - 2(31/2)(a3 - a2b - a2c + 2b2c + 2bc2)S

The inner Garcia triangle A″B″C″ is defined at X(5587); see also X(5692).

X(5699) lies on these lines: X(5699) lies on line {3,2783}, {10,13}, {15,740}, {16,3923} et al.


X(5700) =  X(16) OF INNER GARCIA TRIANGLE

Barycentrics    f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 3a2(a + b + c)(a2 - b2 - c2) + 2(31/2)(a3 - a2b - a2c + 2b2c + 2bc2)S

The inner Garcia triangle A″B″C″ is defined at X(5587); see also X(5692).

X(5700) lies on these lines: {3,2783}, {10,14}, {15,3923}, {16,740} et al.


X(5701) =  MINIMIZER ON LINE X(1)X(6) OF x2 + y2 + z2

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(a3b2 + a3c2 - 2a2b3 - 2a2c3 + ab4 + ac4 - ab3c - abc3 + 2a2b2 + b4c + bc4 - b3c2 - b2c3)

Suppose that P = p : q : r and U = u : v : w (homogeneous barycentric coordinates). Let (x,y,z) be normalized barycentric coordinates for an arbitrary point X. The point T on the line PU that minimizes x2 + y2 + z2 is given by

T = (qu - pv)(pv + rv - qu - qw) + (ru - pw)(pw + qw - ru - rv)     (Peter Moses, June 23, 2014)

X(5701) is the minimizer T when P = X(1) and Q = X(6). See also X(5661) and X(5662).

X(5701) lies on these lines: {1,6}, {2,650}, {1252,1621}, {3693,4702}, {5284,5375}


X(5702) =  CENTER OF MONTESDEOCA CONIC

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = SBSC(5a2SA - SBSC)

Let ABC be a triangle, let PA be the polar of A with respect to the circle with diameter BC, and define PB and PC cyclically. Let AB = PA∩AB and AC = PA∩AC, and define BC, CA, BA, and CB cyclically. The six points AB, AC, BC, BA, CA, CB lie on, and define, the Montesdeoca conic. (Angel Montesdeoca, June 23, 2014)

A barycentric equation for the Montesdeoca conic is found from AB = SC : 0 : 2SA and AC = SB : 2SA : 0 to be as follows:

2(S2Ax2 + S2By2 + S2Cz2) - 5(SBSCyz + SCSAzx + SASBxy) = 0      (Peter Moses, June 23, 2014)

The Montesdeoca conic is the anticevian-intersection conic when P = X(4); this conic is defined by Francisco J. García Capitán (The Anticevian Intersection Conic and Hyacinthos #20547 (December 19, 2011). Also, the perspector of the Montesdeoca conic is X(4).

X(5702) lies on these lines: {4,6}, {297,5032}, {340,1992}, {376,3284}, {468,5304}, {578,3183}, {631,5158}, {3163,3545}


X(5703) =  INTERSECTION OF LINES X(1)X(2) AND X(3)X(7)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 3*a^4 - 2*a^3*b - 4*a^2*b^2 + 2*a*b^3 + b^4 - 2*a^3*c - 4*a^2*b*c - 2*a*b^2*c - 4*a^2*c^2 - 2*a*b*c^2 - 2*b^2*c^2 + 2*a*c^3 + c^4

X(5703) lies on these lines: {1, 2}, {3, 7}, {4, 4313}, {5, 3488}, {12, 3486}, {20, 226}, {21, 329}, {35, 4295}, {40, 5281}, {55, 411}, {56, 3475}, {57, 3523}, {65, 5218}, {72, 5273}, {86, 939}, {142, 5438}, {165, 3671}, {307, 3945}, {388, 2646}, {390, 946}, {443, 5440}, {452, 908}, {495, 944}, {515, 5261}, {517, 4323}, {631, 942}, {940, 3562}, {950, 3091}, {988, 4310}, {1056, 1385}, {1445, 3333}, {1446, 3160}, {1478, 4305}, {1699, 4314}, {1788, 5432}, {2287, 5296}, {2476, 5175}, {2886, 3189}, {3146, 4304}, {3149, 3295}, {3361, 5542}, {3452, 5129}, {3474, 3649}, {3522, 4292}, {3576, 3600}, {3586, 3832}, {3612, 4293}, {4000, 4255}, {4252, 4644}, {4297, 5290}, {4344, 5266}, {4855, 5249}, {5084, 5328}


X(5704) =  INTERSECTION OF LINES X(1)X(2) AND X(5)X(7)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a^4 + 2*a^3*b - 4*a^2*b^2 - 2*a*b^3 + 3*b^4 + 2*a^3*c + 4*a^2*b*c + 2*a*b^2*c - 4*a^2*c^2 + 2*a*b*c^2 - 6*b^2*c^2 - 2*a*c^3 + 3*c^4

X(5704) lies on these lines: {1, 2}, {4, 5435}, {5, 7}, {11, 962}, {20, 3911}, {40, 5274}, {57, 3091}, {72, 5328}, {88, 5125}, {90, 5556}, {104, 3149}, {140, 3488}, {226, 5056}, {307, 4346}, {329, 4193}, {355, 4308}, {404, 5175}, {411, 5204}, {496, 5657}, {515, 5265}, {631, 4313}, {942, 3090}, {950, 3523}, {1155, 5225}, {1158, 1445}, {1656, 3487}, {1728, 3218}, {3035, 3189}, {3306, 5177}, {3333, 5261}, {3339, 3817}, {3486, 5433}, {3522, 3586}, {3529, 5122}, {3562, 4383}, {3600, 5587}, {3614, 4860}, {3832, 4292}, {4208, 5437}, {4306, 5400}, {5084, 5273}


X(5705) =  INTERSECTION OF LINES X(1)X(2) AND X(5)X(9)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a^4 + a^3*b - 3*a^2*b^2 - a*b^3 + 2*b^4 + a^3*c - 2*a^2*b*c - 3*a*b^2*c - 3*a^2*c^2 - 3*a*b*c^2 - 4*b^2*c^2 - a*c^3 + 2*c^4

X(5705) lies on these lines: {1, 2}, {5, 9}, {21, 3586}, {40, 2886}, {57, 442}, {63, 2476}, {72, 5219}, {140, 5438}, {283, 5235}, {411, 993}, {443, 3911}, {958, 3149}, {965, 2323}, {1445, 3841}, {1479, 4512}, {1656, 5044}, {2475, 4652}, {3090, 3452}, {3091, 5273}, {3219, 5141}, {3305, 4193}, {3306, 4197}, {3419, 3601}, {3545, 5325}, {3576, 4999}, {3646, 3816}, {3814, 5536}, {3822, 5290}, {4208, 5435}, {4292, 5177}, {4304, 5175}


X(5706) =  INTERSECTION OF LINES X(1)X(3) AND X(4)X(6)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a*(a^6 + a^5*b - 2*a^4*b^2 - 2*a^3*b^3 + a^2*b^4 + a*b^5 + a^5*c - 2*a^4*b*c - 2*a^3*b^2*c + a*b^4*c + 2*b^5*c - 2*a^4*c^2 - 2*a^3*b*c^2 - 2*a^2*b^2*c^2 - 2*a*b^3*c^2 - 2*a^3*c^3 - 2*a*b^2*c^3 - 4*b^3*c^3 + a^2*c^4 + a*b*c^4 + a*c^5 + 2*b*c^5)

X(5706) lies on these lines: {1, 3}, {4, 6}, {5, 1714}, {7, 3562}, {10, 219}, {20, 81}, {28, 154}, {33, 1712}, {51, 4186}, {58, 1012}, {64, 4219}, {98, 3597}, {184, 4185}, {221, 278}, {222, 4292}, {377, 394}, {386, 3149}, {405, 580}, {429, 1899}, {602, 1001}, {774, 4336}, {990, 1071}, {991, 4658}, {1191, 5603}, {1203, 1699}, {1260, 3191}, {1376, 3682}, {1451, 2654}, {1478, 3173}, {1612, 3052}, {1753, 2285}, {1765, 2257}, {1780, 3560}, {1836, 1838}, {1853, 5142}, {1993, 2475}, {2192, 2982}, {2256, 5657}, {3695, 4513}, {3713, 5295}, {4259, 5562}, {5046, 5422}

X(5706) = {X(1),X(40)}-harmonic conjugate of X(37528)


X(5707) =  INTERSECTION OF LINES X(1)X(3) AND X(5)X(6)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a*(a^6 + a^5*b - 2*a^4*b^2 - 2*a^3*b^3 + a^2*b^4 + a*b^5 + a^5*c - 2*a^3*b^2*c - 2*a^2*b^3*c + a*b^4*c + 2*b^5*c - 2*a^4*c^2 - 2*a^3*b*c^2 - 2*a^2*b^2*c^2 - 2*a*b^3*c^2 - 2*a^3*c^3 - 2*a^2*b*c^3 - 2*a*b^2*c^3 - 4*b^3*c^3 + a^2*c^4 + a*b*c^4 + a*c^5 + 2*b*c^5)

X(5707) lies on these lines: {1, 3}, {2, 3193}, {4, 81}, {5, 6}, {7, 1068}, {58, 3560}, {222, 225}, {226, 3157}, {283, 405}, {394, 442}, {581, 4658}, {602, 3720}, {965, 2323}, {1069, 1210}, {1216, 4259}, {1437, 4185}, {1480, 4301}, {1656, 4383}, {1993, 2476}, {1994, 5141}, {3149, 5396}, {3487, 3562}, {4193, 5422}

X(5707) = {X(1),X(57)}-harmonic conjugate of X(37565)


X(5708) =  INTERSECTION OF LINES X(1)X(3) AND X(5)X(7)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a*(a^3 + 2*a^2*b - a*b^2 - 2*b^3 + 2*a^2*c + 4*a*b*c + 2*b^2*c - a*c^2 + 2*b*c^2 - 2*c^3)

X(5708) lies on these lines: {1, 3}, {2, 3927}, {5, 7}, {28, 89}, {30, 938}, {45, 579}, {63, 5439}, {72, 3306}, {140, 3487}, {142, 3634}, {191, 4423}, {222, 1393}, {226, 1656}, {355, 4298}, {381, 553}, {382, 4031}, {405, 3218}, {443, 3617}, {474, 3868}, {495, 1788}, {496, 4295}, {499, 3649}, {548, 4313}, {550, 3488}, {950, 1657}, {952, 3600}, {1086, 5292}, {1376, 3874}, {1435, 1871}, {1439, 3527}, {1483, 4308}, {1598, 1876}, {3526, 3911}, {3586, 5073}, {3624, 4880}, {3628, 5226}, {3872, 4004}, {3881, 3913}, {3982, 5079}, {4084, 5289}, {4114, 5072}, {4306, 5396}, {4321, 5534}, {4355, 5587}, {4654, 5055}, {5044, 5437}, {5070, 5219}, {5445, 5557}

X(5708) = {X(4860),X(5221)}-harmonic conjugate of X(1)


X(5709) =  INTERSECTION OF LINES X(1)X(3) AND X(5)X(9)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a*(a^6 - 3*a^4*b^2 + 3*a^2*b^4 - b^6 - 2*a^4*b*c + 2*b^5*c - 3*a^4*c^2 + 2*a^2*b^2*c^2 + b^4*c^2 - 4*b^3*c^3 + 3*a^2*c^4 + b^2*c^4 + 2*b*c^5 - c^6)

X(5709) = X(26)-of-excentral-triangle.

X(5709) lies on these lines: {1, 3}, {4, 63}, {5, 9}, {20, 3218}, {28, 283}, {30, 84}, {34, 255}, {72, 3149}, {90, 3583}, {140, 5437}, {155, 610}, {191, 1699}, {212, 1393}, {223, 3157}, {225, 1217}, {381, 3929}, {411, 3868}, {443, 5657}, {516, 1158}, {518, 5534}, {578, 3955}, {579, 1766}, {602, 614}, {631, 3306}, {912, 1490}, {920, 1479}, {1012, 3916}, {1068, 1119}, {1069, 3345}, {1070, 4331}, {1071, 1998}, {1072, 5230}, {1093, 1948}, {1210, 1708}, {1254, 1496}, {1352, 5227}, {1453, 5398}, {1512, 3436}, {1707, 3073}, {1776, 5225}, {1817, 3193}, {2000, 4219}, {3090, 3305}, {3091, 3219}, {5250, 5603}

X(5709) = intouch-to-excentral similarity image of X(3)


X(5710) =  INTERSECTION OF LINES X(1)X(3) AND X(6)X(8)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a*(a^3 + 2*a^2*b + a*b^2 + 2*a^2*c + 2*b^2*c + a*c^2 + 2*b*c^2)

X(5710) lies on these lines: {1, 3}, {2, 1191}, {6, 8}, {10, 3966}, {21, 3052}, {31, 958}, {37, 5250}, {42, 3913}, {58, 956}, {81, 145}, {87, 2334}, {100, 4255}, {197, 1036}, {218, 3997}, {220, 5276}, {221, 388}, {387, 5082}, {392, 975}, {405, 595}, {474, 995}, {608, 1891}, {611, 5252}, {612, 960}, {614, 3812}, {750, 1201}, {962, 5244}, {978, 4413}, {1001, 1918}, {1056, 4340}, {1100, 3895}, {1193, 1376}, {1203, 3679}, {1406, 5434}, {1407, 3600}, {1449, 2136}, {1616, 3616}, {1698, 5315}, {1706, 2999}, {1722, 3698}, {1834, 3434}, {1999, 4673}, {2176, 5275}, {2256, 2303}, {2650, 3938}, {2886, 5230}, {2975, 4252}, {3242, 3868}, {3486, 4339}, {3782, 4295}, {3869, 3920}, {4363, 4968}, {4646, 5256}


X(5711) =  INTERSECTION OF LINES X(1)X(3) AND X(6)X(10)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a*(a^3 + 2*a^2*b + a*b^2 + 2*a^2*c + 2*a*b*c + 2*b^2*c + a*c^2 + 2*b*c^2)

X(5711) lies on these lines: {1, 3}, {4, 608}, {6, 10}, {8, 81}, {31, 405}, {58, 958}, {72, 612}, {213, 5275}, {218, 5276}, {219, 2303}, {220, 3997}, {221, 226}, {222, 388}, {281, 3194}, {341, 3758}, {386, 1376}, {387, 2550}, {406, 3195}, {442, 5230}, {474, 750}, {495, 611}, {551, 1616}, {595, 1001}, {601, 1012}, {614, 5439}, {651, 5261}, {894, 4385}, {938, 4344}, {946, 2050}, {956, 1468}, {960, 975}, {976, 2650}, {984, 1046}, {993, 4252}, {1064, 3149}, {1065, 1433}, {1100, 4646}, {1107, 5021}, {1125, 1191}, {1203, 1698}, {1386, 3812}, {1407, 4298}, {1449, 1706}, {1714, 3925}, {1740, 4649}, {2271, 4386}, {2292, 5311}, {2295, 3695}, {2305, 3743}, {2886, 5292}, {3052, 5248}, {3216, 4413}, {3242, 3874}, {3488, 4339}, {3562, 3945}, {3624, 5315}, {3720, 3915}, {3736, 3913}, {3868, 3920}, {3876, 5297}, {3940, 5293}, {4356, 5493}, {4662, 4663}, {4868, 5110}, {5044, 5268}, {5250, 5287}


X(5712) =  INTERSECTION OF LINES X(1)X(4) AND X(2)X(6)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a^3 + 3*a^2*b + a*b^2 - b^3 + 3*a^2*c + 2*a*b*c + b^2*c + a*c^2 + b*c^2 - c^3

X(5712) lies on these lines: {1, 4}, {2, 6}, {3, 4340}, {7, 941}, {37, 329}, {42, 2550}, {55, 4307}, {57, 573}, {63, 4644}, {142, 2999}, {171, 212}, {306, 2345}, {312, 1909}, {345, 894}, {354, 1469}, {386, 443}, {387, 442}, {406, 3194}, {553, 4888}, {580, 631}, {908, 5287}, {1100, 3772}, {1104, 3616}, {1125, 1453}, {1212, 5308}, {1215, 3974}, {1730, 4266}, {1788, 5530}, {1834, 5177}, {3247, 4656}, {3296, 3953}, {3622, 5484}, {3663, 4654}, {3672, 3782}, {3677, 5542}, {3744, 4344}, {3752, 4277}, {3931, 4295}, {3982, 4862}, {4000, 5249}, {4349, 5269}, {4641, 5273}, {4658, 5292}

X(5712) = isotomic conjugate of polar conjugate of X(37384)
X(5712) = complement of X(14552)
X(5712) = anticomplement of X(5737)


X(5713) =  INTERSECTION OF LINES X(1)X(4) AND X(5)X(6)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a^7 + a^6*b - a^5*b^2 - 3*a^4*b^3 - a^3*b^4 + 3*a^2*b^5 + a*b^6 - b^7 + a^6*c - 3*a^4*b^2*c - 2*a^3*b^3*c + a^2*b^4*c + 2*a*b^5*c + b^6*c - a^5*c^2 - 3*a^4*b*c^2 - 2*a^3*b^2*c^2 - 4*a^2*b^3*c^2 - a*b^4*c^2 + 3*b^5*c^2 - 3*a^4*c^3 - 2*a^3*b*c^3 - 4*a^2*b^2*c^3 - 4*a*b^3*c^3 - 3*b^4*c^3 - a^3*c^4 + a^2*b*c^4 - a*b^2*c^4 - 3*b^3*c^4 + 3*a^2*c^5 + 2*a*b*c^5 + 3*b^2*c^5 + a*c^6 + b*c^6 - c^7

X(5713) lies on these lines: {1, 4}, {2, 283}, {5, 6}, {212, 498}, {499, 1451}, {1899, 3142}, {2299, 3542}, {2476, 3193}


X(5714) =  INTERSECTION OF LINES X(1)X(4) AND X(5)X(7)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a^4 + 2*a^3*b + 2*a^2*b^2 - 2*a*b^3 - 3*b^4 + 2*a^3*c + 4*a^2*b*c + 2*a*b^2*c + 2*a^2*c^2 + 2*a*b*c^2 + 6*b^2*c^2 - 2*a*c^3 - 3*c^4

X(5714) lies on these lines: {1, 4}, {2, 3824}, {3, 5226}, {5, 7}, {9, 3634}, {12, 4295}, {40, 3947}, {45, 1901}, {57, 3090}, {72, 3617}, {79, 498}, {329, 442}, {381, 938}, {382, 4313}, {405, 5253}, {443, 908}, {452, 5126}, {495, 962}, {517, 5261}, {553, 5071}, {631, 4292}, {942, 3091}, {943, 5556}, {952, 4323}, {1000, 4301}, {1006, 5204}, {1210, 3545}, {1656, 5435}, {1770, 5218}, {1836, 3085}, {1892, 3089}, {2345, 3454}, {3333, 3817}, {3419, 3621}, {3529, 3601}, {3614, 5221}, {3651, 5217}, {3671, 5587}, {3911, 5067}, {4208, 5044}, {4317, 5443}, {4330, 5561}, {4644, 5292}, {5045, 5274}, {5084, 5249}


X(5715) =  INTERSECTION OF LINES X(1)X(4) AND X(5)X(9)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = -a^7 + a^5*b^2 + 2*a^4*b^3 + a^3*b^4 - 4*a^2*b^5 - a*b^6 + 2*b^7 + 2*a^5*b*c + 2*a^4*b^2*c - 2*a*b^5*c - 2*b^6*c + a^5*c^2 + 2*a^4*b*c^2 - 2*a^3*b^2*c^2 + 4*a^2*b^3*c^2 + a*b^4*c^2 - 6*b^5*c^2 + 2*a^4*c^3 + 4*a^2*b^2*c^3 + 4*a*b^3*c^3 + 6*b^4*c^3 + a^3*c^4 + a*b^2*c^4 + 6*b^3*c^4 - 4*a^2*c^5 - 2*a*b*c^5 - 6*b^2*c^5 - a*c^6 - 2*b*c^6 + 2*c^7

X(5715) lies on these lines: {1, 4}, {3, 3824}, {5, 9}, {40, 442}, {72, 5587}, {79, 1709}, {329, 3091}, {355, 3577}, {962, 5177}, {1006, 3624}, {1071, 4654}, {1158, 4312}, {3149, 5219}


X(5716) =  INTERSECTION OF LINES X(1)X(4) AND X(6)X(8)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = -3*a^4 - 2*a^3*b - 2*a^2*b^2 - 2*a*b^3 + b^4 - 2*a^3*c - 4*a^2*b*c - 2*a*b^2*c - 2*a^2*c^2 - 2*a*b*c^2 - 2*b^2*c^2 - 2*a*c^3 + c^4

X(5716) lies on these lines: {1, 4}, {2, 1104}, {6, 8}, {10, 1453}, {20, 3666}, {29, 2303}, {37, 452}, {42, 3189}, {55, 4339}, {56, 4220}, {65, 3056}, {85, 3945}, {145, 321}, {171, 1451}, {212, 5255}, {345, 4195}, {377, 4000}, {387, 3419}, {405, 1612}, {580, 5264}, {612, 2551}, {938, 940}, {942, 3784}, {975, 5084}, {986, 3474}, {1036, 1610}, {1427, 3600}, {1697, 1766}, {1834, 5175}, {1837, 3745}, {1841, 4198}, {3085, 5266}, {3146, 3672}, {3436, 3920}, {3616, 5051}, {3677, 4298}, {3772, 5177}, {3868, 4644}, {3931, 4294}, {4190, 4850}, {5218, 5530}


X(5717) =  INTERSECTION OF LINES X(1)X(4) AND X(6)X(10)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = -2*a^4 - 3*a^3*b - 3*a^2*b^2 - a*b^3 + b^4 - 3*a^3*c - 6*a^2*b*c - 3*a*b^2*c - 3*a^2*c^2 - 3*a*b*c^2 - 2*b^2*c^2 - a*c^3 + c^4

X(5717) lies on these lines: {1, 4}, {2, 1453}, {6, 10}, {12, 3745}, {40, 2269}, {57, 4340}, {171, 580}, {204, 406}, {212, 5264}, {306, 964}, {377, 5256}, {387, 1449}, {443, 2999}, {511, 942}, {516, 3931}, {519, 5295}, {553, 3670}, {937, 2551}, {938, 3945}, {940, 1210}, {975, 3452}, {1010, 3687}, {1100, 1834}, {1104, 1125}, {1329, 4682}, {1330, 4357}, {1427, 4298}, {1451, 3911}, {1842, 2294}, {2047, 5405}, {2303, 3194}, {2334, 4863}, {2478, 5287}, {3085, 5269}, {3666, 4292}, {4208, 5222}, {5129, 5308}, {5249, 5262}


X(5718) =  INTERSECTION OF LINES X(1)X(5) AND X(2)X(6)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 2a2(b + c) + a(b2 + c2) - (b - c)2(b + c)

X(5718) lies on these lines: {1, 5}, {2, 6}, {10, 4023}, {37, 908}, {42, 2886}, {43, 3925}, {55, 4192}, {57, 4888}, {65, 970}, {140, 5398}, {171, 2361}, {226, 1465}, {312, 3963}, {313, 4358}, {377, 4255}, {386, 442}, {469, 1865}, {516, 4689}, {528, 2177}, {536, 4054}, {631, 4340}, {750, 3035}, {851, 5132}, {899, 3826}, {986, 3649}, {1086, 4850}, {1215, 3703}, {1386, 3011}, {1468, 4999}, {1834, 2476}, {1848, 1880}, {3058, 3750}, {3306, 4675}, {3550, 4995}, {3664, 3911}, {3687, 4967}, {3706, 4028}, {3712, 3923}, {3720, 3816}, {3752, 5249}, {3772, 5256}, {3821, 4892}, {3838, 3914}, {3943, 4671}, {3944, 4854}, {3999, 5542}, {4009, 4078}, {4030, 4865}, {4031, 4896}, {4090, 4126}, {4220, 5347}, {4307, 5218}, {4654, 4902}, {5308, 5328}

X(5718) = complement of X(1150)


X(5719) =  INTERSECTION OF LINES X(1)X(5) AND X(3)X(7)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 2*a^4 - 2*a^3*b - 3*a^2*b^2 + 2*a*b^3 + b^4 - 2*a^3*c - 4*a^2*b*c - 2*a*b^2*c - 3*a^2*c^2 - 2*a*b*c^2 - 2*b^2*c^2 + 2*a*c^3 + c^4

X(5719) lies on these lines: {1, 5}, {2, 3940}, {3, 7}, {30, 226}, {35, 3649}, {37, 3002}, {57, 549}, {73, 5453}, {140, 942}, {381, 3488}, {382, 4313}, {484, 4995}, {518, 1125}, {546, 950}, {548, 4292}, {550, 3601}, {551, 3452}, {553, 5122}, {938, 1656}, {956, 3616}, {999, 3475}, {1000, 1482}, {1086, 4256}, {1159, 5657}, {1210, 3628}, {1385, 4315}, {3295, 3485}, {3296, 5265}, {3530, 4031}, {3579, 3671}, {3584, 5425}, {3586, 3845}, {3622, 5084}, {3748, 4870}, {3874, 4999}, {4415, 4653}, {5054, 5435}, {5249, 5440}, {5298, 5444}

X(5719) = {X(1),X(12)}-harmonic conjugate of X(37730)


X(5720) =  INTERSECTION OF LINES X(1)X(5) AND X(3)X(9)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a*(a^6 - 2*a^5*b - a^4*b^2 + 4*a^3*b^3 - a^2*b^4 - 2*a*b^5 + b^6 - 2*a^5*c + 2*a^4*b*c - 4*a^2*b^3*c + 2*a*b^4*c + 2*b^5*c - a^4*c^2 + 2*a^2*b^2*c^2 - b^4*c^2 + 4*a^3*c^3 - 4*a^2*b*c^3 - 4*b^3*c^3 - a^2*c^4 + 2*a*b*c^4 - b^2*c^4 - 2*a*c^5 + 2*b*c^5 + c^6)

X(5720) lies on these lines: {1, 5}, {3, 9}, {4, 78}, {8, 1512}, {30, 1750}, {57, 912}, {72, 3149}, {200, 517}, {210, 3428}, {223, 1060}, {381, 2900}, {386, 3553}, {411, 3876}, {474, 1071}, {515, 997}, {581, 975}, {612, 1064}, {944, 5084}, {946, 3811}, {962, 4420}, {1006, 3305}, {1012, 5440}, {1038, 1745}, {1040, 3465}, {1217, 1826}, {1376, 3359}, {1482, 3577}, {1519, 3434}, {1532, 3419}, {1709, 2077}, {1743, 5398}, {3560, 3601}, {3576, 5251}, {3870, 5603}


X(5721) =  INTERSECTION OF LINES X(1)X(5) AND X(4)X(6)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = -2*a^6*b + a^5*b^2 + 3*a^4*b^3 - 2*a^3*b^4 + a*b^6 - b^7 - 2*a^6*c + a^4*b^2*c + b^6*c + a^5*c^2 + a^4*b*c^2 + 4*a^3*b^2*c^2 - a*b^4*c^2 + 3*b^5*c^2 + 3*a^4*c^3 - 3*b^4*c^3 - 2*a^3*c^4 - a*b^2*c^4 - 3*b^3*c^4 + 3*b^2*c^5 + a*c^6 + b*c^6 - c^7

X(5721) lies on these lines: {1, 5}, {3, 1714}, {4, 6}, {30, 1754}, {40, 1723}, {51, 1894}, {65, 1243}, {184, 1884}, {209, 517}, {442, 581}, {518, 1072}, {912, 3782}, {1064, 2886}, {1108, 1512}, {1210, 1465}, {1214, 1737}, {1329, 3682}, {1785, 1864}, {2361, 3073}, {3149, 5292}, {3428, 4192}


X(5722) =  INTERSECTION OF LINES X(1)X(5) AND X(4)X(7)

Trilinears    cos B + cos C - 2 cos B cos C + 1 : :
Barycentrics   -a^4 + a^3*b - a*b^3 + b^4 + a^3*c + 2*a^2*b*c + a*b^2*c + a*b*c^2 - 2*b^2*c^2 - a*c^3 + c^4 : :

X(5722) lies on these lines: {1, 5}, {2, 3419}, {3, 950}, {4, 7}, {6, 5179}, {8, 392}, {10, 1001}, {30, 57}, {55, 1737}, {65, 1479}, {72, 2478}, {78, 4187}, {79, 5561}, {81, 5155}, {90, 3652}, {140, 3601}, {200, 3820}, {222, 1877}, {224, 442}, {226, 381}, {354, 1478}, {376, 5122}, {377, 5439}, {382, 4031}, {388, 5045}, {390, 5657}, {405, 1259}, {443, 5175}, {497, 517}, {499, 2646}, {515, 999}, {519, 3452}, {553, 3830}, {631, 4313}, {912, 1864}, {943, 5047}, {997, 3816}, {1056, 5049}, {1062, 1834}, {1104, 5292}, {1145, 3895}, {1155, 4302}, {1319, 3655}, {1329, 3811}, {1385, 3086}, {1770, 5221}, {1788, 3579}, {1836, 3583}, {1936, 5398}, {2099, 3656}, {3058, 3654}, {3091, 3487}, {3241, 5176}, {3434, 3753}, {3436, 3555}, {3545, 5226}, {3582, 3653}, {3612, 5433}, {3616, 5086}, {3679, 4863}, {3824, 5177}, {3845, 4654}, {3868, 5046}, {3873, 5080}, {4295, 5225}, {5090, 5142}, {5274, 5603}, {5427, 5441}

X(5722) = midpoint of X(i) in X(j) for these {i,j}: {1,5727}, {4,5768}
X(5722) = X(25)-of-Fuhrmann-triangle
X(5722) = inverse-in-Feuerbach-hyperbola of X(5252)
X(5722) = {X(1),X(80)}-harmonic conjugate of X(5252)
X(5722) = {X(1),X(1837)}-harmonic conjugate of X(355)


X(5723) =  INTERSECTION OF LINES X(1)X(5) AND X(6)X(7)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (a + b - c)*(a - b + c)*(2*a^3 - 2*a^2*b + a*b^2 - b^3 - 2*a^2*c + b^2*c + a*c^2 + b*c^2 - c^3)

X(5723) lies on these lines: {1, 5}, {2, 664}, {6, 7}, {57, 1358}, {88, 279}, {226, 544}, {241, 514}, {278, 1783}, {1419, 4859}, {1441, 3589}, {1456, 1738}, {4422, 4552}

X(5723) = crossdifference of every pair of points on the line X(55)X(654)


X(5724) =  INTERSECTION OF LINES X(1)X(5) AND X(6)X(8)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = -2*a^4 - a^2*b^2 - 2*a*b^3 + b^4 - 4*a^2*b*c - a^2*c^2 - 2*b^2*c^2 - 2*a*c^3 + c^4

X(5724) lies on these lines: {1, 5}, {6, 8}, {10, 4434}, {30, 4424}, {38, 529}, {65, 511}, {388, 4310}, {515, 3666}, {519, 1215}, {982, 5434}, {1146, 5276}, {1478, 3782}, {1834, 5086}, {1880, 1891}, {2361, 5255}, {2646, 5530}, {3679, 5269}, {3920, 5176}, {4304, 4689}, {4415, 5080}, {5264, 5398}


X(5725) =  INTERSECTION OF LINES X(1)X(5) AND X(6)X(10)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a^4 + a^3*b + 2*a^2*b^2 + a*b^3 - b^4 + a^3*c + 4*a^2*b*c + a*b^2*c + 2*a^2*c^2 + a*b*c^2 + 2*b^2*c^2 + a*c^3 - c^4

X(5725) lies on these lines: {1, 5}, {3, 5530}, {4, 941}, {6, 10}, {42, 3419}, {171, 5398}, {388, 1465}, {515, 2050}, {940, 1737}, {942, 1469}, {975, 998}, {1478, 3666}, {1783, 5276}, {1788, 4340}, {1836, 4424}, {2361, 5264}, {3085, 5266}, {3772, 3822}, {3820, 5268}, {4205, 5336}, {4302, 4689}, {4307, 5657}, {4682, 5123}


X(5726) =  INTERSECTION OF LINES X(1)X(5) AND X(7)X(10)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (a + b - c)*(a - b + c)*(a^2 - a*b + 4*b^2 - a*c + 8*b*c + 4*c^2)

X(5726) lies on these lines: {1, 5}, {2, 4315}, {7, 10}, {8, 3947}, {165, 1478}, {226, 3679}, {388, 1698}, {519, 5226}, {946, 1000}, {1788, 4031}, {2099, 4677}, {2476, 4853}, {2886, 4915}, {3085, 4304}, {3340, 4668}, {3436, 5234}, {3485, 3632}, {3600, 3634}, {3617, 3671}, {3625, 4323}, {3731, 5179}, {3828, 5435}, {4312, 5657}, {4512, 5080}, {5123, 5437}


X(5727) =  INTERSECTION OF LINES X(1)X(5) AND X(8)X(9)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (a - b - c)*(3*a^3 - a*b^2 + 2*b^3 + 2*a*b*c - 2*b^2*c - a*c^2 - 2*b*c^2 + 2*c^3)

X(5727) lies on these lines: {1, 5}, {4, 3340}, {8, 9}, {10, 3486}, {20, 4848}, {30, 2093}, {40, 920}, {46, 4316}, {55, 3679}, {57, 515}, {65, 971}, {145, 908}, {388, 5542}, {497, 519}, {517, 1864}, {944, 1210}, {1012, 3256}, {1249, 1826}, {1478, 4654}, {1698, 2646}, {1699, 2099}, {1706, 5554}, {1737, 3576}, {1788, 4297}, {2098, 3633}, {3057, 3632}, {3058, 4677}, {3241, 5274}, {3617, 4313}, {3626, 4314}, {3671, 5229}, {3832, 4323}, {3870, 5176}, {4301, 5225}, {4304, 5657}, {4863, 4915}

X(5727) = reflection of X(1) in X(5722)


X(5728) =  INTERSECTION OF LINES X(1)X(6) AND X(4)X(7)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a*(a^4*b - 2*a^3*b^2 + 2*a*b^4 - b^5 + a^4*c - 2*a^2*b^2*c + b^4*c - 2*a^3*c^2 - 2*a^2*b*c^2 - 4*a*b^2*c^2 + 2*a*c^4 + b*c^4 - c^5)

X(5728) = {X(1),X(9)}-harmonic conjugate of X(954)

X(5728) lies on these lines: {1, 6}, {2, 955}, {3, 1445}, {4, 7}, {10, 3059}, {11, 118}, {40, 4326}, {55, 1708}, {65, 516}, {81, 162}, {142, 442}, {144, 452}, {241, 991}, {329, 3873}, {390, 517}, {480, 3811}, {497, 5173}, {774, 3931}, {943, 2346}, {986, 4335}, {990, 5228}, {1005, 3218}, {1012, 3358}, {1156, 2771}, {1260, 3870}, {1376, 2900}, {1490, 3333}, {1730, 3198}, {1737, 3826}, {1890, 1905}, {1898, 3649}, {2550, 3419}, {2951, 3339}, {3062, 5665}, {3085, 3697}, {3487, 5045}, {3586, 4312}


X(5729) =  INTERSECTION OF LINES X(1)X(6) AND X(5)X(7)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a*(a^5 - 4*a^3*b^2 + 2*a^2*b^3 + 3*a*b^4 - 2*b^5 - 4*a^3*c^2 - 6*a*b^2*c^2 + 2*b^3*c^2 + 2*a^2*c^3 + 2*b^2*c^3 + 3*a*c^4 - 2*c^5)

X(5729) lies on these lines: {1, 6}, {4, 653}, {5, 7}, {56, 2801}, {144, 2478}, {226, 4860}, {516, 1837}, {527, 1210}, {938, 3927}, {971, 1445}, {1155, 1708}, {1260, 3935}, {3245, 3586}, {5435, 5658}


X(5730) =  INTERSECTION OF LINES X(1)X(6) AND X(5)X(8)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a*(a^3 - 2*a^2*b - a*b^2 + 2*b^3 - 2*a^2*c + 2*a*b*c - a*c^2 + 2*c^3)

X(5730) lies on these lines: {1, 6}, {2, 4930}, {3, 3417}, {5, 8}, {10, 2099}, {35, 3899}, {40, 5440}, {55, 3878}, {56, 758}, {57, 4018}, {63, 1385}, {65, 474}, {78, 517}, {145, 1058}, {214, 5204}, {329, 944}, {355, 908}, {381, 5086}, {382, 5057}, {442, 3485}, {519, 1837}, {527, 4311}, {936, 3340}, {946, 3419}, {952, 3436}, {957, 1257}, {999, 3868}, {1319, 3962}, {1320, 3621}, {1388, 4067}, {1457, 3682}, {1759, 3207}, {2093, 5438}, {2271, 3727}, {2800, 2932}, {2975, 3927}, {3057, 3811}, {3219, 3897}, {3244, 4679}, {3295, 3877}, {3303, 3884}, {3304, 3874}, {3445, 4694}, {3576, 3916}, {3579, 4855}, {3612, 4640}, {3624, 5425}, {3626, 3711}, {3632, 5087}, {3681, 4861}, {3754, 4413}, {3820, 5554}, {3872, 3984}, {3885, 3935}, {3901, 5563}, {4084, 5221}, {4255, 4424}


X(5731) =  INTERSECTION OF LINES X(1)X(7) AND X(3)X(8)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = -5*a^4 + 2*a^3*b + 4*a^2*b^2 - 2*a*b^3 + b^4 + 2*a^3*c - 4*a^2*b*c + 2*a*b^2*c + 4*a^2*c^2 + 2*a*b*c^2 - 2*b^2*c^2 - 2*a*c^3 + c^4

X(5731) = {X(1),X(20)}-harmonic conjugate of X(962). Let A′ be the antipode of the A-extouch point in the A-excircle, and define B′ and C′ cyclically, and let A″ be the antipode of the A-intouch point in the incircle, and define B″ and C″ cyclically. Then X(5731) is the centroid of {A′,B′,C′,A″,B″,C″}. (Randy Hutson, July 7, 2014)

The triangle A′B′C′ is here named the Hutson-extouch triangle, and A″B″C″, the Hutson-intouch triangle - not to be confused with the outer and inner Hutson triangles defined at X(363). Hutson established (July 10, 2014) that A′B′C′ and A″B″C″ are orthologic with orthology center X(3555); also that A″B″C″ and A′B′C′ are orthologic with orthology center X(5920). X(5731) is the midpoint of the centroids of A′B′C′ and A″B″C″; see X(5918) and X(5919).

Peter Moses (July 15, 2014) gives barycentrics for Hutson-extouch triangle,
-4a2 : (a + b + c)(a + b - c) : (a + b + c)(a - b + c)
(a + b + c)(b - c + a) : -4b2 : (a + b + c)(b + c - a)
(a + b + c)(c + a - b) : (a + b + c)(c - a + b) : -4c2

and for the Hutson-intouch triangle,
4a2 : (-a + b + c)(a - b + c) : (-a + b + c)(a + b - c)
(-b + c + a)(b + c - a) : 4b2 : (-b + c + a)(b - c + a)
(-c + a + b)(c - a + b) : (-c + a + b)(c + a - b) : 4c2

X(5731) lies on these lines: {1, 7}, {2, 515}, {3, 8}, {4, 1385}, {5, 5550}, {10, 3523}, {21, 3427}, {30, 5603}, {36, 5435}, {40, 145}, {55, 3476}, {56, 411}, {84, 5250}, {153, 214}, {165, 519}, {329, 4511}, {355, 631}, {376, 517}, {377, 3897}, {388, 2646}, {392, 971}, {452, 1490}, {497, 1319}, {548, 1483}, {550, 1482}, {551, 1699}, {840, 2737}, {946, 3146}, {950, 1420}, {963, 1043}, {993, 5273}, {999, 3488}, {1012, 1621}, {1071, 3869}, {1125, 3091}, {1210, 5265}, {1478, 5226}, {1602, 1610}, {1788, 5204}, {2099, 3474}, {3085, 3612}, {3149, 5253}, {3189, 5584}, {3421, 5440}, {3475, 5434}, {3528, 3579}, {3545, 3653}, {3586, 5274}, {3624, 5056}, {3635, 5493}, {3817, 3839}, {4188, 5554}, {4189, 5450}, {4420, 5534}, {5218, 5252}

X(5731) = anticomplement of X(5587)
X(5731) = X(15030)-of-excentral-triangle
X(5731) = endo-homothetic center of Ehrmann side-triangle and 2nd anti-Conway triangle; the homothetic center is X(568)


X(5732) =  INTERSECTION OF LINES X(1)X(7) AND X(3)X(9)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a*(a^5 - 3*a^4*b + 2*a^3*b^2 + 2*a^2*b^3 - 3*a*b^4 + b^5 - 3*a^4*c - 4*a^3*b*c + 2*a^2*b^2*c + 4*a*b^3*c + b^4*c + 2*a^3*c^2 + 2*a^2*b*c^2 - 2*a*b^2*c^2 - 2*b^3*c^2 + 2*a^2*c^3 + 4*a*b*c^3 - 2*b^2*c^3 - 3*a*c^4 + b*c^4 + c^5)

X(5732) = (X(6) of hexyl triangle) = (X(69) of 2nd circumperp triangle) = (X(1352) of excentral triangle) = (isogonal conjugate of X(3)-vertex conjugate of X(57) = isotomic conjugate with respect to X(1)-circumcevian triangle) of X(1) (Randy Hutson, July 7, 2014)

X(5732) lies on these lines: {1, 7}, {2, 1750}, {3, 9}, {4, 142}, {21, 3062}, {40, 518}, {63, 100}, {78, 144}, {223, 1040}, {376, 527}, {411, 1445}, {464, 2947}, {515, 2550}, {517, 3243}, {912, 3587}, {950, 1467}, {952, 5528}, {954, 3601}, {1001, 1012}, {1699, 5249}, {1709, 4512}, {1818, 2324}, {1998, 3218}, {2808, 3781}, {2900, 3928}, {3059, 5584}, {3333, 5572}, {3452, 5658}, {3579, 5534}, {3826, 5587}, {3868, 3895}

X(5732) = midpoint of X(i) and X(j) for these (i,j): (1,2951), (7,20)
X(5732) = reflection of X(i) in X(j) for these (i,j): (4,142), (9,3)
X(5732) = complement of X(36991)
X(5732) = midpoint of Mandart hyperbola intercepts of Soddy line


X(5733) =  INTERSECTION OF LINES X(1)X(7) AND X(5)X(6)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = -3*a^6 + 5*a^4*b^2 + 2*a^3*b^3 - 3*a^2*b^4 - 2*a*b^5 + b^6 + 2*a^3*b^2*c + 2*a^2*b^3*c - 2*a*b^4*c - 2*b^5*c + 5*a^4*c^2 + 2*a^3*b*c^2 + 2*a^2*b^2*c^2 + 4*a*b^3*c^2 - b^4*c^2 + 2*a^3*c^3 + 2*a^2*b*c^3 + 4*a*b^2*c^3 + 4*b^3*c^3 - 3*a^2*c^4 - 2*a*b*c^4 - b^2*c^4 - 2*a*c^5 - 2*b*c^5 + c^6

X(5733) lies on these lines: {1, 7}, {4, 4658}, {5, 6}, {225, 1419}, {631, 4648}, {3193, 4197}


X(5734) =  INTERSECTION OF LINES X(1)X(7) AND X(5)X(8)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 3*a^4 - 6*a^3*b - 4*a^2*b^2 + 6*a*b^3 + b^4 - 6*a^3*c + 12*a^2*b*c - 6*a*b^2*c - 4*a^2*c^2 - 6*a*b*c^2 - 2*b^2*c^2 + 6*a*c^3 + c^4

X(5734) lies on these lines: {1, 7}, {4, 1392}, {5, 8}, {40, 3622}, {145, 946}, {165, 3636}, {329, 4861}, {355, 3855}, {382, 944}, {388, 5048}, {411, 3303}, {515, 3623}, {517, 631}, {519, 3091}, {551, 3523}, {938, 2099}, {952, 3843}, {1385, 3528}, {1388, 3474}, {1483, 3853}, {1699, 3244}, {2093, 5265}, {2098, 3485}, {3262, 4673}, {3525, 3654}, {3526, 5550}, {3529, 3655}, {3621, 5587}, {3632, 3817}, {3679, 5056}, {3878, 5273}, {4197, 5330}


X(5735) =  INTERSECTION OF LINES X(1)X(7) AND X(5)X(9)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 3*a^6 - 3*a^5*b - 4*a^4*b^2 + 2*a^3*b^3 + 3*a^2*b^4 + a*b^5 - 2*b^6 - 3*a^5*c + 2*a^3*b^2*c - 4*a^2*b^3*c + a*b^4*c + 4*b^5*c - 4*a^4*c^2 + 2*a^3*b*c^2 + 2*a^2*b^2*c^2 - 2*a*b^3*c^2 + 2*b^4*c^2 + 2*a^3*c^3 - 4*a^2*b*c^3 - 2*a*b^2*c^3 - 8*b^3*c^3 + 3*a^2*c^4 + a*b*c^4 + 2*b^2*c^4 + a*c^5 + 4*b*c^5 - 2*c^6

X(5735) lies on these lines: {1, 7}, {4, 527}, {5, 9}, {63, 1699}, {84, 3254}, {142, 631}, {144, 3832}, {165, 5249}, {382, 971}, {1004, 5537}, {1750, 1998}, {2801, 3868}, {3436, 5223}, {3817, 5273}, {5220, 5587}


X(5736) =  INTERSECTION OF LINES X(2)X(6) AND X(3)X(7)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a^5 - 2*a^3*b^2 + a*b^4 - 2*a^3*b*c - 3*a^2*b^2*c + b^4*c - 2*a^3*c^2 - 3*a^2*b*c^2 - 2*a*b^2*c^2 - b^3*c^2 - b^2*c^3 + a*c^4 + b*c^4

X(5736) lies on these lines: {1, 1441}, {2, 6}, {3, 7}, {77, 1446}, {226, 2268}, {255, 307}, {273, 1442}, {284, 379}, {1253, 1754}, {1958, 5249}, {2476, 2893}, {3485, 4329}


X(5737) =  INTERSECTION OF LINES X(2)X(6) AND X(3)X(10)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a^3 - a^2*b - 2*a*b^2 - a^2*c - 2*a*b*c - 2*b^2*c - 2*a*c^2 - 2*b*c^2

Let A4B4C4 be the 4th Conway triangle. Let A′ be the barycentric product B4*C4, and define B′ and C′ cyclically. The lines AA′, BB′, CC′ concur in X(5737). (Randy Hutson, December 10, 2016)

Let A′B′C′ be the tangential triangle, wrt the excentral triangle, of the excentral-hexyl ellipse. A′B′C′ is homothetic to the polar triangle of the Spieker circle at X(5737). (Randy Hutson, August 19, 2019)

X(5737) lies on these lines: {2, 6}, {3, 10}, {9, 1764}, {42, 4042}, {45, 312}, {57, 3739}, {58, 2049}, {63, 4363}, {226, 4643}, {306, 4445}, {345, 594}, {405, 4267}, {573, 2050}, {968, 3706}, {980, 1107}, {1001, 3741}, {1010, 4252}, {1215, 5220}, {1698, 5247}, {2345, 5273}, {3052, 5263}, {3242, 3757}, {3666, 4361}, {3771, 3775}, {3772, 4357}, {4205, 5292}, {4426, 5337}

X(5737) = complement of X(5712)


X(5738) =  INTERSECTION OF LINES X(2)X(6) AND X(4)X(7)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a^5 - a^4*b - 2*a^3*b^2 + 2*a^2*b^3 + a*b^4 - b^5 - a^4*c - 4*a^3*b*c - 4*a^2*b^2*c + b^4*c - 2*a^3*c^2 - 4*a^2*b*c^2 - 2*a*b^2*c^2 + 2*a^2*c^3 + a*c^4 + b*c^4 - c^5

X(5738) lies on these lines: {1, 307}, {2, 6}, {4, 7}, {65, 4329}, {77, 581}, {78, 3879}, {322, 5554}, {377, 2893}, {411, 1014}, {573, 1445}, {1060, 1442}, {1210, 3664}


X(5739) =  INTERSECTION OF LINES X(2)X(6) AND X(4)X(8)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = -a^3 - a^2*b + a*b^2 + b^3 - a^2*c + 2*a*b*c + b^2*c + a*c^2 + b*c^2 + c^3

Let A′B′C′ be the extangents triangle, and let AB be the touch point of the A-excircle and the line A′B′, and define BC and CA cyclically. Let AC be the touch point of the A-excircle and the line A′C′, and define BA and CB cyclically. Let A″ = BCBA∩CACB, and define B″ and C″ cyclically. The A″B″C″ is homothetic to ABC and to the outer and inner Grebe triangles at X(6), to the medial triangle at X(1211), and to the anticomplementary triangle at X(5739). (Randy Hutson, July 7, 2014)

X(5739) lies on these lines: {1, 4101}, {2, 6}, {4, 8}, {7, 4359}, {9, 306}, {57, 4001}, {63, 573}, {75, 4886}, {78, 581}, {209, 2550}, {210, 3416}, {223, 307}, {226, 3686}, {312, 319}, {345, 3219}, {346, 3969}, {377, 1330}, {387, 5051}, {388, 959}, {516, 4061}, {518, 3966}, {519, 4656}, {612, 4104}, {740, 4703}, {968, 4028}, {1376, 4023}, {1479, 4044}, {1714, 3454}, {1743, 5294}, {1836, 3696}, {2478, 3948}, {2886, 4042}, {3305, 3912}, {3666, 4277}, {3703, 5220}, {3707, 4035}, {3715, 3932}, {3782, 4361}, {3870, 3883}, {3879, 5287}, {3929, 3977}, {3952, 3974}, {3965, 3998}, {4034, 4054}, {4270, 4357}, {4384, 5249}, {4423, 4966}, {4660, 4685}, {4666, 4684}

X(5739) = anticomplement of X(940)
X(5739) = isotomic conjugate of isogonal conjugate of X(36744)


X(5740) =  INTERSECTION OF LINES X(2)X(6) AND X(5)X(7)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a^4*b - 2*a^2*b^3 + b^5 + a^4*c + 2*a^3*b*c + a^2*b^2*c + a^2*b*c^2 - b^3*c^2 - 2*a^2*c^3 - b^2*c^3 + c^5

X(5740) lies on these lines: {2, 6}, {5, 7}, {269, 5400}, {273, 2973}, {307, 1210}, {404, 2893}, {579, 857}, {1441, 1737}, {1442, 5396}, {1788, 4329}


X(5741) =  INTERSECTION OF LINES X(2)X(6) AND X(5)X(8)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = -a^2*b + b^3 - a^2*c + 2*a*b*c + c^3

X(5741) lies on these lines: {2, 6}, {5, 8}, {42, 3847}, {43, 4972}, {78, 5016}, {100, 4192}, {149, 3996}, {200, 5014}, {210, 3006}, {226, 4359}, {306, 3452}, {312, 3969}, {321, 908}, {329, 4488}, {386, 5051}, {404, 1330}, {748, 3771}, {899, 2887}, {970, 3869}, {1043, 5046}, {1210, 4101}, {2886, 4023}, {3216, 3454}, {3681, 3705}, {3703, 3952}, {3706, 5087}, {3817, 4061}, {3909, 3917}, {3911, 4001}, {3935, 4514}, {3944, 4442}, {4035, 5316}, {4054, 4980}, {4104, 4981}, {4414, 4703}, {4420, 5015}, {4511, 5396}, {5219, 5271}

X(5741) = complement of X(37639)
X(5741) = anticomplement of X(37634)


X(5742) =  INTERSECTION OF LINES X(2)X(6) AND X(5)X(9)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 2*a^4*b - a^3*b^2 - 3*a^2*b^3 + a*b^4 + b^5 + 2*a^4*c - 5*a^2*b^2*c - 2*a*b^3*c + b^4*c - a^3*c^2 - 5*a^2*b*c^2 - 6*a*b^2*c^2 - 2*b^3*c^2 - 3*a^2*c^3 - 2*a*b*c^3 - 2*b^2*c^3 + a*c^4 + b*c^4 + c^5

X(5742) lies on these lines: {2, 6}, {5, 9}, {48, 4999}, {71, 2886}, {307, 3739}, {442, 579}, {936, 5396}, {970, 2262}, {1210, 5257}, {1698, 1723}, {1839, 4640}, {1865, 5125}, {1901, 2476}


X(5743) =  INTERSECTION OF LINES X(2)X(6) AND X(5)X(10)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b2 + c2 + bc) + b3 + c3 + b2c + bc2

X(5743) lies on these lines: {2, 6}, {5, 10}, {37, 3687}, {42, 4023}, {43, 4026}, {45, 345}, {57, 4643}, {75, 4415}, {226, 3739}, {312, 594}, {321, 3264}, {329, 4363}, {386, 4205}, {518, 4104}, {536, 4656}, {612, 3966}, {756, 3703}, {984, 4884}, {997, 5396}, {1376, 4192}, {1999, 4886}, {2161, 2339}, {2887, 3826}, {2999, 4657}, {3035, 5150}, {3416, 5268}, {3666, 4364}, {3741, 3816}, {3752, 4357}, {3772, 4384}, {3775, 3840}, {3782, 4359}, {3838, 3846}, {3980, 4703}, {4199, 5132}, {4239, 5347}

X(5743) = complement of X(940)


X(5744) =  INTERSECTION OF LINES X(2)X(7) AND X(3)X(8)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = -3*a^3 + a^2*b + 3*a*b^2 - b^3 + a^2*c - 2*a*b*c + b^2*c + 3*a*c^2 + b*c^2 - c^3

X(5744) = {X(2),X(63)}-harmonic conjugate of X(329)

X(5744) lies on these lines: {2, 7}, {3, 8}, {4, 3916}, {10, 4293}, {20, 4652}, {21, 938}, {72, 631}, {78, 3523}, {88, 277}, {92, 4359}, {140, 3927}, {145, 3601}, {165, 4847}, {189, 333}, {191, 499}, {346, 3977}, {348, 658}, {376, 3419}, {391, 610}, {392, 942}, {443, 3436}, {452, 1210}, {497, 4640}, {516, 5231}, {518, 5218}, {549, 3940}, {940, 2256}, {958, 1466}, {1000, 2320}, {1108, 3666}, {1155, 2550}, {1467, 5265}, {1473, 4220}, {2000, 3100}, {2095, 5603}, {2886, 3474}, {3011, 4310}, {3035, 5220}, {3161, 4358}, {3189, 5217}, {3427, 3428}, {3485, 4999}, {3524, 5440}, {3579, 5082}, {3752, 5069}, {3870, 5281}, {4054, 4454}, {4189, 4313}, {4292, 5177}, {4305, 5267}, {4384, 5088}, {4850, 5222}, {5122, 5176}

X(5744) = anticomplement of X(5219)


X(5745) =  INTERSECTION OF LINES X(2)X(7) AND X(3)X(10)

Barycentrics   (a - b - c)*(2*a^2 + a*b - b^2 + a*c + 2*b*c - c^2) : :
X(5745) = 3X(2) + X(63)

X(5745) = {X(2),X(63)}-harmonic conjugate of X(226)

X(5745) lies on these lines: {2, 7}, {3, 10}, {8, 3158}, {11, 3683}, {21, 950}, {38, 3011}, {39, 1212}, {55, 4847}, {69, 4035}, {71, 1764}, {81, 2323}, {114, 124}, {140, 912}, {165, 2550}, {200, 5218}, {210, 5432}, {219, 940}, {261, 284}, {281, 5307}, {306, 1150}, {312, 2325}, {321, 3977}, {345, 2321}, {377, 4652}, {405, 1210}, {442, 3916}, {443, 1478}, {497, 4512}, {516, 2886}, {535, 3828}, {551, 4930}, {610, 966}, {631, 936}, {758, 942}, {938, 5436}, {1146, 2482}, {1155, 3925}, {1329, 3634}, {1737, 5251}, {1817, 5235}, {1861, 4219}, {1936, 2328}, {2329, 3912}, {2801, 3035}, {2999, 5105}, {3036, 4745}, {3220, 4220}, {3419, 4304}, {3523, 5438}, {3663, 3772}, {3666, 3946}, {3689, 4995}, {3705, 3883}, {3706, 3712}, {3741, 4154}, {3914, 4414}, {3936, 4001}, {4042, 4061}, {4138, 4655}, {4224, 5285}, {4359, 4858}, {4416, 4417}, {5247, 5530}, {5537, 5659}

X(5745) = isotomic conjugate of isogonal conjugate of X(21748)
X(5745) = complement of X(226)
X(5745) = complementary conjugate of X(17052)
X(5745) = polar conjugate of isogonal conjugate of X(22361)
X(5745) = centroid of {A,B,C,X(63)}


X(5746) =  INTERSECTION OF LINES X(2)X(7) AND X(4)X(6)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a^5 - 3*a^4*b - 2*a^3*b^2 + 2*a^2*b^3 + a*b^4 + b^5 - 3*a^4*c - 4*a^3*b*c - 2*a^2*b^2*c + b^4*c - 2*a^3*c^2 - 2*a^2*b*c^2 - 2*a*b^2*c^2 - 2*b^3*c^2 + 2*a^2*c^3 - 2*b^2*c^3 + a*c^4 + b*c^4 + c^5

X(5746) lies on these lines: {2, 7}, {4, 6}, {19, 4295}, {20, 284}, {37, 3487}, {48, 4293}, {65, 281}, {71, 3085}, {72, 2345}, {193, 2893}, {219, 388}, {377, 2287}, {380, 516}, {386, 990}, {391, 5177}, {405, 5120}, {442, 966}, {443, 965}, {452, 5053}, {573, 1715}, {610, 4292}, {946, 2257}, {950, 1449}, {1056, 2256}, {1100, 3488}, {1108, 5603}, {1713, 4253}, {1714, 1743}, {1836, 2264}, {2260, 3086}, {2303, 4340}, {4264, 5304}


X(5747) =  INTERSECTION OF LINES X(2)X(7) AND X(5)X(6)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a^5 - a^4*b - 2*a^3*b^2 + a*b^4 + b^5 - a^4*c - 2*a^3*b*c - 2*a^2*b^2*c + b^4*c - 2*a^3*c^2 - 2*a^2*b*c^2 - 2*a*b^2*c^2 - 2*b^3*c^2 - 2*b^2*c^3 + a*c^4 + b*c^4 + c^5

X(5747) lies on these lines: {1, 1826}, {2, 7}, {3, 1901}, {4, 284}, {5, 6}, {12, 219}, {48, 1478}, {71, 498}, {281, 3485}, {377, 2327}, {380, 1699}, {386, 3553}, {387, 5587}, {442, 965}, {495, 2256}, {499, 2260}, {594, 3940}, {2287, 2476}, {2303, 5142}, {2549, 5110}, {5053, 5084}, {5105, 5286}


X(5748) =  INTERSECTION OF LINES X(2)X(7) AND X(5)X(8)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = -a^3 + 3*a^2*b + a*b^2 - 3*b^3 + 3*a^2*c - 6*a*b*c + 3*b^2*c + a*c^2 + 3*b*c^2 - 3*c^3

X(5748) lies on these lines: {2, 7}, {4, 5440}, {5, 8}, {72, 3090}, {78, 3091}, {92, 4358}, {189, 1997}, {200, 3817}, {312, 3262}, {497, 5087}, {936, 5177}, {938, 4193}, {962, 1519}, {1056, 3436}, {1329, 3485}, {2975, 5550}, {3006, 5423}, {3035, 3474}, {3146, 4855}, {3190, 5400}, {3241, 5176}, {3419, 3545}, {3475, 3816}, {3487, 4187}, {3525, 3916}, {3628, 3927}, {3753, 3869}, {3870, 5274}, {4313, 5046}, {4323, 5554}

X(5748) = anticomplement of X(31231)

X(5749) =  INTERSECTION OF LINES X(2)X(7) AND X(6)X(8)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 3a2 + (b + c)2

X(5749) lies on these lines: {1, 346}, {2, 7}, {6, 8}, {10, 391}, {19, 4200}, {37, 2275}, {44, 966}, {45, 5550}, {69, 3758}, {75, 3618}, {86, 344}, {100, 4254}, {141, 4644}, {145, 1449}, {193, 3661}, {198, 404}, {218, 1010}, {281, 608}, {318, 1249}, {319, 1992}, {320, 3619}, {335, 4473}, {377, 2182}, {597, 4361}, {604, 2329}, {612, 5423}, {644, 2256}, {941, 2276}, {962, 1766}, {1100, 3241}, {1125, 3731}, {1698, 3973}, {1901, 5051}, {2092, 2229}, {2171, 3061}, {2264, 2550}, {2268, 4195}, {2269, 3501}, {2322, 3194}, {2325, 3247}, {2975, 5120}, {3240, 4270}, {3553, 4511}, {3554, 4861}, {3589, 4000}, {3617, 3686}, {3621, 4007}, {3623, 4873}, {3624, 3986}, {3629, 4445}, {3632, 4058}, {3635, 4072}, {3636, 4098}, {3663, 4454}, {3664, 4747}, {3672, 3729}, {3739, 4470}, {3745, 3974}, {3875, 4461}, {3912, 3945}, {3946, 4452}, {4034, 4678}, {4371, 4665}, {4393, 4460}, {4416, 5232}, {4419, 4488}, {4648, 4670}, {4698, 4798}, {5042, 5291}

X(5749) = anticomplement of X(17306)


X(5750) =  INTERSECTION OF LINES X(2)X(7) AND X(6)X(10)

Barycentrics    f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 2*a^2 + a*b + b^2 + a*c + 2*b*c + c^2

X(5750) = {X(6),X(10)}-harmonic conjugate of X(3686)

X(5750) lies on these lines: {1, 2321}, {2, 7}, {6, 10}, {8, 1449}, {19, 475}, {34, 281}, {37, 39}, {43, 4270}, {44, 1213}, {45, 3986}, {69, 4667}, {75, 3946}, {86, 3912}, {141, 3664}, {145, 4007}, {171, 4264}, {198, 474}, {213, 992}, {218, 965}, {239, 4967}, {284, 1010}, {346, 3247}, {380, 2550}, {442, 2182}, {443, 610}, {478, 2122}, {515, 572}, {516, 4026}, {519, 594}, {536, 4021}, {551, 3950}, {742, 3008}, {946, 1766}, {950, 964}, {958, 5120}, {966, 1698}, {997, 3553}, {1172, 1861}, {1203, 1224}, {1220, 5053}, {1376, 4254}, {1450, 2324}, {1574, 4263}, {1575, 2092}, {1826, 2267}, {1901, 4205}, {2262, 3753}, {2264, 3925}, {2295, 2300}, {2298, 4071}, {2303, 5280}, {2663, 3783}, {3161, 5550}, {3244, 4058}, {3617, 4034}, {3618, 4384}, {3622, 4873}, {3624, 3731}, {3626, 4545}, {3629, 4690}, {3636, 3723}, {3661, 3879}, {3663, 4363}, {3672, 4659}, {3713, 4847}, {3758, 4416}, {3763, 4675}, {4000, 4470}, {4360, 4431}, {4395, 4739}, {4422, 4698}, {4426, 5019}, {4478, 4725}, {4665, 4852}, {4691, 4969}, {5124, 5267}

X(5750) = complement of X(4357)


X(5751) =  INTERSECTION OF LINES X(3)X(6) AND X(4)X(7)

Barycentrics    a^2( SA + S (2 (r + 2 R) s / ((r + 2 R) (r + 4 R) - s^2)) ) : :
Barycentrics    a^2*(a^5*b^2 - a^4*b^3 - 2*a^3*b^4 + 2*a^2*b^5 + a*b^6 - b^7 + a^5*b*c + a^4*b^2*c - 2*a^3*b^3*c - 2*a^2*b^4*c + a*b^5*c + b^6*c + a^5*c^2 + a^4*b*c^2 - 2*a^2*b^3*c^2 - a*b^4*c^2 + b^5*c^2 - a^4*c^3 - 2*a^3*b*c^3 - 2*a^2*b^2*c^3 - 2*a*b^3*c^3 - b^4*c^3 - 2*a^3*c^4 - 2*a^2*b*c^4 - a*b^2*c^4 - b^3*c^4 + 2*a^2*c^5 + a*b*c^5 + b^2*c^5 + a*c^6 + b*c^6 - c^7) : :

X(5751) lies on these lines: {1, 916}, {3, 6}, {4, 7}, {55, 1779}, {81, 4219}, {1817, 3060}


X(5752) =  INTERSECTION OF LINES X(3)X(6) AND X(4)X(8)

Barycentrics    a^2 (SA + S (S / (r^2 + 2 r R - s^2)) ) : :
Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a^2*(a^3*b^2 + a^2*b^3 - a*b^4 - b^5 + a^3*b*c + a^2*b^2*c - a*b^3*c - b^4*c + a^3*c^2 + a^2*b*c^2 + a^2*c^3 - a*b*c^3 - a*c^4 - b*c^4 - c^5)

X(5752) = circumcenter of the triangle A″B″C″ be as defined at X(5739); also X(5752) = {X(371)X(372)}-harmonic conjugate of X(1333). Let Γ be the circle of the points X(371), X(372), PU(1), PU(39); then X(5752) is the inverse-in-Γ of X(1333). (Randy Hutson, July 7, 2014)

X(5752) lies on these lines: {3, 6}, {4, 8}, {5, 1211}, {21, 3060}, {24, 2203}, {40, 209}, {51, 405}, {184, 2915}, {404, 2979}, {474, 3917}, {631, 5482}, {674, 3811}, {916, 1490}, {966, 3781}, {978, 3792}, {1006, 3567}, {1437, 1993}, {2183, 3682}, {3056, 5266}, {3149, 5562}, {3240, 3579}, {3560, 5446}, {5047, 5640}

X(5752) = anticomplement of X(37536)
X(5752) = anticomplement of anticomplement of X(34466)


X(5753) =  INTERSECTION OF LINES X(3)X(6) AND X(5)X(7)

Barycentrics    a^2 (SA + S (4 (r + 2 R) s / ((r + 2 R) (r + 4 R) - 3 s^2)) ) : :
Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a^2*(a^6*b + a^5*b^2 - 4*a^4*b^3 - 2*a^3*b^4 + 5*a^2*b^5 + a*b^6 - 2*b^7 + a^6*c + 2*a^5*b*c - a^4*b^2*c - 4*a^3*b^3*c - a^2*b^4*c + 2*a*b^5*c + b^6*c + a^5*c^2 - a^4*b*c^2 - 2*a^2*b^3*c^2 - a*b^4*c^2 + 3*b^5*c^2 - 4*a^4*c^3 - 4*a^3*b*c^3 - 2*a^2*b^2*c^3 - 4*a*b^3*c^3 - 2*b^4*c^3 - 2*a^3*c^4 - a^2*b*c^4 - a*b^2*c^4 - 2*b^3*c^4 + 5*a^2*c^5 + 2*a*b*c^5 + 3*b^2*c^5 + a*c^6 + b*c^6 - 2*c^7)

X(5753) lies on these lines: {3, 6}, {5, 7}, {57, 5400}, {916, 2260}, {942, 1736}


X(5754) =  INTERSECTION OF LINES X(3)X(6) AND X(5)X(8)

Barycentrics    a^2 (SA + S (2 S / (3 r^2 + 2 r R - s^2) ) : :
Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a^2*(a^4*b - a^3*b^2 - 3*a^2*b^3 + a*b^4 + 2*b^5 + a^4*c - 2*a^3*b*c - 2*a^2*b^2*c + 2*a*b^3*c + b^4*c - a^3*c^2 - 2*a^2*b*c^2 - 2*a*b^2*c^2 - b^3*c^2 - 3*a^2*c^3 + 2*a*b*c^3 - b^2*c^3 + a*c^4 + b*c^4 + 2*c^5)

X(5754) lies on these lines: {3, 6}, {5, 8}, {355, 2051}, {517, 3293}, {3240, 4192}


X(5755) =  INTERSECTION OF LINES X(3)X(6) AND X(5)X(9)

Barycentrics    a^2 (SA - S (r (r + 2 R) / ((r + R) s)) ) : :
Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a^2*(a^5*b - a^4*b^2 - 2*a^3*b^3 + 2*a^2*b^4 + a*b^5 - b^6 + a^5*c - 2*a^4*b*c - a^3*b^2*c + a^2*b^3*c + b^5*c - a^4*c^2 - a^3*b*c^2 + a*b^3*c^2 + b^4*c^2 - 2*a^3*c^3 + a^2*b*c^3 + a*b^2*c^3 - 2*b^3*c^3 + 2*a^2*c^4 + b^2*c^4 + a*c^5 + b*c^5 - c^6)

X(5755) lies on these lines: {3, 6}, {5, 9}, {30, 1765}, {40, 1723}, {57, 4888}, {71, 517}, {198, 3211}, {672, 4192}, {942, 1400}, {1385, 2260}, {1766, 2161}, {1781, 5535}, {2197, 5399}, {2361, 5285}, {3973, 5400}


X(5756) =  INTERSECTION OF LINES X(3)X(6) AND X(7)X(10)

Barycentrics    a^2 (SA + S (3 r + 4 R) s / (r^2 + 4 r R - 2 s^2) ) : :
Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a^2*(a^3*b + 3*a^2*b^2 - a*b^3 - 3*b^4 + a^3*c + 5*a^2*b*c + 3*a*b^2*c - b^3*c + 3*a^2*c^2 + 3*a*b*c^2 - a*c^3 - b*c^3 - 3*c^4)

X(5756) lies on these lines: {3, 6}, {7, 10}


X(5757) =  INTERSECTION OF LINES X(3)X(7) AND X(4)X(6)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a^9 - 2*a^8*b - 2*a^7*b^2 + 4*a^6*b^3 + 2*a^5*b^4 - 2*a^4*b^5 - 2*a^3*b^6 + a*b^8 - 2*a^8*c - 2*a^7*b*c + 3*a^6*b^2*c + 4*a^5*b^3*c + a^4*b^4*c - 2*a^3*b^5*c - 3*a^2*b^6*c + b^8*c - 2*a^7*c^2 + 3*a^6*b*c^2 + 4*a^5*b^2*c^2 + a^4*b^3*c^2 + 2*a^3*b^4*c^2 - 3*a^2*b^5*c^2 - 4*a*b^6*c^2 - b^7*c^2 + 4*a^6*c^3 + 4*a^5*b*c^3 + a^4*b^2*c^3 + 4*a^3*b^3*c^3 + 6*a^2*b^4*c^3 - 3*b^6*c^3 + 2*a^5*c^4 + a^4*b*c^4 + 2*a^3*b^2*c^4 + 6*a^2*b^3*c^4 + 6*a*b^4*c^4 + 3*b^5*c^4 - 2*a^4*c^5 - 2*a^3*b*c^5 - 3*a^2*b^2*c^5 + 3*b^4*c^5 - 2*a^3*c^6 - 3*a^2*b*c^6 - 4*a*b^2*c^6 - 3*b^3*c^6 - b^2*c^7 + a*c^8 + b*c^8

X(5757) lies on these lines: {3, 7}, {4, 6}, {212, 226}


X(5758) =  INTERSECTION OF LINES X(3)X(7) AND X(4)X(8)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = -a^7 - a^6*b + 3*a^5*b^2 + 3*a^4*b^3 - 3*a^3*b^4 - 3*a^2*b^5 + a*b^6 + b^7 - a^6*c + 6*a^5*b*c + a^4*b^2*c - 4*a^3*b^3*c + a^2*b^4*c - 2*a*b^5*c - b^6*c + 3*a^5*c^2 + a^4*b*c^2 - 2*a^3*b^2*c^2 + 2*a^2*b^3*c^2 - a*b^4*c^2 - 3*b^5*c^2 + 3*a^4*c^3 - 4*a^3*b*c^3 + 2*a^2*b^2*c^3 + 4*a*b^3*c^3 + 3*b^4*c^3 - 3*a^3*c^4 + a^2*b*c^4 - a*b^2*c^4 + 3*b^3*c^4 - 3*a^2*c^5 - 2*a*b*c^5 - 3*b^2*c^5 + a*c^6 - b*c^6 + c^7

X(5758) lies on these lines: {3, 7}, {4, 8}, {9, 946}, {40, 226}, {84, 527}, {405, 5603}, {442, 5657}, {499, 5536}, {516, 1490}, {1006, 3616}, {1260, 3149}, {1482, 3488}, {1708, 3086}, {3428, 3485}, {3649, 5584}, {4299, 5538}


X(5759) =  INTERSECTION OF LINES X(3)X(7) AND X(4)X(9)

Barycentrics    3*a^6 - 4*a^5*b - 3*a^4*b^2 + 4*a^3*b^3 + a^2*b^4 - b^6 - 4*a^5*c - 2*a^4*b*c + 4*a^3*b^2*c + 2*b^5*c - 3*a^4*c^2 + 4*a^3*b*c^2 - 2*a^2*b^2*c^2 + b^4*c^2 + 4*a^3*c^3 - 4*b^3*c^3 + a^2*c^4 + b^2*c^4 + 2*b*c^5 - c^6 : :
X(5759) = X(4) - 2*X(9)

X(5759) lies on these lines: {3, 7}, {4, 9}, {20, 72}, {37, 3332}, {63, 3358}, {100, 329}, {142, 631}, {165, 226}, {212, 278}, {376, 527}, {390, 517}, {405, 962}, {497, 1708}, {515, 5223}, {518, 944}, {990, 4419}, {991, 4644}, {1001, 1006}, {1253, 4331}, {1490, 2951}, {2318, 2947}, {2724, 2742}, {3576, 5542}, {4295, 5584}, {4301, 5436}

X(5759) = reflection of X(7) in X(3)
X(5759) = isogonal conjugate of the X(3)-vertex conjugate of X(55)
X(5759) = {X(4),X(9)}-harmonic conjugate of X(5817)


X(5760) =  INTERSECTION OF LINES X(3)X(7) AND X(5)X(6)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = -a^9 + a^8*b + 3*a^7*b^2 - 2*a^6*b^3 - 4*a^5*b^4 + a^4*b^5 + 3*a^3*b^6 - a*b^8 + a^8*c + 2*a^7*b*c - 4*a^5*b^3*c - 4*a^4*b^4*c + 2*a^3*b^5*c + 4*a^2*b^6*c - b^8*c + 3*a^7*c^2 - 4*a^5*b^2*c^2 - 3*a^4*b^3*c^2 - 3*a^3*b^4*c^2 + 2*a^2*b^5*c^2 + 4*a*b^6*c^2 + b^7*c^2 - 2*a^6*c^3 - 4*a^5*b*c^3 - 3*a^4*b^2*c^3 - 4*a^3*b^3*c^3 - 6*a^2*b^4*c^3 + 3*b^6*c^3 - 4*a^5*c^4 - 4*a^4*b*c^4 - 3*a^3*b^2*c^4 - 6*a^2*b^3*c^4 - 6*a*b^4*c^4 - 3*b^5*c^4 + a^4*c^5 + 2*a^3*b*c^5 + 2*a^2*b^2*c^5 - 3*b^4*c^5 + 3*a^3*c^6 + 4*a^2*b*c^6 + 4*a*b^2*c^6 + 3*b^3*c^6 + b^2*c^7 - a*c^8 - b*c^8

X(5760) lies on these lines: {3, 7}, {5, 6}


X(5761) =  INTERSECTION OF LINES X(3)X(7) AND X(5)X(8)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a^7 - 3*a^6*b - a^5*b^2 + 7*a^4*b^3 - a^3*b^4 - 5*a^2*b^5 + a*b^6 + b^7 - 3*a^6*c + 6*a^5*b*c + a^4*b^2*c - 4*a^3*b^3*c + 3*a^2*b^4*c - 2*a*b^5*c - b^6*c - a^5*c^2 + a^4*b*c^2 + 2*a^3*b^2*c^2 + 2*a^2*b^3*c^2 - a*b^4*c^2 - 3*b^5*c^2 + 7*a^4*c^3 - 4*a^3*b*c^3 + 2*a^2*b^2*c^3 + 4*a*b^3*c^3 + 3*b^4*c^3 - a^3*c^4 + 3*a^2*b*c^4 - a*b^2*c^4 + 3*b^3*c^4 - 5*a^2*c^5 - 2*a*b*c^5 - 3*b^2*c^5 + a*c^6 - b*c^6 + c^7

X(5761) lies on these lines: {3, 7}, {5, 8}, {140, 2095}, {329, 3560}, {382, 5658}, {517, 3085}, {946, 3811}, {1385, 3475}, {3359, 3671}


X(5762) =  INTERSECTION OF LINES X(3)X(7) AND X(5)X(9)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = -2*a^6 + 2*a^5*b + 3*a^4*b^2 - 2*a^3*b^3 - 2*a^2*b^4 + b^6 + 2*a^5*c - 2*a^3*b^2*c + 2*a^2*b^3*c - 2*b^5*c + 3*a^4*c^2 - 2*a^3*b*c^2 - b^4*c^2 - 2*a^3*c^3 + 2*a^2*b*c^3 + 4*b^3*c^3 - 2*a^2*c^4 - b^2*c^4 - 2*b*c^5 + c^6

X(5762) lies on these lines: {3, 7}, {4, 144}, {5, 9}, {30, 511}, {40, 495}, {140, 142}, {144, 2894}, {165, 4654}, {355, 5223}, {390, 1482}, {495, 4312}, {1385, 5542}, {1483, 3243}, {1484, 3254}, {1699, 3929}, {1754, 3782}, {3332, 4419}, {3817, 5325}, {4654, 4995}


X(5763) =  INTERSECTION OF LINES X(3)X(7) AND X(5)X(10)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = -2*a^6*b + a^5*b^2 + 5*a^4*b^3 - 2*a^3*b^4 - 4*a^2*b^5 + a*b^6 + b^7 - 2*a^6*c + 8*a^5*b*c + a^4*b^2*c - 6*a^3*b^3*c + 2*a^2*b^4*c - 2*a*b^5*c - b^6*c + a^5*c^2 + a^4*b*c^2 + 2*a^2*b^3*c^2 - a*b^4*c^2 - 3*b^5*c^2 + 5*a^4*c^3 - 6*a^3*b*c^3 + 2*a^2*b^2*c^3 + 4*a*b^3*c^3 + 3*b^4*c^3 - 2*a^3*c^4 + 2*a^2*b*c^4 - a*b^2*c^4 + 3*b^3*c^4 - 4*a^2*c^5 - 2*a*b*c^5 - 3*b^2*c^5 + a*c^6 - b*c^6 + c^7

X(5763) lies on these lines: {3, 7}, {4, 3940}, {5, 10}, {30, 1490}, {140, 5437}, {165, 3649}, {1058, 1482}, {5433, 5536}


X(5764) =  INTERSECTION OF LINES X(3)X(7) AND X(6)X(8)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = -2*a^6 + a^5*b + 2*a^4*b^2 - a*b^5 + a^5*c + 2*a^4*b*c + 3*a^3*b^2*c + 3*a^2*b^3*c - b^5*c + 2*a^4*c^2 + 3*a^3*b*c^2 + 6*a^2*b^2*c^2 + a*b^3*c^2 + 3*a^2*b*c^3 + a*b^2*c^3 + 2*b^3*c^3 - a*c^5 - b*c^5

X(5764) lies on these lines: {1, 4552}, {3, 7}, {6, 8}, {3006, 5294}, {3085, 4307}


X(5765) =  INTERSECTION OF LINES X(3)X(7) AND X(6)X(10)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 3*a^6 - 4*a^4*b^2 - 2*a^3*b^3 + a^2*b^4 + 2*a*b^5 - 4*a^4*b*c - 10*a^3*b^2*c - 6*a^2*b^3*c + 2*a*b^4*c + 2*b^5*c - 4*a^4*c^2 - 10*a^3*b*c^2 - 14*a^2*b^2*c^2 - 4*a*b^3*c^2 - 2*a^3*c^3 - 6*a^2*b*c^3 - 4*a*b^2*c^3 - 4*b^3*c^3 + a^2*c^4 + 2*a*b*c^4 + 2*a*c^5 + 2*b*c^5

X(5765) lies on these lines: {3, 7}, {6, 10}


X(5766) =  INTERSECTION OF LINES X(3)X(7) AND X(8)X(9)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (a - b - c)*(5*a^5 - 3*a^4*b - 6*a^3*b^2 + 2*a^2*b^3 + a*b^4 + b^5 - 3*a^4*c - 8*a^3*b*c - 2*a^2*b^2*c - 3*b^4*c - 6*a^3*c^2 - 2*a^2*b*c^2 - 2*a*b^2*c^2 + 2*b^3*c^2 + 2*a^2*c^3 + 2*b^2*c^3 + a*c^4 - 3*b*c^4 + c^5)

X(5766) lies on these lines: {3, 7}, {8, 9}, {55, 329}, {72, 4313}, {226, 5281}, {516, 3085}, {527, 3601}, {528, 5175}, {2801, 4305}, {3486, 5220}, {3811, 4326}


X(5767) =  INTERSECTION OF LINES X(3)X(8) AND X(4)X(6)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = -a^7 - 2*a^6*b + a^5*b^2 + 2*a^4*b^3 - a^3*b^4 + a*b^6 - 2*a^6*c + a^4*b^2*c + b^6*c + a^5*c^2 + a^4*b*c^2 + 2*a^3*b^2*c^2 - a*b^4*c^2 + b^5*c^2 + 2*a^4*c^3 - 2*b^4*c^3 - a^3*c^4 - a*b^2*c^4 - 2*b^3*c^4 + b^2*c^5 + a*c^6 + b*c^6

X(5767) lies on these lines: {3, 8}, {4, 6}, {10, 48}, {184, 5136}, {515, 1754}, {517, 3187}, {860, 1899}, {912, 4463}, {940, 1056}


X(5768) =  INTERSECTION OF LINES X(3)X(8) AND X(4)X(7)

Barycentrics    -a^7 + 3*a^6*b - a^5*b^2 - 5*a^4*b^3 + 5*a^3*b^4 + a^2*b^5 - 3*a*b^6 + b^7 + 3*a^6*c + 2*a^5*b*c + a^4*b^2*c - 4*a^3*b^3*c - 3*a^2*b^4*c + 2*a*b^5*c - b^6*c - a^5*c^2 + a^4*b*c^2 - 2*a^3*b^2*c^2 + 2*a^2*b^3*c^2 + 3*a*b^4*c^2 - 3*b^5*c^2 - 5*a^4*c^3 - 4*a^3*b*c^3 + 2*a^2*b^2*c^3 - 4*a*b^3*c^3 + 3*b^4*c^3 + 5*a^3*c^4 - 3*a^2*b*c^4 + 3*a*b^2*c^4 + 3*b^3*c^4 + a^2*c^5 + 2*a*b*c^5 - 3*b^2*c^5 - 3*a*c^6 - b*c^6 + c^7 : :

X(5768) lies on these lines: {1, 3427}, {3, 8}, {4, 7}, {20, 3218}, {30, 2094}, {57, 515}, {84, 950}, {142, 5587}, {329, 912}, {355, 443}, {390, 3358}, {601, 4339}, {1006, 5273}, {1012, 3488}, {1072, 4310}, {1158, 4294}, {1181, 3562}, {1210, 1467}, {1519, 5274}, {1532, 5658}, {1768, 4302}, {4305, 5450}

X(5768) = reflection of X(4) in X(5722)


X(5769) =  INTERSECTION OF LINES X(3)X(8) AND X(5)X(6)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a^7 + a^6*b - 2*a^5*b^2 - a^4*b^3 + 2*a^3*b^4 - a*b^6 + a^6*c - a^4*b^2*c + a^2*b^4*c - b^6*c - 2*a^5*c^2 - a^4*b*c^2 + a^2*b^3*c^2 + a*b^4*c^2 - b^5*c^2 - a^4*c^3 + a^2*b^2*c^3 + 2*b^4*c^3 + 2*a^3*c^4 + a^2*b*c^4 + a*b^2*c^4 + 2*b^3*c^4 - b^2*c^5 - a*c^6 - b*c^6

X(5769) lies on these lines: {3, 8}, {5, 6}, {495, 940}


X(5770) =  INTERSECTION OF LINES X(3)X(8) AND X(5)X(7)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a^7 + a^6*b - 5*a^5*b^2 - a^4*b^3 + 7*a^3*b^4 - a^2*b^5 - 3*a*b^6 + b^7 + a^6*c + 2*a^5*b*c + a^4*b^2*c - 4*a^3*b^3*c - a^2*b^4*c + 2*a*b^5*c - b^6*c - 5*a^5*c^2 + a^4*b*c^2 + 2*a^3*b^2*c^2 + 2*a^2*b^3*c^2 + 3*a*b^4*c^2 - 3*b^5*c^2 - a^4*c^3 - 4*a^3*b*c^3 + 2*a^2*b^2*c^3 - 4*a*b^3*c^3 + 3*b^4*c^3 + 7*a^3*c^4 - a^2*b*c^4 + 3*a*b^2*c^4 + 3*b^3*c^4 - a^2*c^5 + 2*a*b*c^5 - 3*b^2*c^5 - 3*a*c^6 - b*c^6 + c^7

X(5770) lies on these lines: {2, 912}, {3, 8}, {4, 3218}, {5, 7}, {57, 1478}, {355, 1788}, {381, 2094}, {516, 1158}, {938, 3560}, {942, 3086}, {3359, 4847}

X(5770) = anticomplement of X(37713)


X(5771) =  INTERSECTION OF LINES X(3)X(8) AND X(5)X(9)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 2*a^7 - 7*a^5*b^2 + a^4*b^3 + 8*a^3*b^4 - 2*a^2*b^5 - 3*a*b^6 + b^7 - 4*a^5*b*c + a^4*b^2*c + 2*a^3*b^3*c + 2*a*b^5*c - b^6*c - 7*a^5*c^2 + a^4*b*c^2 + 4*a^3*b^2*c^2 + 2*a^2*b^3*c^2 + 3*a*b^4*c^2 - 3*b^5*c^2 + a^4*c^3 + 2*a^3*b*c^3 + 2*a^2*b^2*c^3 - 4*a*b^3*c^3 + 3*b^4*c^3 + 8*a^3*c^4 + 3*a*b^2*c^4 + 3*b^3*c^4 - 2*a^2*c^5 + 2*a*b*c^5 - 3*b^2*c^5 - 3*a*c^6 - b*c^6 + c^7

X(5771) lies on these lines: {2, 2095}, {3, 8}, {5, 9}, {57, 495}, {140, 942}, {484, 5659}, {1532, 3219}, {3628, 5316}, {3925, 5535}


X(5772) =  INTERSECTION OF LINES X(6)X(8) AND X(7)X(10)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (a - b - c)*(a^2 + 4*a*b - b^2 + 4*a*c + 2*b*c - c^2)

X(5772) lies on these lines: {2, 3677}, {6, 8}, {7, 10}, {894, 3617}, {1215, 5226}, {1698, 4310}, {3679, 4307}, {3755, 4461}, {3932, 5308}, {4645, 4715}


X(5773) =  INTERSECTION OF LINES X(3)X(8) AND X(6)X(7)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = -2*a^5 + a^4*b + a^3*b^2 - a^2*b^3 + a*b^4 + a^4*c - 2*a*b^3*c + b^4*c + a^3*c^2 + 2*a*b^2*c^2 - b^3*c^2 - a^2*c^3 - 2*a*b*c^3 - b^2*c^3 + a*c^4 + b*c^4

X(5773) lies on these lines: {2, 101}, {3, 8}, {6, 7}, {57, 4566}, {239, 514}, {1055, 3911}, {1647, 5168}, {2398, 2809}


X(5774) =  INTERSECTION OF LINES X(3)X(8) AND X(6)X(10)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a^4 + 2*a^3*b - a^2*b^2 - 2*a*b^3 + 2*a^3*c - 2*a^2*b*c - 2*a*b^2*c - 2*b^3*c - a^2*c^2 - 2*a*b*c^2 - 4*b^2*c^2 - 2*a*c^3 - 2*b*c^3

X(5774) lies on these lines: {3, 8}, {6, 10}, {40, 5295}, {69, 495}, {171, 3679}, {381, 4388}, {517, 2050}, {996, 3626}, {1010, 3617}, {1737, 3966}, {3706, 5119}, {3715, 3992}, {3753, 5271}, {3927, 4385}


X(5775) =  INTERSECTION OF LINES X(3)X(8) AND X(7)X(10)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a^4 + 6*a^3*b - 4*a^2*b^2 - 6*a*b^3 + 3*b^4 + 6*a^3*c - 4*a^2*b*c - 2*a*b^2*c - 4*a^2*c^2 - 2*a*b*c^2 - 6*b^2*c^2 - 6*a*c^3 + 3*c^4

X(5775) lies on these lines: {3, 8}, {7, 10}, {144, 5587}, {519, 5281}, {758, 5226}, {938, 1001}, {1788, 4413}, {2094, 3421}, {3218, 3617}, {3679, 4293}, {5251, 5273}


X(5776) =  INTERSECTION OF LINES X(3)X(9) AND X(4)X(6)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a*(a^7 - 2*a^6*b - a^5*b^2 + 4*a^4*b^3 - a^3*b^4 - 2*a^2*b^5 + a*b^6 - 2*a^6*c - 2*a^4*b^2*c + 2*a^2*b^4*c + 2*b^6*c - a^5*c^2 - 2*a^4*b*c^2 + 2*a^3*b^2*c^2 - a*b^4*c^2 + 2*b^5*c^2 + 4*a^4*c^3 - 4*b^4*c^3 - a^3*c^4 + 2*a^2*b*c^4 - a*b^2*c^4 - 4*b^3*c^4 - 2*a^2*c^5 + 2*b^2*c^5 + a*c^6 + 2*b*c^6)

The B-excircle meets the sidelines of ABC in 3 points, and likewise for the C-excircle. The 6 points lie on a conic, denoted by A*. Let A′ be the center of A*, and define B′ and C′ cyclically. Then X(5776) is the perspector of A′B′C′ and the 2nd extouch triangle (defined at X(5927). (Randy Hutson, July 7, 2014)

A′B′C′ is also the unary cofactor triangle of the intangents triangle, which is also the cevian triangle of X(1743) wrt excentral triangle. (Randy Hutson, August 29, 2018)

X(5776) lies on these lines: {3, 9}, {4, 6}, {20, 2287}, {40, 4047}, {72, 1766}, {154, 4183}, {219, 515}, {222, 226}, {281, 3197}, {284, 1012}, {405, 572}, {579, 3149}, {944, 2256}, {1713, 5120}, {1715, 2270}, {1743, 1750}

X(5776) = pole of Gergonne line wrt excentral-hexyl ellipse


X(5777) =  INTERSECTION OF LINES X(3)X(9) AND X(4)X(8)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a*(a^5*b - a^4*b^2 - 2*a^3*b^3 + 2*a^2*b^4 + a*b^5 - b^6 + a^5*c + 2*a^2*b^3*c - a*b^4*c - 2*b^5*c - a^4*c^2 + b^4*c^2 - 2*a^3*c^3 + 2*a^2*b*c^3 + 4*b^3*c^3 + 2*a^2*c^4 - a*b*c^4 + b^2*c^4 + a*c^5 - 2*b*c^5 - c^6)

Let P be a point in the plane of a triangle ABC and let A′B′C′ be the cevian triangle of P. Let HA be the orthocenter of triangle AB′C′, and define HB and HC cyclically. Then the points A′, B′, C′, HA, HB, HC lie on a conic. (Dominik Burek (ADGEOM #424, Aug 2, 2013)

The conic {A′, B′, C′, HA, HB, HC} is here named the Burek-cevian conic of P. If P = X(8), the conic has center X(5777). More generally, if P is on the Lucas cubic, then the triangles A′B′C′ and HAHBHC are homothetic, and HAHBHC is perspective to ABC at a point on the Darboux cubic. (ADGEOM #431, August 3, 2013, and related postings)

X(5777) = (X(5) of 2nd extouch triangle); see X(5776). Also, X(5777) lies on the Burek-Hutson central cubic, K645.

X(5777) lies on these lines: {1, 1864}, {2, 1071}, {3, 9}, {4, 8}, {5, 226}, {12, 1858}, {20, 3876}, {37, 581}, {40, 210}, {44, 580}, {55, 1898}, {56, 1728}, {63, 3149}, {65, 5587}, {78, 1012}, {119, 125}, {201, 2635}, {342, 1148}, {389, 916}, {392, 452}, {405, 1385}, {411, 3219}, {499, 3660}, {515, 960}, {516, 3678}, {518, 946}, {756, 4300}, {943, 1156}, {950, 952}, {1125, 2801}, {1158, 1376}, {1159, 5665}, {1214, 1745}, {1260, 2057}, {2800, 3036}, {3057, 3586}, {3073, 5266}, {3074, 3465}, {3090, 5439}, {3091, 3868}, {3295, 5534}, {3487, 5045}, {3555, 5603}, {3651, 3652}, {3670, 5400}, {3697, 5657}, {3715, 5584}, {3746, 5531}, {3753, 5177}, {3817, 3874}

X(5777) = midpoint of X(4) and X(72)
X(5777) = reflection of X(942) in X(5)
X(5777) = complement of X(1071)


X(5778) =  INTERSECTION OF LINES X(3)X(9) AND X(5)X(6)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a*(a^7 - 2*a^6*b - a^5*b^2 + 4*a^4*b^3 - a^3*b^4 - 2*a^2*b^5 + a*b^6 - 2*a^6*c + 2*a^5*b*c - 2*a^3*b^3*c + 2*b^6*c - a^5*c^2 + 2*a^3*b^2*c^2 - 2*a^2*b^3*c^2 - a*b^4*c^2 + 2*b^5*c^2 + 4*a^4*c^3 - 2*a^3*b*c^3 - 2*a^2*b^2*c^3 - 4*b^4*c^3 - a^3*c^4 - a*b^2*c^4 - 4*b^3*c^4 - 2*a^2*c^5 + 2*b^2*c^5 + a*c^6 + 2*b*c^6)

X(5778) lies on these lines: {3, 9}, {4, 2287}, {5, 6}, {219, 355}, {284, 3560}, {940, 2003}, {952, 2256}, {1012, 2327}, {3713, 3940}


X(5779) =  INTERSECTION OF LINES X(3)X(9) AND X(5)X(7)

Barycentrics    a*(a^5 - 4*a^3*b^2 + 2*a^2*b^3 + 3*a*b^4 - 2*b^5 + 2*a^3*b*c + 2*a^2*b^2*c - 2*a*b^3*c - 2*b^4*c - 4*a^3*c^2 + 2*a^2*b*c^2 - 2*a*b^2*c^2 + 4*b^3*c^2 + 2*a^2*c^3 - 2*a*b*c^3 + 4*b^2*c^3 + 3*a*c^4 - 2*b*c^4 - 2*c^5) : :

Let T be a triangle inscribed in the circumcircle and circumscribing the Mandart inellipse. As T varies, its orthocenter traces a circle centered at X(5779) with segment X(4)X(144) as diameter. (Randy Hutson, August 29, 2018)

X(5779) lies on these lines: {3, 9}, {4, 144}, {5, 7}, {40, 3062}, {44, 990}, {45, 991}, {55, 5531}, {119, 3826}, {142, 1656}, {165, 3715}, {210, 1709}, {355, 382}, {381, 527}, {390, 952}, {517, 4915}, {518, 1351}, {954, 3560}, {1001, 2801}, {1012, 3940}, {1538, 5231}, {1750, 3929}, {1768, 4413}, {2951, 3579}, {3711, 5537}, {4312, 5587}, {4326, 5534}, {5273, 5658}

X(5779) = midpoint of X(4) and X(144)
X(5779) = complement of X(36996)
X(5779) = Johnson-isogonal conjugate of X(37820)


X(5780) =  INTERSECTION OF LINES X(3)X(9) AND X(5)X(8)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a*(a^6 - 3*a^5*b + 6*a^3*b^3 - 3*a^2*b^4 - 3*a*b^5 + 2*b^6 - 3*a^5*c + 6*a^4*b*c - 10*a^2*b^3*c + 3*a*b^4*c + 4*b^5*c + 2*a^2*b^2*c^2 - 2*b^4*c^2 + 6*a^3*c^3 - 10*a^2*b*c^3 - 8*b^3*c^3 - 3*a^2*c^4 + 3*a*b*c^4 - 2*b^2*c^4 - 3*a*c^5 + 4*b*c^5 + 2*c^6)

X(5780) lies on these lines: {3, 9}, {5, 8}, {72, 2095}, {355, 3452}, {952, 5084}, {1210, 1656}, {3149, 3876}


X(5781) =  INTERSECTION OF LINES X(3)X(9) AND X(6)X(7)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a*(a^6 - 3*a^5*b + 2*a^4*b^2 + 2*a^3*b^3 - 3*a^2*b^4 + a*b^5 - 3*a^5*c - 2*a^4*b*c + 2*a^3*b^2*c + a*b^4*c + 2*b^5*c + 2*a^4*c^2 + 2*a^3*b*c^2 - 2*a^2*b^2*c^2 - 2*a*b^3*c^2 + 2*a^3*c^3 - 2*a*b^2*c^3 - 4*b^3*c^3 - 3*a^2*c^4 + a*b*c^4 + a*c^5 + 2*b*c^5)

X(5781) lies on these lines: {3, 9}, {6, 7}, {19, 518}, {20, 220}, {21, 3207}, {48, 1001}, {63, 910}, {101, 1012}, {144, 2287}, {169, 1071}, {218, 4292}, {219, 516}, {284, 954}, {390, 2256}, {1376, 2272}, {1503, 2550}, {1615, 5273}, {2173, 5220}, {2257, 4321}, {3059, 5227}, {3713, 5279}} SEARCH: -0.33541830108619423321


X(5782) =  INTERSECTION OF LINES X(3)X(9) AND X(6)X(8)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a*(a^4 - a^3*b - a^2*b^2 + a*b^3 - a^3*c + 4*a^2*b*c - a*b^2*c + 2*b^3*c - a^2*c^2 - a*b*c^2 + 4*b^2*c^2 + a*c^3 + 2*b*c^3)

X(5782) lies on these lines: {3, 9}, {6, 8}, {44, 4386}, {346, 2256}, {391, 2255}, {940, 4670}, {956, 5053}, {958, 2267}, {1211, 3330}, {1376, 2183}, {1404, 4390}, {1743, 5264}, {2057, 3965}, {2221, 4383}, {2235, 5205}, {2257, 2297}, {2550, 5480}, {4363, 5228}


X(5783) =  INTERSECTION OF LINES X(3)X(9) AND X(6)X(10)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a*(a^4 - a^3*b - a^2*b^2 + a*b^3 - a^3*c + 2*a^2*b*c + a*b^2*c + 2*b^3*c - a^2*c^2 + a*b*c^2 + 4*b^2*c^2 + a*c^3 + 2*b*c^3)

X(5783) lies on these lines: {1, 3713}, {3, 9}, {6, 10}, {37, 997}, {45, 5110}, {72, 2285}, {171, 1743}, {210, 1460}, {218, 1010}, {219, 1065}, {332, 344}, {405, 2268}, {474, 1400}, {475, 608}, {478, 1211}, {572, 958}, {573, 1376}, {604, 956}, {651, 5232}, {960, 1766}, {2050, 3452}, {2256, 2321}


X(5784) =  INTERSECTION OF LINES X(3)X(9) AND X(7)X(8)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a*(a^4*b - 2*a^3*b^2 + 2*a*b^4 - b^5 + a^4*c - b^4*c - 2*a^3*c^2 + 4*a*b^2*c^2 + 2*b^3*c^2 + 2*b^2*c^3 + 2*a*c^4 - b*c^4 - c^5)

X(5784) = X(7) of the X(1)-Brocard triangle (see X(5642)).

X(5784) lies on these lines: {2, 1864}, {3, 9}, {7, 8}, {10, 1071}, {19, 1350}, {20, 960}, {21, 662}, {37, 1818}, {46, 5223}, {63, 210}, {72, 527}, {141, 1861}, {142, 442}, {144, 4190}, {219, 990}, {224, 1001}, {354, 2886}, {390, 3890}, {392, 4304}, {480, 2057}, {511, 2262}, {516, 3878}, {528, 3057}, {997, 1012}, {1824, 3917}, {2261, 5085}, {2348, 3423}, {3660, 5231}, {3740, 5273}, {3812, 4208}, {3881, 5542}


X(5785) =  INTERSECTION OF LINES X(3)X(9) AND X(7)X(10)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a*(a^5 + a^4*b - 6*a^3*b^2 + 2*a^2*b^3 + 5*a*b^4 - 3*b^5 + a^4*c - 4*a^3*b*c + 2*a^2*b^2*c + 4*a*b^3*c - 3*b^4*c - 6*a^3*c^2 + 2*a^2*b*c^2 + 14*a*b^2*c^2 + 6*b^3*c^2 + 2*a^2*c^3 + 4*a*b*c^3 + 6*b^2*c^3 + 5*a*c^4 - 3*b*c^4 - 3*c^5)

X(5785) lies on these lines: {3, 9}, {7, 10}, {20, 3062}, {144, 4292}, {377, 4312}


X(5786) =  INTERSECTION OF LINES X(3)X(10) AND X(4)X(6)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a^7 + 3*a^6*b - 2*a^4*b^3 + a^3*b^4 - a^2*b^5 - 2*a*b^6 + 3*a^6*c + 2*a^5*b*c - a^2*b^4*c - 2*a*b^5*c - 2*b^6*c - 2*a^3*b^2*c^2 + 2*a^2*b^3*c^2 + 2*a*b^4*c^2 - 2*b^5*c^2 - 2*a^4*c^3 + 2*a^2*b^2*c^3 + 4*a*b^3*c^3 + 4*b^4*c^3 + a^3*c^4 - a^2*b*c^4 + 2*a*b^2*c^4 + 4*b^3*c^4 - a^2*c^5 - 2*a*b*c^5 - 2*b^2*c^5 - 2*a*c^6 - 2*b*c^6

X(5786) lies on these lines: {3, 10}, {4, 6}, {20, 333}, {29, 154}, {40, 1765}, {64, 412}, {65, 5307}, {84, 1715}, {243, 1854}, {386, 2050}, {388, 940}, {405, 1746}, {407, 1899}, {572, 2049}, {965, 2551}, {1012, 4267}, {1754, 5247}, {1766, 5295}, {1837, 1891}, {1853, 5125}, {3714, 5227}


X(5787) =  INTERSECTION OF LINES X(3)X(10) AND X(4)X(7)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = -a^7 + 2*a^6*b - 3*a^4*b^3 + 3*a^3*b^4 - 2*a*b^6 + b^7 + 2*a^6*c + 2*a^5*b*c + a^4*b^2*c - 2*a^3*b^3*c - 2*a^2*b^4*c - b^6*c + a^4*b*c^2 - 2*a^3*b^2*c^2 + 2*a^2*b^3*c^2 + 2*a*b^4*c^2 - 3*b^5*c^2 - 3*a^4*c^3 - 2*a^3*b*c^3 + 2*a^2*b^2*c^3 + 3*b^4*c^3 + 3*a^3*c^4 - 2*a^2*b*c^4 + 2*a*b^2*c^4 + 3*b^3*c^4 - 3*b^2*c^5 - 2*a*c^6 - b*c^6 + c^7

Let A′B′C′ be the excentral triangle. X(5787) is the radical center of the anticomplementary circles of triangles A′BC, B′CA, C′AB. (Randy Hutson, June 27, 2018)

X(5787) lies on these lines: {3, 10}, {4, 7}, {5, 1490}, {20, 3419}, {30, 84}, {40, 3358}, {57, 1837}, {382, 2095}, {962, 4018}, {990, 1834}, {1467, 1750}, {1699, 3649}, {3091, 5658}, {3601, 5252}, {4219, 5090}

X(5788) =  INTERSECTION OF LINES X(3)X(10) AND X(5)X(6)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a^7 + a^6*b - 2*a^5*b^2 + 3*a^3*b^4 - a^2*b^5 - 2*a*b^6 + a^6*c + 2*a^3*b^3*c + a^2*b^4*c - 2*a*b^5*c - 2*b^6*c - 2*a^5*c^2 + 2*a^3*b^2*c^2 + 4*a^2*b^3*c^2 + 2*a*b^4*c^2 - 2*b^5*c^2 + 2*a^3*b*c^3 + 4*a^2*b^2*c^3 + 4*a*b^3*c^3 + 4*b^4*c^3 + 3*a^3*c^4 + a^2*b*c^4 + 2*a*b^2*c^4 + 4*b^3*c^4 - a^2*c^5 - 2*a*b*c^5 - 2*b^2*c^5 - 2*a*c^6 - 2*b*c^6

X(5788) lies on these lines: {3, 10}, {4, 333}, {5, 6}, {12, 940}, {63, 1867}, {394, 3142}, {970, 2050}, {1150, 3436}, {3560, 4267}, {5247, 5587}


X(5789) =  INTERSECTION OF LINES X(3)X(10) AND X(5)X(7)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a^7 + a^6*b - 6*a^5*b^2 + 9*a^3*b^4 - 3*a^2*b^5 - 4*a*b^6 + 2*b^7 + a^6*c + 2*a^5*b*c + 2*a^4*b^2*c - 2*a^3*b^3*c - a^2*b^4*c - 2*b^6*c - 6*a^5*c^2 + 2*a^4*b*c^2 + 2*a^3*b^2*c^2 + 4*a^2*b^3*c^2 + 4*a*b^4*c^2 - 6*b^5*c^2 - 2*a^3*b*c^3 + 4*a^2*b^2*c^3 + 6*b^4*c^3 + 9*a^3*c^4 - a^2*b*c^4 + 4*a*b^2*c^4 + 6*b^3*c^4 - 3*a^2*c^5 - 6*b^2*c^5 - 4*a*c^6 - 2*b*c^6 + 2*c^7

X(5789) lies on these lines: {3, 10}, {5, 7}, {153, 443}, {381, 3928}


X(5790) =  INTERSECTION OF LINES X(3)X(10) AND X(5)X(8)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a^4 - 2*a^3*b + a^2*b^2 + 2*a*b^3 - 2*b^4 - 2*a^3*c + 4*a^2*b*c - 2*a*b^2*c + a^2*c^2 - 2*a*b*c^2 + 4*b^2*c^2 + 2*a*c^3 - 2*c^4

X(5790) lies on these lines: {1, 1656}, {2, 952}, {3, 10}, {4, 3617}, {5, 8}, {30, 5657}, {40, 382}, {55, 80}, {119, 2886}, {140, 944}, {145, 3090}, {165, 3534}, {210, 381}, {226, 1159}, {442, 5554}, {495, 3475}, {516, 3654}, {519, 5055}, {546, 962}, {547, 3241}, {912, 3753}, {946, 3626}, {956, 5176}, {997, 5123}, {999, 1737}, {1000, 5274}, {1071, 4002}, {1125, 5070}, {1145, 3434}, {1260, 3419}, {1351, 3416}, {1385, 1698}, {1483, 3616}, {1598, 5090}, {1657, 3579}, {1837, 3295}, {2095, 3421}, {2801, 3968}, {3091, 4678}, {3428, 5659}, {3436, 3927}, {3560, 5086}, {3576, 5054}, {3621, 5056}, {3622, 5067}, {3632, 5079}, {3655, 3828}, {3656, 3817}, {3814, 5289}, {3843, 4691}, {4668, 5072}, {5154, 5330}, {5204, 5445}, {5221, 5270}

X(5790) = anticomplement of X(38028)
X(5790) = centroid of X(3)X(4)X(8)
X(5790) = orthocenter of cross-triangle of Fuhrmann and Ai (aka K798i) triangles


X(5791) =  INTERSECTION OF LINES X(3)X(10) AND X(5)X(9)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a^4 + a^3*b - 2*a^2*b^2 - a*b^3 + b^4 + a^3*c - 2*a^2*b*c - 3*a*b^2*c - 2*a^2*c^2 - 3*a*b*c^2 - 2*b^2*c^2 - a*c^3 + c^4

X(5791) lies on these lines: {2, 72}, {3, 10}, {4, 5273}, {5, 9}, {7, 3824}, {12, 57}, {21, 3419}, {28, 5130}, {37, 5292}, {46, 3925}, {63, 442}, {140, 936}, {142, 3634}, {191, 1836}, {210, 498}, {226, 3927}, {345, 5295}, {377, 3916}, {381, 5325}, {405, 1259}, {443, 3436}, {496, 5231}, {549, 5438}, {965, 3211}, {997, 4999}, {1479, 3683}, {1656, 2095}, {1706, 3587}, {1714, 3666}, {1837, 5251}, {2476, 3219}, {2550, 3579}, {3218, 4197}, {3295, 4847}, {3305, 4187}, {3416, 5138}, {3454, 4643}, {3601, 3679}, {3656, 3878}, {3697, 5552}, {3746, 4863}, {5067, 5328}, {5234, 5587}, {5252, 5258}


X(5792) =  INTERSECTION OF LINES X(3)X(10) AND X(6)X(7)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 3*a^5 - a^4*b - a^3*b^2 + a^2*b^3 - 2*a*b^4 - a^4*c + a^2*b^2*c + 2*a*b^3*c - 2*b^4*c - a^3*c^2 + a^2*b*c^2 + 2*b^3*c^2 + a^2*c^3 + 2*a*b*c^3 + 2*b^2*c^3 - 2*a*c^4 - 2*b*c^4

X(5792) lies on these lines: {2, 3207}, {3, 10}, {6, 7}, {19, 4361}, {610, 3739}, {910, 4384}, {2182, 4363}


X(5793) =  INTERSECTION OF LINES X(3)X(10) AND X(6)X(8)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a^4 + a^2*b^2 + 2*a*b^3 + 4*a^2*b*c + 2*a*b^2*c + 2*b^3*c + a^2*c^2 + 2*a*b*c^2 + 4*b^2*c^2 + 2*a*c^3 + 2*b*c^3

X(5793) lies on these lines: {1, 3714}, {3, 10}, {6, 8}, {65, 4363}, {141, 388}, {333, 3617}, {1211, 3436}, {3052, 4195}, {3679, 5247}, {4720, 5331}, {5078, 5176}


X(5794) =  INTERSECTION OF LINES X(3)X(10) AND X(7)X(8)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a^4 - a^3*b + a*b^3 - b^4 - a^3*c + 2*a^2*b*c + a*b^2*c + a*b*c^2 + 2*b^2*c^2 + a*c^3 - c^4

X(5794) lies on these lines: {1, 442}, {2, 1837}, {3, 10}, {4, 960}, {5, 997}, {7, 8}, {12, 78}, {20, 4640}, {46, 529}, {72, 1478}, {80, 1698}, {145, 3475}, {149, 3890}, {210, 3436}, {224, 3925}, {329, 5229}, {392, 1479}, {407, 1211}, {443, 3812}, {474, 1737}, {495, 3811}, {497, 5175}, {498, 5440}, {528, 1697}, {594, 5227}, {936, 1329}, {938, 3742}, {946, 5289}, {950, 1001}, {965, 1826}, {1155, 3617}, {1159, 3625}, {1220, 5135}, {1265, 3967}, {1420, 5231}, {1610, 4220}, {1836, 2475}, {1861, 1891}, {2182, 2345}, {2476, 4511}, {2551, 3740}, {3057, 3434}, {3091, 5087}, {3421, 4662}, {3485, 3838}, {3576, 4999}, {3698, 5554}, {3876, 5080}, {3880, 5082}, {3916, 4299}, {3966, 5016}, {4255, 5530}, {4314, 4428}, {4679, 5046}, {4855, 5432}


X(5795) =  INTERSECTION OF LINES X(3)X(10) AND X(8)X(9)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (a - b - c)*(2*a^3 + a^2*b + b^3 + a^2*c + 4*a*b*c - b^2*c - b*c^2 + c^3)

X(5795) lies on these lines: {1, 2551}, {2, 1420}, {3, 10}, {8, 9}, {20, 1706}, {63, 4848}, {65, 527}, {142, 388}, {145, 3984}, {200, 3486}, {226, 3436}, {281, 1891}, {329, 3340}, {474, 4311}, {495, 1125}, {497, 4853}, {519, 960}, {529, 3812}, {535, 3918}, {936, 944}, {952, 5044}, {956, 1210}, {997, 5534}, {1005, 5086}, {1212, 1573}, {1220, 5053}, {1385, 3820}, {1716, 3755}, {1737, 5258}, {1837, 4847}, {2078, 5176}, {2098, 4679}, {2324, 4270}, {2478, 3872}, {2550, 2951}, {2784, 3041}, {2975, 3911}, {3036, 4691}, {3058, 3893}, {3158, 4313}, {3189, 4882}, {3244, 5289}, {3586, 5082}, {3600, 5437}, {3617, 5273}, {3622, 5328}, {3626, 5302}, {3634, 4999}, {3679, 5234}, {3753, 4292}, {3913, 4314}, {4858, 4968}


X(5796) =  INTERSECTION OF LINES X(4)X(6) AND X(5)X(7)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a^8*b + 2*a^7*b^2 - 4*a^6*b^3 - 4*a^5*b^4 + 4*a^4*b^5 + 2*a^3*b^6 - b^9 + a^8*c + 2*a^7*b*c - a^6*b^2*c - 4*a^5*b^3*c - a^4*b^4*c + 2*a^3*b^5*c + a^2*b^6*c + 2*a^7*c^2 - a^6*b*c^2 - 3*a^4*b^3*c^2 - 2*a^3*b^4*c^2 + a^2*b^5*c^2 + 3*b^7*c^2 - 4*a^6*c^3 - 4*a^5*b*c^3 - 3*a^4*b^2*c^3 - 4*a^3*b^3*c^3 - 2*a^2*b^4*c^3 + b^6*c^3 - 4*a^5*c^4 - a^4*b*c^4 - 2*a^3*b^2*c^4 - 2*a^2*b^3*c^4 - 3*b^5*c^4 + 4*a^4*c^5 + 2*a^3*b*c^5 + a^2*b^2*c^5 - 3*b^4*c^5 + 2*a^3*c^6 + a^2*b*c^6 + b^3*c^6 + 3*b^2*c^7 - c^9

X(5796) lies on these lines: {4, 6}, {5, 7}, {226, 1736}, {3100, 5396}


X(5797) =  INTERSECTION OF LINES X(4)X(6) AND X(5)X(8)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a^6*b - 2*a^5*b^2 - 3*a^4*b^3 + 2*a^3*b^4 + a^2*b^5 + b^7 + a^6*c - 2*a^5*b*c - 2*a^4*b^2*c + a^2*b^4*c + 2*a*b^5*c - 2*a^5*c^2 - 2*a^4*b*c^2 - 4*a^3*b^2*c^2 - 2*a^2*b^3*c^2 - 2*b^5*c^2 - 3*a^4*c^3 - 2*a^2*b^2*c^3 - 4*a*b^3*c^3 + b^4*c^3 + 2*a^3*c^4 + a^2*b*c^4 + b^3*c^4 + a^2*c^5 + 2*a*b*c^5 - 2*b^2*c^5 + c^7

X(5797) lies on these lines: {4, 6}, {5, 8}, {10, 1953}, {355, 3187}


X(5798) =  INTERSECTION OF LINES X(4)X(6) AND X(5)X(9)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = -2*a^7*b + a^6*b^2 + 4*a^5*b^3 - a^4*b^4 - 2*a^3*b^5 - a^2*b^6 + b^8 - 2*a^7*c + 4*a^6*b*c + 2*a^5*b^2*c + 2*a^3*b^4*c - 4*a^2*b^5*c - 2*a*b^6*c + a^6*c^2 + 2*a^5*b*c^2 + 2*a^4*b^2*c^2 + a^2*b^4*c^2 - 2*a*b^5*c^2 - 4*b^6*c^2 + 4*a^5*c^3 + 8*a^2*b^3*c^3 + 4*a*b^4*c^3 - a^4*c^4 + 2*a^3*b*c^4 + a^2*b^2*c^4 + 4*a*b^3*c^4 + 6*b^4*c^4 - 2*a^3*c^5 - 4*a^2*b*c^5 - 2*a*b^2*c^5 - a^2*c^6 - 2*a*b*c^6 - 4*b^2*c^6 + c^8

X(5798) lies on these lines: {4, 6}, {5, 9}, {226, 1465}, {442, 573}, {1243, 1903}, {1490, 5396}, {1699, 1723}


X(5799) =  INTERSECTION OF LINES X(4)X(6) AND X(5)X(10)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = -3*a^5*b^2 - 3*a^4*b^3 + 2*a^3*b^4 + 2*a^2*b^5 + a*b^6 + b^7 - 4*a^5*b*c - 3*a^4*b^2*c + 2*a^2*b^4*c + 4*a*b^5*c + b^6*c - 3*a^5*c^2 - 3*a^4*b*c^2 - 4*a^3*b^2*c^2 - 4*a^2*b^3*c^2 - a*b^4*c^2 - b^5*c^2 - 3*a^4*c^3 - 4*a^2*b^2*c^3 - 8*a*b^3*c^3 - b^4*c^3 + 2*a^3*c^4 + 2*a^2*b*c^4 - a*b^2*c^4 - b^3*c^4 + 2*a^2*c^5 + 4*a*b*c^5 - b^2*c^5 + a*c^6 + b*c^6 + c^7

X(5799) lies on these lines: {4, 6}, {5, 10}, {40, 4026}, {51, 1904}, {65, 1848}, {154, 4198}, {573, 4205}, {2050, 5292}


X(5800) =  INTERSECTION OF LINES X(4)X(6) AND X(7)X(8)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a^6 + a^4*b^2 - a^2*b^4 - b^6 + 4*a^4*b*c + 4*a^3*b^2*c + a^4*c^2 + 4*a^3*b*c^2 + 2*a^2*b^2*c^2 + b^4*c^2 - a^2*c^4 + b^2*c^4 - c^6

X(5800) lies on these lines: {4, 6}, {7, 8}, {10, 5227}, {28, 159}, {55, 464}, {81, 1370}, {141, 443}, {193, 2475}, {376, 4265}, {497, 1386}, {515, 990}, {631, 5096}, {958, 4026}, {1056, 3242}, {1352, 4260}, {1478, 3751}, {1861, 2285}, {1890, 2082}, {2263, 5236}, {2478, 3618}, {3100, 3486}, {3101, 3474}, {3187, 3434}, {3475, 3920}, {3589, 5084}, {3827, 4295}, {3914, 5307}, {4663, 5229}


X(5801) =  INTERSECTION OF LINES X(4)X(6) AND X(7)X(10)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a^6 + 2*a^5*b + 7*a^4*b^2 - 5*a^2*b^4 - 2*a*b^5 - 3*b^6 + 2*a^5*c + 18*a^4*b*c + 16*a^3*b^2*c - 2*a*b^4*c - 2*b^5*c + 7*a^4*c^2 + 16*a^3*b*c^2 + 10*a^2*b^2*c^2 + 4*a*b^3*c^2 + 3*b^4*c^2 + 4*a*b^2*c^3 + 4*b^3*c^3 - 5*a^2*c^4 - 2*a*b*c^4 + 3*b^2*c^4 - 2*a*c^5 - 2*b*c^5 - 3*c^6

X(5801) lies on these lines: {4, 6}, {7, 10}


X(5802) =  INTERSECTION OF LINES X(4)X(6) AND X(8)X(9)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (a - b - c)*(3*a^4 + 2*a^3*b + 2*a*b^3 + b^4 + 2*a^3*c - 2*a*b^2*c - 2*a*b*c^2 - 2*b^2*c^2 + 2*a*c^3 + c^4)

X(5802) lies on these lines: {2, 272}, {4, 6}, {8, 9}, {10, 380}, {20, 579}, {37, 3488}, {48, 3086}, {71, 4294}, {219, 497}, {226, 1449}, {281, 1837}, {329, 3187}, {405, 966}, {515, 2257}, {573, 1713}, {610, 1210}, {944, 1108}, {965, 5084}, {1058, 2256}, {1100, 3487}, {1213, 4258}, {1708, 3101}, {1743, 3586}, {1839, 4295}, {2260, 4293}, {2287, 2478}, {2345, 3419}, {3189, 3694}, {4207, 5320}, {5037, 5304}, {5257, 5436}


X(5803) =  INTERSECTION OF LINES X(4)X(7) AND X(5)X(6)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a^9 - a^8*b - 2*a^7*b^2 + 2*a^6*b^3 + 2*a^5*b^4 - 2*a^4*b^5 - 2*a^3*b^6 + 2*a^2*b^7 + a*b^8 - b^9 - a^8*c - 2*a^7*b*c + 4*a^5*b^3*c + 4*a^4*b^4*c - 2*a^3*b^5*c - 4*a^2*b^6*c + b^8*c - 2*a^7*c^2 + 4*a^5*b^2*c^2 + 2*a^4*b^3*c^2 + 2*a^3*b^4*c^2 - 4*a^2*b^5*c^2 - 4*a*b^6*c^2 + 2*b^7*c^2 + 2*a^6*c^3 + 4*a^5*b*c^3 + 2*a^4*b^2*c^3 + 4*a^3*b^3*c^3 + 6*a^2*b^4*c^3 - 2*b^6*c^3 + 2*a^5*c^4 + 4*a^4*b*c^4 + 2*a^3*b^2*c^4 + 6*a^2*b^3*c^4 + 6*a*b^4*c^4 - 2*a^4*c^5 - 2*a^3*b*c^5 - 4*a^2*b^2*c^5 - 2*a^3*c^6 - 4*a^2*b*c^6 - 4*a*b^2*c^6 - 2*b^3*c^6 + 2*a^2*c^7 + 2*b^2*c^7 + a*c^8 + b*c^8 - c^9

X(5803) lies on these lines: {4, 7}, {5, 6}


X(5804) =  INTERSECTION OF LINES X(4)X(7) AND X(5)X(8)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = -a^7 + 3*a^6*b - a^5*b^2 - 5*a^4*b^3 + 5*a^3*b^4 + a^2*b^5 - 3*a*b^6 + b^7 + 3*a^6*c - 6*a^5*b*c + a^4*b^2*c - 4*a^3*b^3*c - 3*a^2*b^4*c + 10*a*b^5*c - b^6*c - a^5*c^2 + a^4*b*c^2 - 2*a^3*b^2*c^2 + 2*a^2*b^3*c^2 + 3*a*b^4*c^2 - 3*b^5*c^2 - 5*a^4*c^3 - 4*a^3*b*c^3 + 2*a^2*b^2*c^3 - 20*a*b^3*c^3 + 3*b^4*c^3 + 5*a^3*c^4 - 3*a^2*b*c^4 + 3*a*b^2*c^4 + 3*b^3*c^4 + a^2*c^5 + 10*a*b*c^5 - 3*b^2*c^5 - 3*a*c^6 - b*c^6 + c^7

X(5804) lies on these lines: {4, 7}, {5, 8}, {517, 5084}, {946, 3340}, {1532, 3487}, {3149, 3488}


X(5805) =  INTERSECTION OF LINES X(4)X(7) AND X(5)X(9)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a^6 - a^5*b - a^4*b^2 + a^2*b^4 + a*b^5 - b^6 - a^5*c - 2*a^2*b^3*c + a*b^4*c + 2*b^5*c - a^4*c^2 + 2*a^2*b^2*c^2 - 2*a*b^3*c^2 + b^4*c^2 - 2*a^2*b*c^3 - 2*a*b^2*c^3 - 4*b^3*c^3 + a^2*c^4 + a*b*c^4 + b^2*c^4 + a*c^5 + 2*b*c^5 - c^6

X(5805) is the Gergonne point of the Euler triangle.

X(5805) lies on these lines: {3, 142}, {4, 7}, {5, 9}, {11, 57}, {79, 3062}, {144, 3091}, {355, 518}, {381, 527}, {390, 5603}, {392, 443}, {515, 5542}, {517, 2550}, {528, 3656}, {952, 3243}, {954, 3149}, {990, 1086}, {991, 4675}, {1750, 4654}, {3332, 4000}, {4301, 5289}, {5223, 5587}

X(5805) = midpoint of X(4) and X(7)
X(5805) = Johnson-isogonal conjugate of X(37822)
X(5805) = center of the perspeconic of these triangles: inner and outer Johnson


X(5806) =  INTERSECTION OF LINES X(4)X(7) AND X(5)X(10)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a*(a^5*b - a^4*b^2 - 2*a^3*b^3 + 2*a^2*b^4 + a*b^5 - b^6 + a^5*c - 4*a^4*b*c - 2*a^2*b^3*c - a*b^4*c + 6*b^5*c - a^4*c^2 + b^4*c^2 - 2*a^3*c^3 - 2*a^2*b*c^3 - 12*b^3*c^3 + 2*a^2*c^4 - a*b*c^4 + b^2*c^4 + a*c^5 + 6*b*c^5 - c^6)

X(5806) lies on these lines: {3, 5436}, {4, 7}, {5, 10}, {20, 5439}, {65, 1699}, {72, 3091}, {515, 5045}, {516, 3812}, {546, 912}, {944, 5049}, {962, 3753}, {1465, 2654}, {1482, 3577}, {1709, 5221}, {1837, 5173}, {1902, 5142}, {3057, 5219}, {3585, 5570}, {3742, 4297}, {3832, 3868}, {3876, 5068}, {3940, 4882}

X(5806) = complement of X(31793)


X(5807) =  INTERSECTION OF LINES X(4)X(7) AND X(6)X(8)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a^6 - 2*a^5*b + a^4*b^2 - a^2*b^4 + 2*a*b^5 - b^6 - 2*a^5*c - 6*a^4*b*c - 6*a^3*b^2*c - 2*a^2*b^3*c + a^4*c^2 - 6*a^3*b*c^2 - 2*a^2*b^2*c^2 - 2*a*b^3*c^2 + b^4*c^2 - 2*a^2*b*c^3 - 2*a*b^2*c^3 - a^2*c^4 + b^2*c^4 + 2*a*c^5 - c^6

X(5807) lies on these lines: {4, 7}, {6, 8}, {390, 1766}, {452, 5279}, {950, 2285}, {4200, 5262}, {4220, 5435}, {5269, 5294}


X(5808) =  INTERSECTION OF LINES X(4)X(7) AND X(6)X(10)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a^6 - a^5*b - a^4*b^2 + a^2*b^4 + a*b^5 - b^6 - a^5*c - 6*a^4*b*c - 8*a^3*b^2*c - 2*a^2*b^3*c + a*b^4*c - a^4*c^2 - 8*a^3*b*c^2 - 6*a^2*b^2*c^2 - 2*a*b^3*c^2 + b^4*c^2 - 2*a^2*b*c^3 - 2*a*b^2*c^3 + a^2*c^4 + a*b*c^4 + b^2*c^4 + a*c^5 - c^6

X(5808) lies on these lines: {4, 7}, {6, 10}


X(5809) =  INTERSECTION OF LINES X(4)X(7) AND X(8)X(9)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (a - b - c)*(a^5 - 3*a^4*b + 2*a^3*b^2 + 2*a^2*b^3 - 3*a*b^4 + b^5 - 3*a^4*c - 8*a^3*b*c - 2*a^2*b^2*c - 3*b^4*c + 2*a^3*c^2 - 2*a^2*b*c^2 + 6*a*b^2*c^2 + 2*b^3*c^2 + 2*a^2*c^3 + 2*b^2*c^3 - 3*a*c^4 - 3*b*c^4 + c^5)

X(5809) lies on these lines: {4, 7}, {8, 9}, {10, 4326}, {20, 1445}, {142, 5177}, {226, 5274}, {329, 497}, {388, 5572}, {405, 4313}, {480, 3189}, {516, 2093}, {952, 954}, {1001, 3486}, {1728, 4294}, {1750, 4321}, {1837, 2550}, {2551, 3059}, {3100, 5222}, {3755, 4907}


X(5810) =  INTERSECTION OF LINES X(4)X(8) AND X(5)X(6)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a^7 + a^6*b - a^5*b^2 - a^4*b^3 + a^3*b^4 + a^2*b^5 - a*b^6 - b^7 + a^6*c - a^4*b^2*c + 2*a^3*b^3*c + a^2*b^4*c - 2*a*b^5*c - b^6*c - a^5*c^2 - a^4*b*c^2 + 2*a^3*b^2*c^2 + 2*a^2*b^3*c^2 + a*b^4*c^2 + b^5*c^2 - a^4*c^3 + 2*a^3*b*c^3 + 2*a^2*b^2*c^3 + 4*a*b^3*c^3 + b^4*c^3 + a^3*c^4 + a^2*b*c^4 + a*b^2*c^4 + b^3*c^4 + a^2*c^5 - 2*a*b*c^5 + b^2*c^5 - a*c^6 - b*c^6 - c^7

X(5810) lies on these lines: {2, 1437}, {3, 1211}, {4, 8}, {5, 6}, {442, 1899}, {2203, 3542}, {3410, 5141}


X(5811) =  INTERSECTION OF LINES X(4)X(8) AND X(5)X(7)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = -a^7 - a^6*b + 3*a^5*b^2 + 3*a^4*b^3 - 3*a^3*b^4 - 3*a^2*b^5 + a*b^6 + b^7 - a^6*c - 2*a^5*b*c + a^4*b^2*c - 4*a^3*b^3*c + a^2*b^4*c + 6*a*b^5*c - b^6*c + 3*a^5*c^2 + a^4*b*c^2 - 2*a^3*b^2*c^2 + 2*a^2*b^3*c^2 - a*b^4*c^2 - 3*b^5*c^2 + 3*a^4*c^3 - 4*a^3*b*c^3 + 2*a^2*b^2*c^3 - 12*a*b^3*c^3 + 3*b^4*c^3 - 3*a^3*c^4 + a^2*b*c^4 - a*b^2*c^4 + 3*b^3*c^4 - 3*a^2*c^5 + 6*a*b*c^5 - 3*b^2*c^5 + a*c^6 - b*c^6 + c^7

X(5811) lies on these lines: {3, 5658}, {4, 8}, {5, 7}, {9, 1158}, {84, 3452}, {104, 405}, {226, 3086}, {390, 5534}, {474, 2096}, {912, 938}, {997, 1490}, {1071, 5084}, {1483, 3488}, {1737, 3339}, {4295, 4848}, {4309, 5531}

X(5811) = anticomplement of X(37534)


X(5812) =  INTERSECTION OF LINES X(4)X(8) AND X(5)X(9)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = -a^7 + 2*a^5*b^2 + a^4*b^3 - a^3*b^4 - 2*a^2*b^5 + b^7 + 2*a^5*b*c + a^4*b^2*c - 2*a^3*b^3*c - b^6*c + 2*a^5*c^2 + a^4*b*c^2 - 2*a^3*b^2*c^2 + 2*a^2*b^3*c^2 - 3*b^5*c^2 + a^4*c^3 - 2*a^3*b*c^3 + 2*a^2*b^2*c^3 + 3*b^4*c^3 - a^3*c^4 + 3*b^3*c^4 - 2*a^2*c^5 - 3*b^2*c^5 - b*c^6 + c^7

X(5812) lies on these lines: {3, 226}, {4, 8}, {5, 9}, {11, 1728}, {12, 40}, {30, 1490}, {68, 1903}, {79, 165}, {222, 1076}, {452, 5603}, {580, 3772}, {908, 1259}, {946, 958}, {950, 1482}, {1006, 5253}, {1210, 2095}, {1385, 3487}, {1479, 1864}, {1766, 1901}, {5177, 5657}

X(5812) = anticomplement of X(37623)
X(5812) = X(26)-of-2nd-extouch-triangle
X(5812) = X(40)-of-outer-Johnson-triangle
X(5812) = orthologic center of these triangles: outer-Johnson to 3rd extouch


X(5813) =  INTERSECTION OF LINES X(4)X(8) AND X(6)X(7)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a^5 + a^4*b - a*b^4 - b^5 + a^4*c - 4*a^3*b*c + 2*a^2*b^2*c + b^4*c + 2*a^2*b*c^2 + 2*a*b^2*c^2 - a*c^4 + b*c^4 - c^5

X(5813) lies on these lines: {2, 169}, {4, 8}, {6, 7}, {9, 4329}, {226, 2082}, {307, 2270}, {857, 1211}, {3616, 4223}, {3661, 5179}


X(5814) =  INTERSECTION OF LINES X(4)X(8) AND X(6)X(10)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = -a^4 - a^3*b + a*b^3 + b^4 - a^3*c + 3*a*b^2*c + 2*b^3*c + 3*a*b*c^2 + 2*b^2*c^2 + a*c^3 + 2*b*c^3 + c^4

The triangle A″B″C″ defined at X(5739) is homothetic to the outer Garcia triangle at X(5814).

X(5814) lies on these lines: {1, 1211}, {3, 3687}, {4, 8}, {6, 10}, {9, 3695}, {69, 942}, {75, 1330}, {78, 5396}, {209, 4680}, {306, 405}, {442, 5271}, {1125, 4035}, {1479, 3706}, {1836, 4647}, {2895, 3868}, {3187, 5051}, {3295, 3883}, {3454, 3772}, {3927, 4416}, {4651, 5300}, {4863, 4894}, {5244, 5290}

X(5814) = anticomplement of X(37594)


X(5815) =  INTERSECTION OF LINES X(4)X(8) AND X(7)X(10)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = -a^4 - 2*a^3*b + 2*a*b^3 + b^4 - 2*a^3*c - 4*a^2*b*c + 6*a*b^2*c + 6*a*b*c^2 - 2*b^2*c^2 + 2*a*c^3 + c^4

X(5815) lies on these lines: {1, 5129}, {2, 3333}, {4, 8}, {7, 10}, {20, 200}, {40, 144}, {69, 341}, {210, 388}, {443, 3697}, {452, 3870}, {516, 4882}, {518, 938}, {527, 1706}, {936, 3600}, {944, 3940}, {956, 3616}, {997, 4308}, {1056, 5044}, {1722, 4310}, {2550, 4662}, {3085, 5273}, {3086, 5328}, {3091, 4847}, {3555, 5084}, {3679, 4295}, {3811, 4313}, {3927, 5657}, {3961, 4339}, {4005, 5252}, {4301, 4915}, {4419, 4646}, {4863, 5225}, {5056, 5231}

X(5815) = anticomplement of X(3333)
X(5815) = isotomic conjugate of X(30501)


X(5816) =  INTERSECTION OF LINES X(4)X(9) AND X(5)X(6)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = -a^5 + a^4*b - 2*a^2*b^3 + a*b^4 + b^5 + a^4*c - 2*a^3*b*c + b^4*c - 2*a*b^2*c^2 - 2*b^3*c^2 - 2*a^2*c^3 - 2*b^2*c^3 + a*c^4 + b*c^4 + c^5

X(5816) lies on these lines: {2, 572}, {3, 1213}, {4, 9}, {5, 6}, {37, 355}, {80, 941}, {119, 5517}, {377, 1765}, {391, 3091}, {498, 2268}, {499, 604}, {515, 5257}, {581, 975}, {946, 3686}, {1400, 1478}, {1474, 3542}, {1479, 2269}, {1737, 2285}, {1899, 3136}, {2328, 4207}, {3419, 3965}, {3553, 4270}


X(5817) =  INTERSECTION OF LINES X(4)X(9) AND X(5)X(7)

Barycentrics   a^6 - 5*a^4*b^2 + 4*a^3*b^3 + 3*a^2*b^4 - 4*a*b^5 + b^6 + 2*a^4*b*c + 4*a^3*b^2*c - 4*a*b^4*c - 2*b^5*c - 5*a^4*c^2 + 4*a^3*b*c^2 - 6*a^2*b^2*c^2 + 8*a*b^3*c^2 - b^4*c^2 + 4*a^3*c^3 + 8*a*b^2*c^3 + 4*b^3*c^3 + 3*a^2*c^4 - 4*a*b*c^4 - b^2*c^4 - 4*a*c^5 - 2*b*c^5 + c^6 : :
X(5817) = X(4) + 2*X(9)

X(5817) lies on these lines: {2, 971}, {4, 9}, {5, 7}, {44, 3332}, {119, 1156}, {142, 3090}, {144, 3091}, {355, 390}, {443, 3358}, {518, 5603}, {527, 3545}, {944, 1001}, {946, 5223}, {948, 1736}, {952, 954}, {1698, 3062}, {1788, 4312}, {3487, 5045}

X(5817) = anticomplement of X(38122)
X(5817) = {X(4),X(9)}-harmonic conjugate of X(5759)


X(5818) =  INTERSECTION OF LINES X(4)X(9) AND X(5)X(8)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a^4 - 2*a^3*b + 2*a^2*b^2 + 2*a*b^3 - 3*b^4 - 2*a^3*c + 4*a^2*b*c - 2*a*b^2*c + 2*a^2*c^2 - 2*a*b*c^2 + 6*b^2*c^2 + 2*a*c^3 - 3*c^4

X(5818) lies on these lines: {1, 3090}, {2, 355}, {3, 5260}, {4, 9}, {5, 8}, {12, 3487}, {46, 5229}, {80, 498}, {100, 3560}, {104, 474}, {119, 2476}, {145, 5056}, {165, 3529}, {377, 2096}, {381, 962}, {388, 1737}, {495, 938}, {499, 3476}, {515, 631}, {517, 3091}, {519, 5071}, {547, 1483}, {942, 5261}, {946, 3545}, {952, 1656}, {986, 4947}, {1056, 1210}, {1071, 4208}, {1125, 5067}, {1478, 1788}, {1699, 3855}, {1837, 3085}, {2099, 3614}, {2475, 3652}, {3086, 5252}, {3089, 5090}, {3146, 3579}, {3241, 5055}, {3474, 3585}, {3524, 3828}, {3525, 3576}, {3628, 5550}, {3654, 3839}, {3753, 5177}, {3877, 5187}, {3925, 5658}, {4299, 5445}, {4301, 4691}, {4305, 5432}, {4330, 5560}, {4678, 5068}, {5086, 5552}, {5119, 5225}

X(5818) = incenter of cross triangle of Euler and anti-Euler triangles


X(5819) =  INTERSECTION OF LINES X(4)X(9) AND X(6)X(7)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = -3*a^4 + 2*a^3*b - 2*a^2*b^2 + 2*a*b^3 + b^4 + 2*a^3*c - 2*a*b^2*c - 2*a^2*c^2 - 2*a*b*c^2 - 2*b^2*c^2 + 2*a*c^3 + c^4

X(5819) lies on these lines: {2, 910}, {4, 9}, {6, 7}, {20, 1212}, {37, 390}, {41, 3485}, {75, 144}, {101, 5603}, {142, 610}, {198, 1001}, {218, 4295}, {220, 962}, {348, 4209}, {388, 2082}, {518, 2262}, {672, 3474}, {857, 1213}, {954, 4254}, {1449, 5542}, {1478, 5540}, {1738, 1743}, {1836, 2348}, {2170, 3476}, {2280, 3475}, {3207, 3616}, {3487, 4251}, {3686, 5223}, {3772, 5304}, {5263, 5296}


X(5820) =  INTERSECTION OF LINES X(5)X(6) AND X(7)X(8)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a^6 - a^4*b^2 + a^2*b^4 - b^6 + 2*a^4*b*c + 2*a^3*b^2*c - a^4*c^2 + 2*a^3*b*c^2 + 2*a^2*b^2*c^2 + b^4*c^2 + a^2*c^4 + b^2*c^4 - c^6

X(5820) lies on these lines: {5, 6}, {7, 8}, {141, 474}, {542, 5138}, {940, 1899}, {1012, 1503}


X(5821) =  INTERSECTION OF LINES X(5)X(6) AND X(7)X(10)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a^6 + a^4*b^2 + 2*a^3*b^3 + a^2*b^4 - 2*a*b^5 - 3*b^6 + 8*a^4*b*c + 10*a^3*b^2*c + 2*a^2*b^3*c - 2*a*b^4*c - 2*b^5*c + a^4*c^2 + 10*a^3*b*c^2 + 10*a^2*b^2*c^2 + 4*a*b^3*c^2 + 3*b^4*c^2 + 2*a^3*c^3 + 2*a^2*b*c^3 + 4*a*b^2*c^3 + 4*b^3*c^3 + a^2*c^4 - 2*a*b*c^4 + 3*b^2*c^4 - 2*a*c^5 - 2*b*c^5 - 3*c^6

X(5821) lies on these lines: {5, 6}, {7, 10}


X(5822) =  INTERSECTION OF LINES X(5)X(6) AND X(8)X(9)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (a - b - c)*(3*a^4 - 2*a^2*b^2 + 2*a*b^3 + b^4 + 2*a^2*b*c - 2*a*b^2*c - 2*a^2*c^2 - 2*a*b*c^2 - 2*b^2*c^2 + 2*a*c^3 + c^4)

X(5822) lies on these lines: {5, 6}, {8, 9}, {284, 966}, {499, 2317}, {1737, 2261}, {1743, 1826}


X(5823) =  INTERSECTION OF LINES X(5)X(7) AND X(6)X(8)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a^6 + a^5*b - 3*a^4*b^2 + a^2*b^4 - a*b^5 + b^6 + a^5*c + 4*a^4*b*c + 3*a^3*b^2*c - a^2*b^3*c + b^5*c - 3*a^4*c^2 + 3*a^3*b*c^2 - 4*a^2*b^2*c^2 + a*b^3*c^2 - b^4*c^2 - a^2*b*c^3 + a*b^2*c^3 - 2*b^3*c^3 + a^2*c^4 - b^2*c^4 - a*c^5 + b*c^5 + c^6

X(5823) lies on these lines: {5, 7}, {6, 8}, {1736, 3086}


X(5824) =  INTERSECTION OF LINES X(5)X(7) AND X(6)X(10)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = -a^6 - 2*a^5*b + 2*a^4*b^2 + 2*a^3*b^3 + a^2*b^4 - 2*b^6 - 2*a^5*c - 8*a^4*b*c - 6*a^3*b^2*c + 2*a^2*b^3*c - 2*b^5*c + 2*a^4*c^2 - 6*a^3*b*c^2 + 2*a^2*b^2*c^2 + 2*b^4*c^2 + 2*a^3*c^3 + 2*a^2*b*c^3 + 4*b^3*c^3 + a^2*c^4 + 2*b^2*c^4 - 2*b*c^5 - 2*c^6

X(5824) lies on these lines: {5, 7}, {6, 10}, {982, 1736}


X(5825) =  INTERSECTION OF LINES X(5)X(7) AND X(8)X(9)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (a - b - c)*(3*a^5 + 3*a^4*b - 10*a^3*b^2 - 2*a^2*b^3 + 7*a*b^4 - b^5 + 3*a^4*c + 8*a^3*b*c + 2*a^2*b^2*c + 3*b^4*c - 10*a^3*c^2 + 2*a^2*b*c^2 - 14*a*b^2*c^2 - 2*b^3*c^2 - 2*a^2*c^3 - 2*b^2*c^3 + 7*a*c^4 + 3*b*c^4 - c^5)

X(5825) lies on these lines: {5, 7}, {8, 9}, {11, 329}, {72, 4345}, {1728, 4293}, {1737, 4312}, {1864, 3740}, {3086, 5542}


X(5826) =  INTERSECTION OF LINES X(5)X(8) AND X(6)X(7)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a^5 - 2*a^4*b - a^3*b^2 + a^2*b^3 + b^5 - 2*a^4*c + 4*a^3*b*c - 2*a^2*b^2*c + 2*a*b^3*c - 2*b^4*c - a^3*c^2 - 2*a^2*b*c^2 - 4*a*b^2*c^2 + b^3*c^2 + a^2*c^3 + 2*a*b*c^3 + b^2*c^3 - 2*b*c^4 + c^5

X(5826) lies on these lines: {5, 8}, {6, 7}


X(5827) =  INTERSECTION OF LINES X(5)X(8) AND X(6)X(10)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a^4 + a^2*b^2 - 2*b^4 + 2*a^2*b*c - 4*a*b^2*c - 2*b^3*c + a^2*c^2 - 4*a*b*c^2 - 2*b*c^3 - 2*c^4

X(5827) lies on these lines: {5, 8}, {6, 10}, {355, 2050}, {2551, 3695}, {5295, 5587}


X(5828) =  INTERSECTION OF LINES X(5)X(8) AND X(7)X(10)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a^4 - 2*a^3*b + 4*a^2*b^2 + 2*a*b^3 - 5*b^4 - 2*a^3*c + 12*a^2*b*c - 10*a*b^2*c + 4*a^2*c^2 - 10*a*b*c^2 + 10*b^2*c^2 + 2*a*c^3 - 5*c^4

X(5828) lies on these lines: {5, 8}, {7, 10}, {341, 3262}, {4853, 5056}


X(5829) =  INTERSECTION OF LINES X(5)X(9) AND X(6)X(7)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = -2*a^7 + 2*a^6*b + a^5*b^2 + a^4*b^3 - 4*a^2*b^5 + a*b^6 + b^7 + 2*a^6*c - a^4*b^2*c + 4*a^3*b^3*c - 4*a*b^5*c - b^6*c + a^5*c^2 - a^4*b*c^2 + 4*a^2*b^3*c^2 - a*b^4*c^2 - 3*b^5*c^2 + a^4*c^3 + 4*a^3*b*c^3 + 4*a^2*b^2*c^3 + 8*a*b^3*c^3 + 3*b^4*c^3 - a*b^2*c^4 + 3*b^3*c^4 - 4*a^2*c^5 - 4*a*b*c^5 - 3*b^2*c^5 + a*c^6 - b*c^6 + c^7

X(5829) lies on these lines: {5, 9}, {6, 7}, {142, 1375}, {511, 2262}, {528, 1953}, {910, 5249}, {1723, 4312}


X(5830) =  INTERSECTION OF LINES X(5)X(9) AND X(6)X(8)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 2*a^5 - 2*a^4*b - a^3*b^2 + a^2*b^3 - a*b^4 + b^5 - 2*a^4*c + 4*a^3*b*c - 5*a^2*b^2*c - 2*a*b^3*c + b^4*c - a^3*c^2 - 5*a^2*b*c^2 - 2*a*b^2*c^2 - 2*b^3*c^2 + a^2*c^3 - 2*a*b*c^3 - 2*b^2*c^3 - a*c^4 + b*c^4 + c^5

X(5830) lies on these lines: {5, 9}, {6, 8}


X(5831) =  INTERSECTION OF LINES X(5)X(9) AND X(6)X(10)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a^5 - a^3*b^2 - a^2*b^3 + b^5 + 2*a^3*b*c - 5*a^2*b^2*c - 2*a*b^3*c + b^4*c - a^3*c^2 - 5*a^2*b*c^2 - 4*a*b^2*c^2 - 2*b^3*c^2 - a^2*c^3 - 2*a*b*c^3 - 2*b^2*c^3 + b*c^4 + c^5

X(5831) lies on these lines: {5, 9}, {6, 10}, {442, 2285}, {475, 1880}, {498, 3965}, {1766, 2886}, {2268, 3419}


X(5832) =  INTERSECTION OF LINES X(5)X(9) AND X(7)X(8)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a^6 - a^5*b - a^4*b^2 + a^2*b^4 + a*b^5 - b^6 - a^5*c + 2*a^4*b*c - 4*a^2*b^3*c + a*b^4*c + 2*b^5*c - a^4*c^2 - 2*a^2*b^2*c^2 - 2*a*b^3*c^2 + b^4*c^2 - 4*a^2*b*c^3 - 2*a*b^2*c^3 - 4*b^3*c^3 + a^2*c^4 + a*b*c^4 + b^2*c^4 + a*c^5 + 2*b*c^5 - c^6

X(5832) lies on these lines: {5, 9}, {7, 8}, {63, 1836}, {142, 474}, {495, 1706}, {516, 993}, {611, 1738}, {956, 4292}, {1376, 5249}, {1387, 3254}, {1818, 4675}, {1861, 4363}


X(5833) =  INTERSECTION OF LINES X(5)X(9) AND X(7)X(10)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a^6 - a^5*b - 2*a^3*b^3 + a^2*b^4 + 3*a*b^5 - 2*b^6 - a^5*c + 8*a^4*b*c - 2*a^3*b^2*c - 12*a^2*b^3*c + 3*a*b^4*c + 4*b^5*c - 2*a^3*b*c^2 - 10*a^2*b^2*c^2 - 6*a*b^3*c^2 + 2*b^4*c^2 - 2*a^3*c^3 - 12*a^2*b*c^3 - 6*a*b^2*c^3 - 8*b^3*c^3 + a^2*c^4 + 3*a*b*c^4 + 2*b^2*c^4 + 3*a*c^5 + 4*b*c^5 - 2*c^6

X(5833) lies on these lines: {5, 9}, {7, 10}, {63, 4312}, {142, 936}, {515, 2550}, {1699, 5273}


X(5834) =  INTERSECTION OF LINES X(5)X(10) AND X(6)X(7)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = -2*a^4*b - a^3*b^2 + a^2*b^3 + a*b^4 + b^5 - 2*a^4*c + 4*a^3*b*c - 3*a^2*b^2*c + 2*a*b^3*c - b^4*c - a^3*c^2 - 3*a^2*b*c^2 - 6*a*b^2*c^2 + a^2*c^3 + 2*a*b*c^3 + a*c^4 - b*c^4 + c^5

X(5834) lies on these lines: {5, 10}, {6, 7}, {19, 3589}, {141, 2262}, {597, 2182}, {1375, 5437}, {2183, 4364}, {2270, 4657}, {3674, 3752}


X(5835) =  INTERSECTION OF LINES X(5)X(10) AND X(6)X(8)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 2*a^3*b + a^2*b^2 + b^4 + 2*a^3*c + 4*a*b^2*c + 2*b^3*c + a^2*c^2 + 4*a*b*c^2 + 2*b^2*c^2 + 2*b*c^3 + c^4

X(5835) lies on these lines: {1, 3704}, {5, 10}, {6, 8}, {65, 141}, {388, 4363}, {1211, 3869}, {1213, 3959}, {2292, 4364}, {2975, 5078}

X(5835) = complement of X(37614)


X(5836) =  INTERSECTION OF LINES X(5)X(10) AND X(7)X(8)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a*(a^2*b - b^3 + a^2*c - 2*a*b*c + 3*b^2*c + 3*b*c^2 - c^3)

A construction of X(5836) is given by Antreas Hatipolakis and Angel Montesdeoca at 24129.

X(5836) lies on these lines: {1, 474}, {2, 3057}, {5, 10}, {7, 8}, {12, 3838}, {37, 3208}, {40, 958}, {46, 956}, {56, 3872}, {57, 4853}, {72, 3679}, {78, 2099}, {92, 1888}, {100, 2646}, {145, 354}, {191, 3245}, {200, 3340}, {210, 3617}, {318, 1875}, {341, 3967}, {392, 1698}, {404, 1319}, {405, 5119}, {409, 643}, {442, 1145}, {484, 3916}, {519, 942}, {528, 950}, {529, 4292}, {672, 4875}, {758, 3626}, {891, 4925}, {910, 2329}, {936, 5289}, {962, 2551}, {993, 3579}, {997, 1482}, {1001, 1697}, {1104, 5255}, {1125, 1387}, {1155, 2975}, {1191, 1722}, {1193, 4695}, {1210, 3813}, {1212, 3501}, {1616, 5272}, {1829, 1861}, {1836, 3436}, {1837, 3434}, {1858, 5086}, {1859, 5174}, {1864, 5175}, {1887, 5081}, {2098, 4413}, {2171, 3965}, {2262, 2345}, {2292, 2643}, {2475, 5176}, {2800, 3036}, {2817, 3040}, {3244, 5045}, {3246, 3915}, {3303, 3895}, {3304, 3306}, {3336, 5288}, {3339, 4915}, {3421, 4295}, {3555, 3632}, {3601, 4421}, {3616, 3848}, {3621, 3873}, {3625, 3874}, {3634, 3884}, {3635, 5049}, {3636, 3833}, {3666, 4642}, {3670, 4674}, {3678, 4691}, {3681, 3962}, {3683, 5260}, {3711, 3984}, {3744, 3924}, {3746, 5541}, {3876, 3983}, {3877, 4731}, {3894, 4816}, {3899, 3921}, {3900, 4142}, {4015, 4745}, {4018, 4668}, {4071, 4167}, {4084, 4669}, {4428, 5436}, {4746, 4757}, {4847, 4848}

X(5836) = midpoint of X(8) and X(65)
X(5836) = complement of X(3057)


X(5837) =  INTERSECTION OF LINES X(5)X(10) AND X(8)X(9)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (a - b - c)*(3*a^2*b + 2*a*b^2 - b^3 + 3*a^2*c + b^2*c + 2*a*c^2 + b*c^2 - c^3)

X(5837) lies on these lines: {2, 3340}, {5, 10}, {8, 9}, {65, 142}, {145, 5273}, {226, 3869}, {388, 527}, {392, 1210}, {443, 2093}, {519, 958}, {551, 4999}, {936, 5657}, {1125, 5289}, {1145, 3697}, {1212, 1500}, {1479, 2551}, {2078, 2975}, {3057, 4847}, {3212, 4357}, {3305, 5554}, {3486, 4512}, {3600, 3928}, {3625, 5302}, {3632, 5234}, {3813, 4342}, {3916, 4311}, {4297, 4640}


X(5838) =  INTERSECTION OF LINES X(6)X(7) AND X(8)X(9)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (a - b - c)*(5*a^3 - a^2*b + 3*a*b^2 + b^3 - a^2*c - 6*a*b*c - b^2*c + 3*a*c^2 - b*c^2 + c^3)

X(5838) lies on these lines: {6, 7}, {8, 9}, {41, 3616}, {144, 239}, {169, 938}, {218, 962}, {497, 2348}, {516, 1743}, {910, 5435}, {1001, 5296}, {1212, 4313}, {1445, 2270}, {2170, 3241}, {2264, 2550}


X(5839) =  INTERSECTION OF LINES X(6)X(8) AND X(7)X(524)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 3a2 - (b + c)2

X(5839) lies on these lines: {1,966}, {2,319}, {6,8}, {7,524}, {9,519}, {10,1449}, {37,145}, {44,346}, {48,3684}, {55,4819}, {69,239}, {71,3169}, {72,5802}, {75,193}, {78,3554}, {141,5222}, {144,536}, {219,1067}, {281,2323}, {318,3087}, {345,1914}, {348,4372}, {387,5814}, {393,5081}, {518,2262}, {572,5657}, {573,944}, {597,4478}, {604,1788}, {740,3958}, {894,1992}, {938,965}, {956,4254}, {982,4771}, {1043,1778}, {1086,4402}, {1108,3965}, {1213,3616}, {1400,3476}, {1654,4393}, {1698,4982}, {1740,4489}, {1743,2321}, {1901,5175}, {1953,4051}, {2082,5227}, {2269,3486}, {2325,3973}, {3061,3949}, {3161,3943}, {3187,5739}, {3240,5153}, {3241,5296}, {3244,3247}, {3293,5105}, {3419,5746}, {3553,3872}, {3589,4445}, {3618,3661}, {3623,3723}, {3625,4007}, {3629,4363}, {3630,4395}, {3633,3707}, {3635,3986}, {3672,4643}, {3679,5750}, {3696,4307}, {3739,3945}, {3758,5564}, {3770,4441}, {3875,4416}, {3879,4384}, {4029,4898}, {4047,4294}, {4058,4701}, {4060,4677}, {4061,5269}, {4454,4686}, {4470,4967}, {4545,4668}, {4657,4690}, {5015,5286}, {5120,5687}, {5271,5712}, {5603,5816}, {5703,5742}

X(5839) = anticomplement of X(4851)


X(5840) =  INTERSECTION OF LINE X(3)X(11) AND THE INFINITY LINE

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = -2*a^7 + 2*a^6*b + 3*a^5*b^2 - 3*a^4*b^3 - a*b^6 + b^7 + 2*a^6*c - 4*a^5*b*c - a^4*b^2*c + 2*a^3*b^3*c + 2*a*b^5*c - b^6*c + 3*a^5*c^2 - a^4*b*c^2 + a*b^4*c^2 - 3*b^5*c^2 - 3*a^4*c^3 + 2*a^3*b*c^3 - 4*a*b^3*c^3 + 3*b^4*c^3 + a*b^2*c^4 + 3*b^3*c^4 + 2*a*b*c^5 - 3*b^2*c^5 - a*c^6 - b*c^6 + c^7

X(5840) lies on these lines: {3, 11}, {4, 100}, {5, 3035}, {20, 104}, {30, 511}, {36, 5533}, {40, 80}, {140, 3825}, {153, 3146}, {214, 946}, {224, 1537}, {355, 1145}, {550, 1484}, {944, 1320}, {1156, 5759}, {1317, 1482}, {1385, 1387}, {1614, 3045}, {1768, 5709}, {1862, 1872}, {2077, 3583}, {2932, 3149}, {3036, 5690}, {3254, 5732}, {3359, 3586}, {4292, 5083}, {5541, 5691}


X(5841) =  INTERSECTION OF LINE X(3)X(12) AND THE INFINITY LINE

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 2*a^7 - 2*a^6*b - 3*a^5*b^2 + 3*a^4*b^3 + a*b^6 - b^7 - 2*a^6*c + 4*a^5*b*c - 3*a^4*b^2*c - 2*a^3*b^3*c + 4*a^2*b^4*c - 2*a*b^5*c + b^6*c - 3*a^5*c^2 - 3*a^4*b*c^2 + 8*a^3*b^2*c^2 - 4*a^2*b^3*c^2 - a*b^4*c^2 + 3*b^5*c^2 + 3*a^4*c^3 - 2*a^3*b*c^3 - 4*a^2*b^2*c^3 + 4*a*b^3*c^3 - 3*b^4*c^3 + 4*a^2*b*c^4 - a*b^2*c^4 - 3*b^3*c^4 - 2*a*b*c^5 + 3*b^2*c^5 + a*c^6 + b*c^6 - c^7

X(5841) lies on these lines: {3, 12}, {4, 2975}, {5, 993}, {30, 511}, {40, 4333}, {63, 355}, {80, 5535}, {119, 4996}, {140, 3822}, {226, 1385}, {1872, 1885}, {2077, 4316}, {4305, 5761}, {5691, 5709}


X(5842) =  INTERSECTION OF LINE X(4)X(12) AND THE INFINITY LINE

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 2*a^7 - 2*a^6*b - 3*a^5*b^2 + 3*a^4*b^3 + a*b^6 - b^7 - 2*a^6*c + a^4*b^2*c + b^6*c - 3*a^5*c^2 + a^4*b*c^2 - a*b^4*c^2 + 3*b^5*c^2 + 3*a^4*c^3 - 3*b^4*c^3 - a*b^2*c^4 - 3*b^3*c^4 + 3*b^2*c^5 + a*c^6 + b*c^6 - c^7

X(5842) lies on these lines: {3, 2886}, {4, 12}, {5, 5248}, {11, 5172}, {20, 2894}, {30, 511}, {31, 5721}, {40, 1726}, {140, 3841}, {550, 5450}, {944, 2099}, {946, 4314}, {1006, 3925}, {1012, 4302}, {1071, 1770}, {1072, 3744}, {1158, 5787}, {1479, 3149}, {1532, 3583}, {1824, 3575}, {1834, 3072}, {3058, 5603}, {3189, 5758}, {3474, 5768}, {3811, 5812}, {4292, 5173}, {4512, 5587}, {5119, 5691}


X(5843) =  INTERSECTION OF LINE X(5)X(7) AND THE INFINITY LINE

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = -2*a^6 + 7*a^4*b^2 - 2*a^3*b^3 - 6*a^2*b^4 + 2*a*b^5 + b^6 - 4*a^4*b*c - 2*a^3*b^2*c + 6*a^2*b^3*c + 2*a*b^4*c - 2*b^5*c + 7*a^4*c^2 - 2*a^3*b*c^2 - 4*a*b^3*c^2 - b^4*c^2 - 2*a^3*c^3 + 6*a^2*b*c^3 - 4*a*b^2*c^3 + 4*b^3*c^3 - 6*a^2*c^4 + 2*a*b*c^4 - b^2*c^4 + 2*a*c^5 - 2*b*c^5 + c^6

X(5843) lies on these lines: {3, 144}, {5, 7}, {9, 140}, {30, 511}, {84, 5763}, {142, 3628}, {355, 4312}, {390, 1483}, {546, 5805}, {548, 5732}, {550, 5759}, {1156, 1484}, {2096, 3940}, {2951, 5534}, {3339, 5587}, {3853, 5735}, {3927, 5657}, {5223, 5690}, {5730, 5731}


X(5844) =  INTERSECTION OF LINE X(5)X(8) AND THE INFINITY LINE

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 2*a^4 - 4*a^3*b - a^2*b^2 + 4*a*b^3 - b^4 - 4*a^3*c + 8*a^2*b*c - 4*a*b^2*c - a^2*c^2 - 4*a*b*c^2 + 2*b^2*c^2 + 4*a*c^3 - c^4

X(5844) lies on these lines: {1, 140}, {3, 145}, {4, 3621}, {5, 8}, {10, 3628}, {30, 511}, {36, 1317}, {40, 548}, {119, 4867}, {165, 3655}, {355, 546}, {495, 2099}, {496, 2098}, {547, 3679}, {549, 3241}, {550, 944}, {631, 3623}, {632, 3616}, {946, 3625}, {962, 3627}, {1000, 2346}, {1056, 1159}, {1145, 4511}, {1320, 1484}, {1385, 3244}, {1387, 1737}, {1656, 3617}, {2136, 5709}, {3036, 3814}, {3090, 4678}, {3488, 5729}, {3526, 3622}, {3576, 3654}, {3656, 4677}, {3680, 5763}, {3820, 5289}, {3861, 4301}, {4187, 5330}, {4534, 5526}, {5535, 5541}


X(5845) =  INTERSECTION OF LINE X(6)X(7) AND THE INFINITY LINE

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 2*a^4 - 2*a^3*b + a^2*b^2 - b^4 - 2*a^3*c + 2*b^3*c + a^2*c^2 - 2*b^2*c^2 + 2*b*c^3 - c^4

X(5845) lies on these lines: {6, 7}, {9, 141}, {30, 511}, {41, 3665}, {69, 144}, {101, 1565}, {142, 3589}, {150, 1146}, {193, 4440}, {348, 3207}, {390, 3242}, {597, 4795}, {599, 4370}, {903, 1992}, {1001, 4364}, {1350, 5759}, {1352, 5779}, {1386, 4667}, {2550, 4363}, {3416, 4901}, {3618, 4747}, {3620, 4473}, {3751, 4312}, {3763, 4748}, {3826, 4472}, {4904, 5540}, {5480, 5805}

X(5845) = isotomic conjugate of X(35158)
X(5845) = X(2)-Ceva conjugate of X(35093)
X(5845) = crossdifference of every pair of points on line X(6)X(926)


X(5846) =  INTERSECTION OF LINE X(6)X(8) AND THE INFINITY LINE

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = {-2*a^3 - a*b^2 + b^3 + b^2*c - a*c^2 + b*c^2 + c^3

X(5846) lies on these lines: {1, 141}, {6, 8}, {10, 1386}, {30, 511}, {31, 3703}, {37, 3883}, {42, 4030}, {44, 3717}, {63, 4884}, {69, 145}, {100, 5078}, {182, 5690}, {193, 3621}, {238, 3932}, {306, 3744}, {345, 3052}, {355, 5480}, {595, 3695}, {597, 3679}, {599, 3241}, {612, 3966}, {902, 3712}, {944, 1350}, {1086, 4645}, {1125, 3844}, {1211, 3920}, {1279, 3912}, {1352, 1482}, {1697, 5227}, {1738, 4395}, {1743, 4901}, {1834, 5015}, {1999, 4514}, {2550, 4361}, {2886, 4362}, {2975, 4265}, {3008, 3823}, {3035, 4434}, {3187, 5014}, {3244, 3631}, {3616, 3763}, {3617, 3618}, {3619, 3622}, {3620, 3623}, {3625, 4663}, {3629, 3632}, {3630, 3633}, {3685, 3943}, {3696, 4399}, {3704, 5255}, {3705, 3769}, {3722, 4062}, {3745, 4914}, {3755, 4852}, {3756, 5211}, {3782, 3891}, {3790, 4676}, {3811, 5396}, {3867, 5090}, {4153, 5305}, {4307, 4363}, {4349, 4670}, {4366, 4437}, {4388, 4415}, {4684, 4864}, {5082, 5800}, {5085, 5657}, {5241, 5297}


X(5847) =  INTERSECTION OF LINE X(6)X(10) AND THE INFINITY LINE

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = -2*a^3 - a^2*b + b^3 - a^2*c + b^2*c + b*c^2 + c^3

X(5847) lies on these lines: {1, 69}, {6, 10}, {8, 193}, {9, 4078}, {30, 511}, {31, 306}, {38, 4001}, {40, 3169}, {44, 3932}, {55, 4028}, {72, 3688}, {141, 1125}, {171, 3687}, {226, 4362}, {238, 3912}, {239, 1738}, {319, 5263}, {322, 4008}, {345, 1707}, {355, 1351}, {551, 599}, {581, 3811}, {597, 3828}, {612, 4104}, {613, 1210}, {896, 3977}, {902, 4062}, {940, 3966}, {946, 1352}, {950, 3056}, {976, 4101}, {984, 4416}, {1001, 4851}, {1100, 4026}, {1211, 3745}, {1279, 4966}, {1350, 4297}, {1353, 5690}, {1428, 3911}, {1698, 3618}, {1733, 3262}, {1757, 3717}, {1992, 3679}, {1999, 4388}, {2308, 5294}, {2321, 3923}, {2887, 3791}, {2895, 3920}, {3008, 3836}, {3011, 3936}, {3187, 3914}, {3242, 3244}, {3510, 3783}, {3578, 4981}, {3589, 3634}, {3616, 3620}, {3619, 3624}, {3626, 3629}, {3630, 3635}, {3631, 3636}, {3663, 4655}, {3703, 4641}, {3722, 4938}, {3755, 4660}, {3759, 4429}, {3769, 4417}, {3771, 4035}, {3772, 4138}, {3773, 4672}, {3821, 3946}, {3896, 4450}, {4085, 4856}, {4133, 5695}, {4265, 5267}, {4432, 4437}, {4656, 4703}, {4682, 5743}, {4769, 5028}, {4847, 4865}, {4909, 5625}, {5093, 5790}, {5138, 5745}

X(5847) = isogonal conjugate of X(28476)
X(5847) = crossdifference of every pair of points on line X(6)X(834)


X(5848) =  INTERSECTION OF LINE X(6)X(11) AND THE INFINITY LINE

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = -2*a^5 + 2*a^4*b + a^3*b^2 - a^2*b^3 - a*b^4 + b^5 + 2*a^4*c - 4*a^3*b*c + a^2*b^2*c + 2*a*b^3*c - b^4*c + a^3*c^2 + a^2*b*c^2 - 2*a*b^2*c^2 - a^2*c^3 + 2*a*b*c^3 - a*c^4 - b*c^4 + c^5

X(5848) lies on these lines: {6, 11}, {30, 511}, {69, 100}, {80, 3751}, {119, 1352}, {141, 3035}, {149, 193}, {611, 5820}, {1145, 3416}, {1317, 3242}, {1353, 1484}, {1386, 1387}, {3013, 3140}


X(5849) =  INTERSECTION OF LINE X(6)X(12) AND THE INFINITY LINE

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 2*a^6 - 3*a^4*b^2 + 2*a^2*b^4 - b^6 - 2*a^3*b^2*c + 2*a^2*b^3*c - 3*a^4*c^2 - 2*a^3*b*c^2 + b^4*c^2 + 2*a^2*b*c^3 + 2*a^2*c^4 + b^2*c^4 - c^6

X(5849) lies on these lines: {6, 12}, {30, 511}, {69, 2975}, {141, 4999}


X(5850) =  INTERSECTION OF LINE X(7)X(10) AND THE INFINITY LINE

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = -2*a^3 - 3*a^2*b + 4*a*b^2 + b^3 - 3*a^2*c - b^2*c + 4*a*c^2 - b*c^2 + c^3

X(5850) lies on these lines: {1, 144}, {6, 4353}, {7, 10}, {8, 4312}, {9, 1125}, {30, 511}, {72, 4298}, {142, 3634}, {190, 4684}, {210, 553}, {320, 3717}, {390, 3244}, {946, 5779}, {954, 993}, {962, 3062}, {984, 3664}, {997, 4321}, {1001, 3636}, {1738, 4887}, {1743, 4310}, {1757, 3008}, {2325, 4966}, {2550, 3626}, {2951, 5493}, {3243, 3635}, {3475, 3929}, {3663, 3751}, {3685, 4480}, {3811, 5732}, {3817, 5817}, {3874, 5728}, {3881, 5572}, {3925, 3982}, {3946, 4663}, {4021, 4649}, {4031, 4413}, {4297, 5759}, {4349, 4644}, {4356, 4419}, {4645, 4899}, {4860, 5316}, {5715, 5811}


X(5851) =  INTERSECTION OF LINE X(7)X(11) AND THE INFINITY LINE

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = -2*a^5 + 2*a^4*b + 5*a^3*b^2 - 7*a^2*b^3 + a*b^4 + b^5 + 2*a^4*c - 12*a^3*b*c + 7*a^2*b^2*c + 6*a*b^3*c - 3*b^4*c + 5*a^3*c^2 + 7*a^2*b*c^2 - 14*a*b^2*c^2 + 2*b^3*c^2 - 7*a^2*c^3 + 6*a*b*c^3 + 2*b^2*c^3 + a*c^4 - 3*b*c^4 + c^5

X(5851) lies on these lines: {7, 11}, {9, 1768}, {30, 511}, {80, 4312}, {100, 144}, {104, 1001}, {119, 3826}, {153, 2550}, {390, 1317}, {1145, 5223}, {1387, 5542}, {2951, 5528}, {3062, 3254}, {5083, 5572}, {5220, 5657}, {5289, 5698}


X(5852) =  INTERSECTION OF LINE X(7)X(12) AND THE INFINITY LINE

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 2*a^3 + 2*a^2*b - 3*a*b^2 - b^3 + 2*a^2*c + b^2*c - 3*a*c^2 + b*c^2 - c^3

X(5852) lies on these lines: {7, 12}, {9, 583}, {30, 511}, {144, 1001}, {190, 4966}, {320, 3932}, {329, 3816}, {345, 3632}, {553, 3740}, {1086, 1757}, {2550, 4678}, {3035, 3218}, {3058, 4430}, {3244, 3772}, {3631, 3773}, {3650, 3746}, {3663, 4663}, {4480, 4684}


X(5853) =  INTERSECTION OF LINE X(8)X(9) AND THE INFINITY LINE

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (-a + b + c)*(2*a^2 - a*b + b^2 - a*c - 2*b*c + c^2)

X(5853) lies on these lines: {1, 142}, {2, 3158}, {7, 145}, {8, 9}, {10, 1001}, {11, 3689}, {30, 511}, {40, 5768}, {55, 4847}, {100, 2078}, {144, 3621}, {149, 908}, {190, 4899}, {200, 497}, {210, 3058}, {226, 2900}, {238, 3939}, {306, 5014}, {480, 1837}, {553, 3873}, {673, 3912}, {936, 1058}, {938, 1706}, {944, 5732}, {946, 3811}, {954, 3419}, {956, 4304}, {958, 4314}, {1000, 5785}, {1043, 4483}, {1086, 4864}, {1125, 3813}, {1210, 5687}, {1279, 3008}, {1320, 3254}, {1445, 4848}, {1449, 4344}, {1482, 5805}, {2346, 5178}, {2348, 3021}, {2551, 4882}, {2885, 3622}, {3011, 3722}, {3057, 3059}, {3242, 3663}, {3244, 4780}, {3421, 3586}, {3445, 4678}, {3476, 4321}, {3486, 4326}, {3555, 4292}, {3625, 4133}, {3626, 3773}, {3632, 5223}, {3633, 4312}, {3635, 4743}, {3687, 3996}, {3706, 4030}, {3711, 4679}, {3748, 3925}, {3878, 4523}, {3914, 3938}, {3932, 4702}, {3957, 5249}, {3966, 4061}, {3985, 4541}, {4001, 4450}, {4028, 4865}, {4046, 4914}, {4082, 4387}, {4307, 4667}, {4342, 5289}, {4358, 4939}, {4512, 5325}, {4527, 4701}, {4535, 4746}, {4538, 4662}, {4645, 4684}, {5218, 5231}, {5263, 5750}, {5572, 5836}

X(5853) = isogonal conjugate of X(1477)
X(5853) = isotomic conjugate of X(35160)
X(5853) = X(2)-Ceva conjugate of X(35111)


X(5854) =  INTERSECTION OF LINE X(8)X(11) AND THE INFINITY LINE

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (a - b - c)*(2*a^3 - 2*a^2*b - 3*a*b^2 + b^3 - 2*a^2*c + 8*a*b*c - b^2*c - 3*a*c^2 - b*c^2 + c^3)

X(5854) lies on these lines: {1, 1145}, {8, 11}, {10, 1387}, {30, 511}, {46, 2136}, {56, 100}, {80, 3632}, {119, 1482}, {149, 3436}, {214, 3244}, {644, 3039}, {1000, 1001}, {1146, 4919}, {1828, 1862}, {1846, 1897}, {3254, 4900}, {3829, 5790}, {3871, 4996}, {4738, 4939}, {4861, 4999}


X(5855) =  INTERSECTION OF LINE X(8)X(12) AND THE INFINITY LINE

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = -2*a^4 + 4*a^3*b + a^2*b^2 - 4*a*b^3 + b^4 + 4*a^3*c - 4*a^2*b*c + 2*a*b^2*c + a^2*c^2 + 2*a*b*c^2 - 2*b^2*c^2 - 4*a*c^3 + c^4

X(5855) lies on these lines: {1, 4999}, {8, 12}, {30, 511}, {55, 145}, {1317, 4996}, {1329, 5730}, {1482, 3813}, {2161, 4969}, {3035, 4511}, {3036, 4867}, {3039, 5526}, {3340, 5794}, {3419, 3632}, {3428, 3913}, {3434, 3621}, {3633, 5119}, {3816, 5289}, {3829, 5603}, {4930, 5790}, {5173, 5836}


X(5856) =  INTERSECTION OF LINE X(9)X(11) AND THE INFINITY LINE

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (a - b - c)*(2*a^4 - 2*a^3*b - a^2*b^2 + b^4 - 2*a^3*c + 4*a^2*b*c - 4*b^3*c - a^2*c^2 + 6*b^2*c^2 - 4*b*c^3 + c^4)

X(5856) lies on these lines: {7, 100}, {9, 11}, {30, 511}, {80, 5223}, {104, 5759}, {119, 5805}, {142, 3035}, {144, 149}, {214, 5542}, {390, 1320}, {956, 5698}, {1001, 1387}, {1086, 3939}, {1145, 2550}, {1317, 3243}, {3174, 5528}, {4312, 5541}


X(5857) =  INTERSECTION OF LINE X(9)X(12) AND THE INFINITY LINE

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = -2*a^6 + 2*a^5*b + 3*a^4*b^2 - 2*a^3*b^3 - 2*a^2*b^4 + b^6 + 2*a^5*c + 2*a^3*b^2*c - 2*a^2*b^3*c - 2*b^5*c + 3*a^4*c^2 + 2*a^3*b*c^2 - b^4*c^2 - 2*a^3*c^3 - 2*a^2*b*c^3 + 4*b^3*c^3 - 2*a^2*c^4 - b^2*c^4 - 2*b*c^5 + c^6

X(5857) lies on these lines: {7, 2975}, {9, 12}, {30, 511}, {142, 4999}, {219, 4331}, {954, 5698}, {956, 4295}, {4312, 5832}, {5248, 5719}


X(5858) =  CENTROID OF TRIANGLE T(1,3)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = -2a2 + b2 + c2 + 2(3-1/2)S

Peter Moses (June 27, 2014) constructed families of triangles T(k,n) and U(k,n) as follows. On side BC of a triangle ABC, erect a regular n-sided polygon, externally. Starting at B and going around the polygon until reaching C, label the vertices v(0), v(1), ..., v(n-1), so that line v(0)v(n-1) = BC, and if n is even, then the lines L(A,k,n) = v(k)v(n-k-1), for k = 1, ..., (n-2)/n, are parallel to BC. If n is odd, let L(A,k,n), for k = (n-1)/2, be the line through v((n-1)/2)) that is parallel to BC. Define lines L(B,k,n) and L(C,k,n) cyclically. Then for each k from 1 to floor((n-1)/2), the lines L(A,k,n), L(B,k,n), L(C,k,n) form a triangle T(k,n) homothetic to ABC. T(1,4) and U(1,4) are the outer and inner Grebe triangles, respectively. Triangle centers defined from T(k,n) include the following, given by 1st barycentrics:

centroid of T(k,n): -2a2 + b2 + c2 + S*[cot(kπ/n)) - cot(kπ/n+π/n)]
circumcenter of T(k,n): a2[2S2A - 2SBSC + SSA csc(kπ/n) csc(π/n+kπ/n) sin(π/n)]
orthocenter of T(k,n): a2SBSC - SA(S2B + S2C) + SSBSC[cot(kπ/n)) - cot(kπ/n+π/n)]
nine-point center of T(k,n): 2SA(a2SA - S2B - S2C) + S(SBSC + S2)[cot(kπ/n)) - cot(kπ/n+π/n)]

If the polygons are erected internally instead of externally, the resulting triangles are denoted by U(k,n), with triangle centers given by changing S to - S in the above first barycentrics:
centroid of U(k,n): -2a2 + b2 + c2 - S*[cot(kπ/n)) - cot(kπ/n+π/n)]
circumcenter of U(k,n): a2[2S2A - 2SBSC - SSA csc(kπ/n) csc(π/n+kπ/n) sin(π/n)]
orthocenter of U(k,n): a2SBSC - SA(S2B + S2C) - SSBSC[cot(kπ/n)) - cot(kπ/n+π/n)]
nine-point center of U(k,n): 2SA(a2SA - S2B - S2C) - S(SBSC + S2)[cot(kπ/n)) - cot(kπ/n+π/n)]

Note that T(1,6) = T(1,3) and U(1,6) = U(1,3).

X(5858) lies on these lines: {2, 6}, {3, 533}, {381, 532}, {530, 3830}, {531, 3534}, {538, 3104}, {1351, 5617}

X(5858) = reflection of X(5859) in X(2)
X(5858) = anticomplement of X(33458)


X(5859) =  CENTROID OF TRIANGLE U(1,3)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = -2a2 + b2 + c2 - 2(3-1/2)S

The triangle U(1,3) is defined at X(5858).

X(5859) lies on these lines: {2, 6}, {3, 532}, {381, 533}, {530, 3534}, {531, 3830}, {538, 3105}, {1351, 5613}

X(5859) = reflection of X(5858) in X(2)
X(5859) = anticomplement of X(33459)


X(5860) =  CENTROID OF TRIANGLE T(1,4)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = -2a2 + b2 + c2 + S

The triangle T(1,4), defined at X(5858), is also the outer Grebe triangle..

X(5860) lies on these lines: {2, 6}, {30, 1160}, {519, 3640}, {637, 754}, {1328, 5485}, {3241, 5604}, {3679, 5588}

X(5860) = reflection of X(5861) in X(2)


X(5861) =  CENTROID OF TRIANGLE U(1,4)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = -2a2 + b2 + c2 - S

The triangle U(1,4), defined at X(5858), is also the inner Grebe triangle.

X(5861) lies on these lines: {2, 6}, {30, 1161}, {519, 3641}, {638, 754}, {1327, 5485}, {3241, 5605}, {3679, 5589}

X(5861) = reflection of X(5860) in X(2)


X(5862) =  CENTROID OF TRIANGLE T(2,6)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = -2a2 + b2 + c2 + 31/2S

The triangle T(2,6) is defined at X(5858).

X(5862) lies on these lines: {2, 6}, {4, 532}, {376, 533}

X(5862) = reflection of X(5863) in X(2)


X(5863) =  CENTROID OF TRIANGLE U(2,6)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = -2a2 + b2 + c2 - 31/2S

The triangle U(2,6) is defined at X(5858).

X(5863) lies on these lines: {2, 6}, {4, 533}, {376, 532}

X(5863) = reflection of X(5862) in X(2)


X(5864) =  CIRCUMCENTER OF TRIANGLE T(1,3)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2[2S2A - 2SBSC + SSA(4/3)1/2]

The triangle T(1,3) is defined at X(5858).

X(5864) lies on these lines: {3, 6}, {4, 298}, {20, 3181}, {383, 634}, {394, 3130}, {627, 1080}

X(5864) = reflection of X(5865) in X(3)


X(5865) =  CIRCUMCENTER OF TRIANGLE U(1,3)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2[2S2A - 2SBSC - SSA(4/3)1/2]

The triangle U(1,3) is defined at X(5858).

X(5865) lies on these lines: {3, 6}, {4, 299}, {20, 3180}, {383, 628}, {394, 3129}, {633, 1080}

X(5865) = reflection of X(5864) in X(3)


X(5866) =  INVERSE-IN-CIRCUMCIRCLE OF X(69)

Barycentrics   a2(b2 + c2 - a2)[a6 - a2(b4 - 5b2c2 + c4) - (b2 + c2)(a4 - b4 + 3b2c2 - c4)] : :   (Richard Hilton, March 2, 2015)

X(5866) lies on these lines: {3,69}, {25,5203}, {99,186}, {187,4558}, {325,2071}, {378,1007}, {669,3265}, {2373,3266}


X(5867) =  INVERSE-IN-CIRCUMCIRCLE OF X(81)

Barycentrics   a2(a + b)(a + c)[b3(2b2 + 3bc + 2c2) - a(2b4 + 5b3c + 7b2c2 + 5bc3 + 2c4) - bc(b + c)[3(b2 + c2) - a2]] : :    (Richard Hilton, March 2, 2015)

X(5867) lies on these lines: {3,81}, {31,501}, {669,2106}


X(5868) =  ORTHOCENTER OF TRIANGLE T(1,3)

Barycentrics    a^2 SB SC+(2 S SB SC)/Sqrt[3]-SA (SB^2+SC^2) : :
Barycentrics    3 (2 a^6-a^4 b^2-b^6-a^4 c^2+b^4 c^2+b^2 c^4-c^6)+2 Sqrt[3] (a^2+b^2-c^2) (a^2-b^2+c^2) S : :
Barycentrics    a2SBSC - SA(S2B + S2C) + SSBSC : :

The triangle U(1,3) is defined at X(5858).

X(5868) lies on these lines: {3, 618}, {4, 6}, {20, 298}, {64, 2993}, {154, 470}, {463, 1899}, {471, 1853}, {633, 1350}, {3146, 3181}

X(5868) = reflection of X(5869) in X(4)


X(5869) =  ORTHOCENTER OF TRIANGLE U(1,3)

Barycentrics   a^2 SB SC-(2 S SB SC)/Sqrt[3]-SA (SB^2+SC^2) : :
Barycentrics   3 (2 a^6-a^4 b^2-b^6-a^4 c^2+b^4 c^2+b^2 c^4-c^6)-2 Sqrt[3] (a^2+b^2-c^2) (a^2-b^2+c^2) S : :
Barycentrics   a2SBSC - SA(S2B + S2C) - SSBSC : :

The triangle U(1,3) is defined at X(5858).

X(5869) = reflection of X(5868) in X(4)

X(5869) lies on these lines: {3, 619}, {4, 6}, {20, 299}, {64, 2992}, {154, 471}, {462, 1899}, {470, 1853}, {634, 1350}, {3146, 3180}


X(5870) =  ORTHOCENTER OF TRIANGLE T(1,4)

Barycentrics   2a6 - a4(b2 + c2 - S) - (b2 - c2)2(b2 + c2 + S) (César Lozada, Dec. 20, 2013)
Barycentrics    a^2 SB SC+S SB SC-SA (SB^2+SC^2) : :
Barycentrics    a2SBSC - SA(S2B + S2C) + SSBSC : :

The triangle T(1,4), defined at X(5858), is also the outer Grebe triangle. X(5870) is the outer-Grebe-triangle-orthologic center of the following triangles: ABC, Euler, anticomplementary, and inner Grebe. (César Lozada, ADGEOM #978, Dec. 20, 2013)

X(5870) lies on these lines: {3, 5590}, {4, 6}, {20, 488}, {30, 1160}, {40, 5688}, {147, 487}, {154, 3535}, {184, 3127}, {185, 1162}, {486, 3424}, {489, 3926}, {515, 3640}, {944, 5604}, {1853, 3536}, {1899, 5200}, {5588, 5691}

X(5870) = reflection of X(5871) in X(4)


X(5871) =  ORTHOCENTER OF TRIANGLE U(1,4)

Barycentrics   a2SBSC - SA(S2B + S2C) - SSBSC : :
Barycentrics   2a6 - a4(b2 + c2 + S) - (b2 - c2)2(b2 + c2 - S) : : (César Lozada, Dec. 20, 2013)

The triangle U(1,4), defined at X(5858), is also the inner Grebe triangle. X(5871) is the inner-Grebe-triangle-orthologic center of the following triangles: ABC, Euler triangle, anticomplementary triangle, and outer Grebe triangle. (César Lozada, ADGEOM #978, Dec. 20, 2013)

X(5871) lies on these lines: {3, 5591}, {4, 6}, {20, 487}, {30, 1161}, {40, 5689}, {147, 488}, {154, 3536}, {184, 3128}, {185, 1163}, {485, 3424}, {490, 3926}, {515, 3641}, {944, 5605}, {1853, 3535}, {5589, 5691}

X(5871) = reflection of X(5870) in X(4)


X(5872) =  NINE-POINT CENTER OF TRIANGLE T(1,3)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 2SA(a2SA - S2B - S2C) + S(SBSC + 3-1/2S2)

The triangle T(1,3) is defined at X(5858).

X(5872) lies on these lines: {3, 298}, {4, 3181}, {5, 6}, {18, 5613}, {61, 5617}, {182, 635}, {2782, 3104}

X(5872) = reflection of X(5873) in X(5).


X(5873) =  NINE-POINT CENTER OF TRIANGLE U(1,3)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 2SA(a2SA - S2B - S2C) - S(SBSC + 3-1/2S2)

The triangle U(1,3) is defined at X(5858).

X(5873) lies on these lines: {3, 299}, {4, 3180}, {5, 6}, {17, 5617}, {62, 5613}, {182, 636}, {2782, 3105}

X(5873) = reflection of X(5872) in X(5).


X(5874) =  NINE-POINT CENTER OF TRIANGLE T(1,4)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 2SA(a2SA - S2B - S2C) + S(SBSC + S2)

The triangle T(1,4), defined at X(5858), is also the outer Grebe triangle.

X(5874) lies on these lines: {3, 1270}, {5, 6}, {26, 5594}, {30, 1160}, {140, 5590}, {355, 5588}, {952, 3640}, {1483, 5604}, {5688, 5690}

X(5874) = reflection of X(5875) in X(5)


X(5875) =  NINE-POINT CENTER OF TRIANGLE U(1,4)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 2SA(a2SA - S2B - S2C) - S(SBSC + S2)

The triangle U(1,4) is defined at X(5858), is also the inner Grebe triangle.

X(5875) lies on these lines: {3, 1271}, {5, 6}, {26, 5595}, {30, 1161}, {140, 5591}, {355, 5589}, {952, 3641}, {1483, 5605}, {5689, 5690}

X(5875) = reflection of X(5874) in X(5)


X(5876) =  INTERSECTION OF LINES X(3)X(74) AND X(4)X(93)

Barycentrics   a2[a6(b2 + c2) - 3a4(b4 + c4) + 3a2(b6 + c6) - (b2 - c2)2(b4 + 3b2c2 + c4)] : :   (Richard Hilton, March 2, 2015)

X(5876) is the orthocenter of the triangle A*B*C* defined at X(5694), and X(5876) is the nine-point center of the X(3)-Fuhrmann triangle; see X(5613). (Randy Hutson, July 7, 2014)

X(5876) is the radical center of the orthocentroidal circles of the adjunct anti-altimedial triangles. (Randy Hutson, November 2, 2017)

X(5876) lies on these lines: {3,74}, {4,93}, {5,389}, {30,5562}, {51,3850}, {52,546}, {140,185}, {143,381}, {511,3627}, {548,3917}, {550,1216}, {568,3091}, {578,1493}, {1498,2918}, {1657,2979}, {2779,5694}, {2807,5690}, {3060,3843}, {3518,3581}, {3567,3851}, {3845,5446}, {5072,5640}

X(5876) = complement of X(34783)


X(5877) =  INTERSECTION OF LINES X(4)X(523) AND X(5)X(6)

Barycentrics   a12 + 5a8b2c2 - [4a4 + (b2 - c2)2](b2 - c2)(b6 - c6) - a6(b2 + c2)(2a4 - 3b4 + 7b2c2 - 3c4) + 3a2(b2 - c2)2(b6 + c6) : :    (Richard Hilton, March 2, 2015)

X(5877) is the similitude center of these equilateral triangles: X(15)-Fuhrmann and X(16)-Fuhrmann. (Randy Hutson, July 7, 2014)

X(5877) lies on these lines: {4,523}, {5,6}, {1899,3134}


X(5878) =  INTERSECTION OF LINES X(4)X(51) AND X(5)X(64)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = S2A(20R2 - 3Sω ) + SA(3S2ω - 20R2Sω + S2) + S2(16R2 - 3Sω)

X(5878) = (X(3) of X(20)-Fuhrmann triangle). (Randy Hutson, July 7, 2014)

X(5878) is the orthologic center of the Carnot (aka Johnson) and half-altitude (midheight) triangles. (César Lozada, Perspective-Orthologic-Parallelogic.pdf, ADGEOM #978, December 20, 2013)

X(5878) lies on these lines: {2,3357}, {3,1661}, {4,51}, {5,64}, {20,110}, {30,155}, {66,3521}, {68,5663}, {113,3548}, {154,550}, {382,1351}, {546,1853}, {1181,1885}, {1204,3542}, {3292,3529}

X(5878) = isogonal conjugate of X(5879)
X(5878) = anticomplement of X(3357)


X(5879) =  X(4)-VERTEX CONJUGATE OF X(20)

Barycentrics   a^2*(a^10+(b^2-3*c^2)*a^8-2*(4*b^4-4*b^2*c^2-c^4)*a^6+2*(b^2-c^2)*(4*b^4+8*b^2*c^2-c^4)*a^4-(b^2-c^2)*(b^6-3*c^6+(13*b^2+5*c^2)*b^2*c^2)*a^2-(b^4+4*b^2*c^2+c^4)*(b^2-c^2)^3)*(a^10-(3*b^2-c^2)*a^8+2*(b^4+4*b^2*c^2-4*c^4)*a^6+2*(b^2-c^2)*(b^4-8*b^2*c^2-4*c^4)*a^4-(b^2-c^2)*(3*b^6-c^6-(5*b^2+13*c^2)*b^2*c^2)*a^2+(b^4+4*b^2*c^2+c^4)*(b^2-c^2)^3) : :

Let A′B′C′ be the half-altitude triangle of ABC. Let LA be the reflection of line B′C′ in line BC, and define LB and LC cyclically. Let A″ = LB∩LC, B″ = LC∩LA, C″ = LA∩LB. The lines AA″, BB″, CC″ concur in X(5879). (Randy Hutson, July 18, 2014)

X(5879) lies on this line: {1093,1294}

X(5879) = isogonal conjugate of X(5878)


X(5880) =  X(6) OF FUHRMANN TRIANGLE

Barycentrics    a3 - b3 - c3 + 2abc + b2c + bc2 : :
X(5880) = 3*X(7) + X(8)

X(5880) lies on these lines: {1,528}, {2,1155}, {3,142}, {4,3812}, {5,1158}, {6,1738}, {7,8}, {9,46}, {10,527}, {11,3306}, {19,5829}, {40,5735}, {55,1004}, {57,2886}, {63,3925}, {78,3649}, {171,3772}, {200,4654}, {226,1260}, {241,4331}, {329,3740}, {354,3434}, {355,2801}, {390,2646}, {405,1770}, {443,960}, {495,5856}, {497,3742}, {519,1159}, {553,4847}, {612,3782}, {673,1492}, {740,4851}, {750,3120}, {894,4429}, {908,4413}, {940,3914}, {958,4292}, {966,3846}, {1056,3880}, {1373,3641}, {1374,3640}, {1386,4000}, {1445,1454}, {1478,3753}, {1479,5439}, {1633,4223}, {1699,3816}, {1706,5290}, {1714,5165}, {1737,5729}, {1788,5177}, {1837,2475}, {1861,1892}, {1890,4185}, {2182,5819}, {2345,3844}, {2887,3980}, {3035,5219}, {3058,4666}, {3243,3633}, {3244,4780}, {3255,5560}, {3333,3813}, {3419,5696}, {3436,3698}, {3579,3824}, {3617,4741}, {3662,5263}, {3664,3755}, {3729,3932}, {3836,3923}, {3841,5791}, {3872,5434}, {3873,4863}, {3886,4966}, {3912,5695}, {3922,5554}, {3946,4349}, {3966,4359}, {4001,4042}, {4082,4942}, {4361,5847}, {4415,5268}, {4644,4663}, {4691,5850}, {4854,5287}, {5218,5766}, {5223,5852}, {5587,5851}

X(5880) = complement of X(5698)


X(5881) =  DARBOUX IMAGE OF X(40)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 3 a^4-3 a^3 b-a^2 b^2+3 a b^3-2 b^4-3 a^3 c+6 a^2 b c-3 a b^2 c-a^2 c^2-3 a b c^2+4 b^2 c^2+3 a c^3-2 c^4
Barycentrics   g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = 3a/(2s) - SBSC/S2 - 1
X(5881) = 3X(1) - 4X(5)      (barycentrics and combo, Peter Moses, July 14, 2014)

Let A′ be the reflection of X(40) in A and let A″ be the reflection of X(40) in line BC. Define B′, C′, B″, and C″ cyclically. The lines A′A″, B′B″, C′C″ concur in X(5881). Also, X(5881) = (X(20) of the Fuhrmann triangle). (Randy Hutson, July 7, 2014)

More generally, suppose that X is a point in the plane of triangle ABC, and let A′ be the reflection of X in A and A″ be the reflection of X in line BC. Define B′, C′, B″, and C″ cyclically. The triangles A′B′C′ and A″B″C″ are perspective if X lies on the Darboux cubic. The perspector is here called the Darboux image of X. The appearance of (i,j) in the following list means that X(j) is the Darboux image of the point X(i) on the Darboux cubic: (1,4312), (3,381), (4,4), (20,5921), (40,5881), (64,5922), (80,5923), (1490,5924), (1498,5925).

If X is on the Darboux cubic and P is the perspector of ABC and the pedal triangle of X, then the Darboux image of X is the reflection of X in P. (Randy Hutson, July 18, 2014)

X(5881) lies on these lines: {1,5}, {3,3679}, {4,519}, {8,20}, {10,631}, {30,4677}, {46,4325}, {57,4317}, {78,5176}, {100,5450}, {140,3655}, {145,946}, {165,548}, {376,4669}, {382,517}, {516,3625}, {518,5735}, {546,3656}, {550,3654}, {551,3090}, {573,4034}, {632,3653}, {912,4338}, {962,3621}, {996,5767}, {1012,3913}, {1071,5836}, {1125,5067}, {1210,3476}, {1385,1698}, {1420,1737}, {1478,3340}, {1482,1699}, {1490,3419}, {1532,3813}, {1697,4309}, {1750,4863}, {1766,4007}, {1788,4311}, {1907,5090}, {2077,5687}, {3057,3586}, {3091,3241}, {3244,3855}, {3245,4333}, {3247,5816}, {3524,4745}, {3525,3828}, {3528,3626}, {3529,5493}, {3560,3746}, {3617,5731}, {3624,5070}, {3635,3817}, {3853,5844}, {3872,5086}, {3899,5694}, {4293,4848}, {4299,5128}, {4330,5119}, {4654,5270}, {4882,5787}

X(5881) = reflection of X(i) in X(j) for these (i,j); (1,355), (40,8)
X(5881) = anticomplement of X(5882)
X(5881) = exsimilicenter of hexyl and 1st Steiner circles; the insimilicenter is X(9624)
X(5881) = {X(1),X(5)}-harmonic conjugate of X(9624)


X(5882) =  COMPLEMENT OF X(5881)

Trilinears    3 r - 2 R cos B cos C : :
Barycentrics    4 a^4-3 a^3 b-3 a^2 b^2+3 a b^3-b^4-3 a^3 c+6 a^2 b c-3 a b^2 c-3 a^2 c^2-3 a b c^2+2 b^2 c^2+3 a c^3-c^4 : :
Barycentrics    3a/(2s) - SBSC/S2 : :
X(5882) = 3X(1) - X(4)      (barycentrics and combo, Peter Moses, July 14, 2014)

Let A′B′C′ be the Euler triangle. Let LA be the reflection of line B′C′ in line BC, and define LB and LC cyclically. Let A″ = LB∩LC, B″ = LC∩LA, C″ = LA∩LB. Triangle A″B″C″ is homothetic to ABC at X(4), and X(5882) = X(1)-of-A″B″C″.

X(5882) lies on these lines: {1,4}, {3,519}, {5,551}, {8,3523}, {10,140}, {20,3241}, {30,4301}, {35,104}, {36,4848}, {40,145}, {55,5450}, {65,4311}, {84,4313}, {119,3825}, {165,3633}, {355,1125}, {382,3656}, {516,1482}, {517,550}, {549,4669}, {553,4317}, {572,2321}, {631,3679}, {912,3878}, {942,4315}, {962,3623}, {993,5837}, {997,5534}, {1006,5258}, {1012,3303}, {1071,1317}, {1158,1697}, {1210,1319}, {1388,1837}, {1389,5425}, {1698,3533}, {2077,3871}, {2099,4292}, {2360,4248}, {2801,3884}, {2829,4342}, {2894,4861}, {3086,5727}, {3146,5734}, {3149,3304}, {3333,4308}, {3340,4293}, {3524,4677}, {3526,3653}, {3577,5558}, {3579,5844}, {3601,5768}, {3616,5056}, {3622,5068}, {3624,5818}, {3625,5690}, {3632,5657}, {3634,5790}, {3636,3851}, {3671,5842}, {3817,3850}, {3877,5693}, {4745,5054}, {5316,5531}

X(5882) = X(40) of X(1)-Brocard triangle
X(5882) = {X(1),X(4)}-harmonic conjugate of X(13464)

X(5883) =  X(51) OF FUHRMANN TRIANGLE

Trilinears    a^2(b + c) + 2abc - (b + c)(b^2 - 3bc + c^2) : :

Let T be the orthic triangle of the Fuhrmann triangle (whose vertices are the incenters of the three altimedial triangles); then X(5883) = centroid of T. Let T' be the triangle whose vertices are the centroids of the altimedial triangles; then X(5883) = incenter of T'. (Randy Hutson, July 18, 2014)

X(5883) lies on these lines: {1,88}, {2,758}, {4,3255}, {5,2771}, {8,3881}, {10,141}, {21,3336}, {42,1739}, {46,5248}, {51,2392}, {57,993}, {58,409}, {65,392}, {72,3634}, {79,5046}, {191,5047}, {210,3828}, {226,3814}, {354,519}, {373,2842}, {405,3647}, {484,1621}, {513,4049}, {517,549}, {597,2836}, {956,4860}, {958,5708}, {960,4084}, {986,3743}, {997,5437}, {1006,5535}, {1159,5289}, {1445,3339}, {1698,3678}, {1737,3822}, {1835,5136}, {1844,5125}, {1963,4658}, {2650,3216}, {2690,2699}, {2801,5587}, {2975,3337}, {3035,5719}, {3057,3636}, {3090,5693}, {3218,5251}, {3219,4880}, {3244,5045}, {3290,3997}, {3555,3626}, {3616,3884}, {3622,5697}, {3624,3869}, {3628,5694}, {3632,3889}, {3635,3922}, {3649,4187}, {3660,4315}, {3679,3873}, {3681,3894}, {3720,4424}, {3740,4134}, {3848,4744}, {3876,3901}, {3880,5049}, {3887,4809}, {4002,4691}, {4067,5044}, {4511,5425}, {4666,5119}, {4675,5725}, {4731,4745}, {5083,5252}, {5131,5426}

X(5883) = complement of X(5692)
X(5883) = centroid of the six touchpoints of the Odehnal tritangent circles and the sidelines of ABC


X(5884) =  X(52) OF FUHRMANN TRIANGLE

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a[a^5(b + c) - a^4(b^2 + c^2) - a^3(b + c)(2b^2 - 3bc + 2c^2) + a^2(b - c)^2(2b^2 + 3bc + 2c^2) + a(b - c)^2(b^3 + c^3) - (b^2 - c^2)^2(b^2 - bc + c^2)] (Randy Hutson, January 29, 2015)

Let P be a point on the circumcircle. Let A′ be the orthogonal projection of P on the A-altitude, and define B′ and C′ cyclically. As P traces the circumcircle, the locus of the incenter of A′B′C′ is an ellipse with center X(5884). (Antreas Hatzipolkis, Hyancinthos #20792, February 6, 2012, and subsequent postings)

Let T be the orthic triangle of the Fuhrmann triangle (whose vertices are the incenters of the three altimedial triangles); then X(5884) = orthocenter of T. Let T' be the triangle whose vertices are the orthocenters of the altimedial triangles; then X(5884) = incenter of T'. (Randy Hutson, July 18, 2014)

X(5884) lies on these lines: {1,104}, {2,5693}, {3,758}, {4,79}, {5,2771}, {10,912}, {40,3868}, {52,2392}, {65,515}, {73,1735}, {117,1425}, {140,5694}, {165,3901}, {185,2779}, {191,1006}, {355,2801}, {411,5535}, {496,942}, {517,550}, {572,1761}, {580,1046}, {581,986}, {631,5692}, {944,3474}, {1064,3670}, {1210,1858}, {1385,3878}, {1482,3881}, {1490,3339}, {1656,3833}, {1765,2294}, {2096,3486}, {2695,2719}, {3149,5221}, {3359,3811}, {3576,3869}, {3812,5777}, {3918,5790}, {4295,5768}

X(5884) = complement of X(5693)


X(5885) =  X(143) OF FUHRMANN TRIANGLE

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a[a^5(b + c) - a^4(b^2 + c^2) - a^3(b + c)(2b^2 - 3bc + 2c^2) + 2a^2(b^4 - b^3c - b^2c^2 - bc^3 + c^4) + a(b - c)^2(b^3 + c^3) - (b - c)^4(b + c)^2] (Randy Hutson, January 29, 2015)

X(5885) is the nine-point center of the Fuhrmann triangle of the orthic triangle of the Fuhrmann triangle. (Randy Hutson, July 7, 2014)

Let T be the orthic triangle of the Fuhrmann triangle (whose vertices are the incenters of the three altimedial triangles); then X(5885) = X(5)-of-T. Let T' be the triangle whose vertices are the nine-point centers of the altimedial triangles; then X(5885) = incenter of T'. (Randy Hutson, July 18, 2014)

X(5885) lies on these lines: {1,3}, {2,5694}, {5,2771}, {140,758}, {143,2392}, {575,2836}, {912,3812}, {952,3754}, {1656,5693}, {1772,2594}, {3526,5692}, {3628,3833}, {3874,5690}, {3881,5844}

X(5885) = complement of X(5694)


X(5886) =  X(381) OF FUHRMANN TRIANGLE

Trilinears    r + R cos(B - C) : :
Barycentrics    a^4 - a^3(b + c) - 2a^2(b^2 - bc + c^2) + a(b - c)^2(b + c) + (b^2 - c^2)^2 : :

Let A′ be the nine-point center of the triangle IBC, where I = X(1), and define B′ and C′ cyclically. The triangle A′B′C′ is homothetic to the Fuhrmann triangle at X(1), and X(5886) is the centroid of A′B′C′.

X(5886) lies on these lines: {{1,5}, {2,392}, {3,142}, {4,1385}, {8,3090}, {10,1482}, {30,1699}, {36,1836}, {40,140}, {46,5433}, {56,3560}, {65,499}, {79,5427}, {84,3255}, {145,5056}, {165,549}, {226,999}, {230,1572}, {238,5398}, {354,912}, {381,515}, {382,4297}, {405,5812}, {475,1872}, {498,3057}, {519,5055}, {546,5691}, {547,3679}, {631,962}, {908,956}, {942,3086}, {944,3091}, {960,5791}, {995,3772}, {997,2886}, {1000,4345}, {1006,5284}, {1012,1519}, {1056,5226}, {1058,5703}, {1064,3720}, {1100,5816}, {1104,5713}, {1108,5747}, {1319,1478}, {1352,1386}, {1389,5330}, {1479,2646}, {1537,3306}, {1594,5090}, {1698,3628}, {1737,2099}, {1770,5204}, {1829,3542}, {1902,3541}, {2095,5745}, {3241,5071}, {3244,5079}, {3333,5843}, {3338,3649}, {3359,5437}, {3417,3615}, {3419,4511}, {3421,5748}, {3428,4423}, {3434,5440}, {3474,5122}, {3475,5049}, {3487,5045}, {3488,5274}, {3526,4301}, {3600,5714}, {3634,5070}, {3636,3851}, {3646,5763}, {3671,5708}, {3811,3813}, {3868,5694}, {3897,5046}, {3940,4847}, {4221,5333}, {4293,5126}, {4305,5225}, {4323,5704}, {4679,5251}, {5010,5444}, {5044,5761}, {5067,5734}, {5119,5432}, {5436,5715}, {5542,5779}

X(5886) = complement of X(5657)
X(5886) = {X(1),X(5)}-harmonic conjugate of X(355)
X(5886) = {X(1),X(80)}-harmonic conjugate of X(37740)
X(5886) = perspector of [cross-triangle of Fuhrmann and Ai (aka K798i) triangles] and [cross-triangle of 2nd Fuhrmann and Ae (aka K798e) triangles]
X(5886) = endo-homothetic center of Ehrmann side-triangle and 3rd anti-Euler triangle; the homothetic center is X(11459)


X(5887) =  X(119) OF INNER GARCIA TRIANGLE

Barycentrics   a[a(b + c)[a2 - (b - c)2]2 - a4(b + c)2 + 2a2[(b2 - c2)2 + bc(b2 + c2)] - (b2 + c2)(b2 - c2)2] : :    (Richard Hilton, March 2, 2015)

X(5887) lies on these lines: {1,90}, {3,960}, {4,8}, {5,65}, {10,119}, {19,5778}, {21,104}, {40,5692}, {56,920}, {210,5690}, {221,1060}, {411,3579}, {515,3878}, {518,1351}, {758,946}, {936,3359}, {942,3086}, {944,3877}, {952,1898}, {971,5698}, {1012,5730}, {1062,1854}, {1064,2292}, {1352,3827}, {1656,3812}, {1697,5534}, {2476,3753}, {2745,2766}, {2801,3884}, {3817,4084}, {3868,5603}, {3876,5657}, {3899,5691}, {3931,5396}, {4047,5755}, {4067,4301}, {5790,5836}

X(5887) = X(4)-of-X(1)-Brocard triangle)
X(5887) = anticomplement of X(34339)


X(5888) =  INTERSECTION OF LINES X(2)X(3098) AND X(110)X(5092)

Barycentrics   a2[a4 + a2(b2 + c2) - 2b4 - 11b2c2 - 2c4] : :    (Richard Hilton, March 2, 2015)

X(5888) is the similitude center of ABC and the X(2)-Brocard triangle.

X(5888) lies on the Thomson-Gibert-Moses hyperbola and these lines: {2,3098}, {74,549}, {110,5092}, {140,3581}, {141,5648}, {323,3819}, {354,3920}, {392,404}, {511,5643}, {631,5654}, {1201,3746}, {1995,5646}, {2979,5644}, {3167,5012}, {3357,3523}, {3524,4550}, {5113,5653}, {5544,5640}

X(5888) = Thomson-isogonal conjugate of X(549)


X(5889) =  ORTHOCENTER OF CIRCUMORTHIC TRIANGLE

Trilinears     f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a[S2A - S2 - 2SA(4R2 - Sω)]
Barycentrics   g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (cot A)(csc 2B + csc 2C) - (cot B)(csc 2C + csc 2A) - (cot(C)(csc 2A + csc 2B)
Barycentrics   h(A,B,C) : h(B,C,A) : h(C,A,B), where h(A,B,C) = (sin 2A)(cos 2B + cos 2C) - (sin 2B)(cos 2C + cos 2A) - (sin 2C)(cos 2A + cos 2B)
Barycentrics    a^2 (a^6 (b^2 + c^2) - a^4 (3 b^4 + b^2 c^2 + 3 c^4) + a^2 (3 b^6 - b^4 c^2 - b^2 c^4 + 3 c^6) - b^8 + b^6 c^2 + b^2 c^6 - c^8) : :

X(5889) is the circumorthic-triangle-orthologic center of these triangles: extangents, intangents, orthic, and tangential. (César Lozada, ADGEOM #978, Dec. 20, 2013)

Let O =- X(3) and let A′ be the isogonal conjugate of A with respect to OBC, and define B′ and C′ cyclically. Let A″ be the isogonal conjugate of A′ with respect to OB′C′, and define B″ and C″ cyclically. The lines A′A″, B′B″, C′C″ concur in X(5889). (Randy Hutson, July 7, 2014)

X(5889) lies on these lines: {2,389}, {3,54}, {4,52}, {5,568}, {20,185}, {22,1181}, {24,110}, {26,1614}, {49,1658}, {51,3091}, {64,895}, {143,381}, {156,2070}, {186,1147}, {323,1092}, {382,5663}, {411,5752}, {569,1199}, {578,1994}, {631,1216}, {962,2807}, {1204,2071}, {1351,1593}, {3090,5462}, {3167,3515}, {3523,3917}, {3524,5447}, {3564,3575}

X(5889) = reflection of X(i) in X(j) for these (i,j): (3,6102), (4,52)
X(5889) = anticomplement of X(5562)
X(5889) = homothetic center of X(4)-altimedial and X(2)-adjunct anti-altimedial triangles


X(5890) =  CENTROID OF CIRCUMORTHIC TRIANGLE

Trilinears   sin A (sin 2B + sin 2C) - sin B sin C : :
Trilinears   [a^3 cos(B - C) - b^3 cos(C - A) - c^3 cos(A - B)]sec A + 2 a^2 cos(B - C) (b sec B + c sec C) : :
Trilinears   a[a^6 (b^2 + c^2) - a^4(3b^4 - b^2c^2 + 3c^4) + 3a^2(b^6 - b^4c^2 - b^2c^4 + c^6) - b^8 + b^6c^2 + b^2c^6 - c^8] : :

X(5890) lies on these lines: {2,5654}, {3,54}, {4,51}, {6,74}, {20,52}, {24,154}, {30,568}, {64,1173}, {143,382}, {184,186}, {373,5071}, {376,511}, {381,5640}, {477,2452}, {578,1199}, {631,3819}, {1141,1303}, {1216,3523}, {1994,2071}, {2807,5603}, {3091,5462}, {3146,5446}, {3524,3917}, {3651,5752}}

X(5890) = reflection of X(i) in X(j) for these (i,j): (4,51), (2979,3)
X(5890) = anticomplement of X(5891)
X(5890) = X(2)-of-circumorthic-triangle
X(5890) = X(4)-of-orthocentroidal-triangle
X(5890) = X(20)-of-Lucas-triangle (defined at X(95))
X(5890) = homothetic center of X(4)-altimedial and X(4)-adjunct anti-altimedial triangles


X(5891) =  REFLECTION OF X(51) IN X(5)

Trilinears   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = cos(B - C) [a^3 cos(B - C) + b(2b^2 - a^2) cos(C - A) + c(2c^2 - a^2) cos(A - B)]
Trilinears   g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = a[a^2(b^2 + c^2) - (b^2 - c^2)^2][a^4 + b^4 + c^4 - 2a^2 (b^2 + c^2) + 4b^2c^2]

X(5891) = (X(376) of orthic triangle) = (X(4) of X(2)-Brocard triangle); also, (X(5891) of hexyl triangle) = X(2) and (X(5891) of excentral triangle) = X(376). (Randy Hutson, July 7, 2014)

X(5891) lies on these lines: {2,5654}, {3,64}, {4,1216}, {5,51}, {20,5447}, {30,3917}, {113,127}, {128,130}, {140,185}, {155,569}, {216,1625}, {373,547}, {378,4550}, {381,511}, {389,1656}, {399,5092}, {549,5642}, {568,5055}, {1352,2393}, {3060,3545}, {3090,5462}, {3091,5446}, {3313,3818}, {3567,5056}, {5071,5640}

X(5891) = reflection of X(51) in X(5)
X(5891) = complement of X(5890)
X(5891) = anticomplement of X(5892)

X(5891) = centroid-of-2nd-Euler-triangle


X(5892) =  MIDPOINT OF X(3) AND X(51)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a^2[a^6 (b^2 + c^2) - a^4 (3b^4 - 4b^2c^2 + 3c^4) + 3a^2 (b^2 + c^2)(b^4 - 4b^2c^2 + c^4) - (b^2 - c^2)^4]

X(5892) = (X(376) of polar triangle of complement of polar circle) = {X(52),X(631)}-harmonic conjugate of X(5447) (Randy Hutson, July 7, 2014)

X(5892) lies on these lines: {2,5654}, {3,51}, {5,2883}, {52,631}, {140,389}, {143,3530}, {182,2393}, {185,1656}, {373,381}, {376,5640}, {511,549}, {512,1116}, {547,5663}, {568,3917}, {2779,3833}, {2781,3589}, {3060,3524}, {3523,3567}, {3526,5562}

X(5892) = midpoint of X(i) and X(j) for these {I,J}: {3,51}, {389,3819}
X(5892) = reflection of X(i) in X(j) for these (i,j): (1216,3819), (3819,140)
X(5892) = complement of X(5891)


X(5893) =  CENTER OF HALF-ALTITUDE CIRCLE

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = -2a10 + 3b10 + 3c10 - a8b2 - a8c2 + 12a6b4 + 12a6c4 + 16a6b2c2 - 10a4b6 - 10a4c6 + 10a4b4c2 + 10a4b2c4 - 2a2b8 - 2a2c8 + 16a2b6c2 + 16a2b2c6 + 28a2b4c4 - 9b8c2 - 9b2c8 + 6b6c4 + 6b4c6

The half-altitude circle is the circumcircle of the half-altitude triangle. Its radius is
[R/(16SASBSC)][2(b2c2J2 + S2 - S2A)(c2a2J2 + S2 - S2B)(a2b2J2 + S2 - S2C)]1/2, where J = |OH|/R (as at X(1113).

X(5893) lies on these lines: {2,5894}, {4,6}, {5,3357}, {30,5448}, {64,3091}, {140,2777}, {154,3146}, {221,5225}, {546,5462}, {1853,3832}, {2192,5229}

X(5893) = midpoint of X(4) and X(2883)
X(5893) = complement of X(5894)
X(5893) = X(11260)-of-orthic-triangle if ABC is acute


X(5894) =  ANTICOMPLEMENT OF X(5893)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 4a^10 - b^10 - c^10 - 5a^8(b^2 + c^2) - 8a^6(b^4 + c^4 - 3b^2c^2) + 14a^4(b^6 + c^6 - b^4c^2 - b^2c^4) - 4a^2(b^8 +c^8 - 6b^4c^4 + 2b^6c^2 + 2b^2c^6) + 3b^8c^2 + 3b^2c^8 - 2b^6c^4 - 2b^4c^6
Barycentrics   g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin B)(sec^2 B - sec A sec B sec C)[2 sec C sec A - sec B (sec^2 C + sec^2 A)] + (sin C)(sec^2 C - sec A sec B sec C)[2 sec A sec B - sec C (sec^2 A + sec^2 B)]

X(5894) is the center of the pedal circle of X(20) and of X(64), and the center of the cevian circle of X(69) and of X(253); X(5864) is also (X(64) of X(4)-Brocard triangle. (Randy Hutson, July 7, 2014)

X(5894) lies on these lines: {2,5893}, {3,1661}, {4,1192}, {5,1539}, {20,64}, {30,3357}, {154,3522}, {185,1205}, {376,1498}, {550,1216}, {1204,1885}, {1593,5480}, {1853,3146}, {1854,3474}, {2935,3520}, {3528,5656}, {4219,5799}

X(5894) = midpoint of X(20) and X(64)
X(5894) = complement of X(5895)
X(5894) = anticomplement of X(5893)


X(5895) =  ANTICOMPLEMENT OF X(5894)

Trilinears    : f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (sec^2 A - sec A sec B sec C)[2 sec B sec C - sec A (sec^2 B + sec^2 C)]
Trilinears     g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (cos B)/(cos C - cos A cos B) + (cos C)/(cos B - cos A cos C)
Barycentrics   h(a,b,c) : h(b,c,a) : h(c,a,b), where h(a,b,c) = (3a^4 - b^4 - c^4 - 2a^2b^2 - 2a^2c^2 + 2b^2c^2)(a^6 + 2b^6 + 2c^6 - 3a^2b^4 - 3a^2c^4 + 6a^2b^2c^2 - 2b^4c^2 - 2b^2c^4)

Let H be the hyperbola {A,B,C,X(4),X(20)}. Let L(X) denote the line tangent to H at a point X on H. Then X(5895) is the point of intersection of L(X(4)) and L(X(20)). (Randy Hutson, July 7, 2014)

Let A′ be the trilinear pole of the perpendicular bisector of BC, and define B′ and C′ cyclically. A′B′C′ is also the anticomplement of the anticomplement of the midheight triangle. X(5895) = X(3)-of-A′B′C′. (Randy Hutson, January 29, 2018)

X(5895) lies on these lines: {2,5893}, {3,113}, {4,64}, {6,1885}, {20,154}, {25,2929}, {30,155}, {52,382}, {193,1503}, {235,1192}, {381,3357}, {468,1620}, {1181,2904}, {1514,3542}, {1562,3172}, {1593,3574}, {1836,1854}, {2778,5693}, {2906,5706}, {2907,5786}, {3529,5656}

X(5895) = isotomic conjugate of X(34410)
X(5895) = anticomplement of X(5894)
X(5895) = crosssum of X(3) and X(64)
X(5895) = crosspoint of X(4) and X(20)


X(5896) =  Λ(X(20), X(154))

Trilinears     (4+3*cos(2*A)+2*cos(2*B)+3*cos(2*C))*(4+3*cos(2*A)+3*cos(2*B)+2*cos(2*C))*(3*cos(B)-cos(A-B))*(3*cos(C)-cos(A-C)) : :

Λ(P, X) is defined (TCCT, p. 80) as the isogonal conjugate of the point in which the line PX meets the infinity line. X(5896) = Λ(X(3), X(5893) = Λ(X(20), X(154)). (Randy Hutson, July 7, 2014)

X(5896) lies on the circumcircle and these lines: {64,110}, {99,253}, {107,3146}, {1301,3515}}


X(5897) =  Λ(X(4), X(64))

Barycentrics    a^2*(a^10+(2*b^2-3*c^2)*a^8-2*(b^2-c^2)*(5*b^2+c^2)*a^6+2*(b^2-c^2)*(4*b^4+9*b^2*c^2-c^4)*a^4+(b^2-c^2)*(b^6+3*c^6-5*(3*b^2+c^2)*b^2*c^2)*a^2-(2*b^4+5*b^2*c^2+c^4)*(b^2-c^2)^3)*(a^10-(3*b^2-2*c^2)*a^8+2*(b^2-c^2)*(b^2+5*c^2)*a^6+2*(b^2-c^2)*(b^4-9*b^2*c^2-4*c^4)*a^4-(b^2-c^2)*(3*b^6+c^6-5*(b^2+3*c^2)*b^2*c^2)*a^2+(b^4+5*b^2*c^2+2*c^4)*(b^2-c^2)^3) : :

Λ(P, X) is defined (TCCT, p. 80) as the isogonal conjugate of the point in which the line PX meets the infinity line. X(5897) = Λ(X(3), X(1661) = Λ(X(4), X(64) = Λ(X(5), X(5893)) = Λ(X(20), X(394) = Λ(X(146), X(2071). X(5897) is the point of intersection, other than A,B,C, of the circumcircle and the hyperbola {A,B,C,X(3),X(20)}; also, X(5897) is the antipode of X(1301) on the circumcircle. (Randy Hutson, July 7, 2014)

X(5897) lies on the circumcircle and these lines: {3,1301}, {20,107}, {110,1498}, {112,1033}, {376,1289}, {393,3344}, {1302,1370}, {1304,2071}

X(5897) = reflection of X(1301) in X(3)


X(5898) =  REFLECTION OF X(195) IN X(110)

Barycentrics   a2[a2[a8(a4 + b4 + c4) - a4(5b8 + 20b6c2 + 17b4c4 + 20b2c6 + 5c8) + 3(b2 - c2)2(b8 - 2b6c2 - 2b4c4 - 2b2c6 + c8)] - (b2 + c2)[3a12 - 5a8(b2 + c2)2 + a4(b8 - 16b6c2 + 15b4c4 - 16b2c6 + c8) + (b2 - c2)6]] : :    (Richard Hilton, March 2, 2015)

Let H be the Stammler hyperbola, and let T be the tangential triangle. X(5898) is the antipode of X(195) in H. The conic H is a rectangular hyperbola passing through X(i) for these I: 1,3,6,155,159,195,399,1498, 2916,2917,2918,2929,2930,2931,2935,2948,3511, the excenters and the vertices of T; the center of H is X(110). H is the isogonal conjugate of the Euler line with respect to T, and H is also the isogonal conjugate of the line X(30)X(40) with respect to the excentral triangle. Also, H is the locus of P for which the P-Brocard triangle is perspective to ABC; see X(5642). X(5898) is the isogonal conjugate of X(5899) with respect to T. (Randy Hutson, July 7, 2014)

X(5898) lies on these lines: {3,2888}, {6,3200}, {25,2914}, {110,143}, {399,1154}, {539,2931}, {542,2916}, {2918,3519}


X(5899) =  INVERSE-IN-CIRCUMCIRCLE OF X(140)

Trilinears     f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = sin B sin 2C sin(A - B) (1 + 2 sin^2 A + 2 sin^2 C) + sin C sin 2B sin(A - C) (1 + 2 sin^2 A + 2 sin^2 B)

X(5899) = X(3) - 4X(23)
X(5899) = 12X(2) + (J2 - 12)X(3) where J = |OH|/R
X(5899) = 4R2X(2) + (3|OG|2 - 4R2)X(3)      (Peter Moses, July 11, 2014)

As a point on the Euler line, X(5899) has Shinagawa coefficients (3E + 8F, -11E - 8F).

X(5899) is the isogonal conjugate of X(5898) with respect to the tangential triangle, and X(5899) is the pole with respect to the circumcircle of the line X(140)X(523). (Randy Hutson, July 7, 2014)

X(5899) lies on these lines: {2,3}, {195,1614}, {399,1154}, {1533,2931}, {2918,3574}

X(5899) = isogonal conjugate of X(5900)
X(5899) = crossdifference of every pair of points on the line X(647)X(5421)
X(5899) = {X(3),X(23)}-harmonic conjugate of X(37923)
X(5899) = {X(15154),X(15155)}-harmonic conjugate of X(4)


X(5900) =  ISOGONAL CONJUGATE OF X(5899)

Trilinears    1/[sin B sin 2C sin(A - B) (1 + 2 sin^2 A + 2 sin^2 C) + sin C sin 2B sin(A - C) (1 + 2 sin^2 A + 2 sin^2 B)] : :

X(5900) is the trilinear pole of the line X(647)X(5421), and X(5900) is the the antipode-in-Jerabek-hyperbola of X(1173). Also, X(5900) is the antigonal image of X(1173). (Randy Hutson, July 7, 2014)

X(5900) lies on these lines: {125,1173}, {146,3521}, {2889,3448}

X(5900) = isogonal conjugate of X(5899)
X(5900) = reflection of X(1173) in X(125)


X(5901) =  COMPLEMENT OF X(5690)

Barycentrics   2a4 - a2(3b2 - 4bc + 3c2) + (b2 - c2)2 - 2a(b + c)[a2 - (b - c)2] : :    (Richard Hilton, March 2, 2015)

As at X(5886), let A′ be the nine-point center of the triangle IBC, where I = X(1), and define B′ and C′ cyclically; then X(5901) = (X(5) of A′B′C′), as well as the complement of X(5) with respect to A′B′C′. Let A* be the circle with center A and diameter b + c, and define B* and C* cyclically; then X(5901) is the radical center of A*, B*, C*. Let A″ be the nine-point center of triangle IBC, and define B″ and C″ cyclically; then I, A″, B″, C″ comprise an orthocentric system whose common nine-point circle has center X(5901). (Hyacinthos #21518, February 10, 2013, and following posts by Antreas Hatzipolakis and Randy Hutson)

X(5901) lies on these lines: {1,5}, {2,1482}, {3,962}, {4,3622}, {8,1656}, {10,3628}, {30,551}, {40,549}, {104,5606}, {140,517}, {145,3090}, {381,944}, {382,5731}, {392,5771}, {476,953}, {498,2098}, {499,2099}, {515,546}, {516,548}, {519,547}, {550,3576}, {632,3624}, {912,5045}, {999,3485}, {1001,5762}, {1064,5453}, {1159,4323}, {1191,5707}, {1386,3564}, {1388,1478}, {1699,3627}, {3241,5055}, {3336,5298}, {3487,5811}, {3526,5550}, {3530,3579}, {3617,5067}, {3623,5056}, {3649,5563}, {3655,3845}, {3817,3850}, {3874,5694}, {3878,4999}, {4292,5126}, {4308,5714}, {4511,5178}, {5049,5777}, {5180,5303}, {5432,5697}, {5436,5812}, {5542,5843}

X(5901) = midpoint of X(1) and X(5)
X(5901) = {X(1),X(11)}-harmonic conjugate of X(37730)
X(5901) = {X(1),X(80)}-harmonic conjugate of X(37734)


X(5902) =  INCENTER OF ORTHOCENTROIDAL TRIANGLE

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = abc + (b + c)(a - b + c)(a + b - c)

X(5902) lies on these lines: {1,3}, {2,758}, {4,79}, {5,3649}, {6,1718}, {7,80}, {8,2891}, {10,3681}, {20,5441}, {43,1739}, {47,1451}, {58,3924}, {61,2306}, {63,4880}, {72,1698}, {81,1325}, {90,5665}, {145,3881}, {191,405}, {226,1737}, {244,995}, {355,5270}, {374,1743}, {381,2771}, {386,2650}, {392,3742}, {498,1788}, {499,3485}, {515,553}, {518,599}, {519,3873}, {551,3877}, {579,2294}, {584,2160}, {614,5315}, {631,5442}, {912,4654}, {938,1479}, {944,4317}, {950,1770}, {952,5434}, {960,3624}, {985,2224}, {993,3218}, {994,4850}, {997,3306}, {1002,2809}, {1012,1768}, {1046,1724}, {1051,2939}, {1068,1825}, {1071,5586}, {1125,3869}, {1210,3671}, {1254,4306}, {1464,5396}, {1656,5694}, {1717,2955}, {1725,1779}, {1790,4658}, {1836,3583}, {1837,3585}, {1876,1905}, {2280,5011}, {2362,3301}, {2392,3060}, {2800,5603}, {2802,3241}, {2842,5640}, {3244,3889}, {3296,5559}, {3419,5696}, {3474,3488}, {3475,5657}, {3476,5083}, {3486,4299}, {3501,3970}, {3555,3632}, {3586,4312}, {3616,3878}, {3617,3918}, {3622,3884}, {3634,3876}, {3635,3885}, {3636,3890}, {3752,5313}, {3792,4675}, {3828,4134}, {3922,4668}, {3940,4413}, {3962,5044}, {3968,4661}, {3980,5208}, {4002,4662}, {4116,4128}, {4414,4653}, {4645,4680}, {5432,5719}, {5435,5444}

X(5902) = midpoint of X(65) and X(354)
X(5902) = reflection of X(1) in X(354)
X(5902) = isogonal conjugate of X(15175)
X(5902) = X(1)-of-orthocentroidal-triangle
X(5902) = X(381)-of-intouch-triangle
X(5902) = {X(1),X(65)}-harmonic conjugate of X(5903)
X(5902) = anticomplement of X(10176)
X(5902) = X(2)-of-reflection-triangle-of-X(1)
X(5902) = Cundy-Parry Phi transform of X(35)
X(5902) = Cundy-Parry Psi transform of X(79)
X(5902) = homothetic center of X(1)-altimedial and X(1)-adjunct anti-altimedial triangles
X(5902) = X(7576)-of-excentral-triangle
X(5902) = {X(1),X(3)}-harmonic conjugate of X(37571)
X(5902) = endo-homothetic center of Ehrmann vertex-triangle and tangential triangle; the homothetic center is X(381)


X(5903) =  REFLECTION OF X(1) IN X(65)

Trilinears    - abc + (b + c)(a - b + c)(a + b - c) : : (Quang Tuan Bui, Hyacinthos #20331, November 10, 2011)
Trilinears    2 cos B + 2 cos C - 1 : :

X(5903) = {X(1),X(40)}-harmonic conjugate of X(35); X(5903) = {X(1),X(65)}- harmonic conjugate of X(5902). Let A′ be the isogonal conjugate of A with respect to triangle IBC, where I = X(1), and define B′ and C′ cyclically. Let A″ be the isogonal conjugate of A′ with respect to IB′C′, and define B″ and C″ cyclically. The lines A′A″, B′B″, C′C″ concur in X(5903). X(5903) is the incenter of the triangle denoted by A″B″C″ at X(5905) and the triangle of the same notation at X(5906). (Randy Hutson, July 14, 2014)

Let PA be the reflection of X(1) in line BC, and define PB and PC cyclically; then X(5903) is the isogonal conjugate of X(1) with respect to PAPBPC. (Quang Tuan Bui, Hyacinthos #20331, November 10, 2011)

Let Ja be the A-excenter of the A-adjunct anti-altimedial triangle, and define Jb and Jc cyclically. The lines AJa, BJb, CJc concur in X(5903). (Randy Hutson, November 2, 2017)

Let A4B4C4 and A6B6C6 be the Gemini triangles 4 and 6, resp. Let LA and MA be the lines through A4 and A6, resp., parallel to BC. Define LB, LC, MB, MC cyclically. Let A′4 = LB∩LC and define B′4 and C′4 cyclically. Let A′6 = MB∩MC and define B′6 and C′6 cyclically. Triangles A′4B′4C′4 and A′6B′6C′6 are homothetic at X(5903). (Randy Hutson, November 30, 2018)

X(5903) lies on these lines: {1,3}, {2,3754}, {4,80}, {7,5559}, {8,79}, {10,908}, {12,5690}, {37,5036}, {41,5011}, {43,3987}, {63,5258}, {72,3679}, {78,4867}, {90,3577}, {145,2802}, {150,4056}, {169,5526}, {181,3944}, {191,958}, {203,2306}, {213,3959}, {214,4188}, {218,5540}, {219,1781}, {267,2948}, {355,1836}, {386,4642}, {392,3624}, {474,5289}, {495,3649}, {498,3485}, {499,1788}, {515,1770}, {518,3632}, {519,3868}, {551,3890}, {573,2171}, {579,1953}, {595,3924}, {631,5444}, {764,4083}, {912,4338}, {944,3474}, {946,1737}, {960,1698}, {962,1479}, {978,1739}, {984,1756}, {1000,5557}, {1012,1727}, {1046,1710}, {1068,1835}, {1100,4287}, {1111,3212}, {1122,4902}, {1125,3877}, {1148,1784}, {1210,4301}, {1376,5730}, {1393,1772}, {1411,2964}, {1464,5399}, {1572,5299}, {1717,1854}, {1724,3460}, {1743,2262}, {1759,2329}, {1797,4792}, {1829,4214}, {1837,3583}, {1838,1869}, {1858,5727}, {1871,1888}, {1872,1875}, {1902,1905}, {2170,4253}, {2176,3125}, {2295,3735}, {2362,3299}, {3179,5239}, {3208,3970}, {3216,4674}, {3218,4861}, {3241,3881}, {3244,3873}, {3476,4317}, {3486,4302}, {3488,4309}, {3555,3633}, {3582,3656}, {3584,3654}, {3616,3884}, {3617,3678}, {3622,3898}, {3623,3892}, {3626,3681}, {3635,3889}, {3698,5044}, {3724,5496}, {3740,4002}, {3751,3827}, {3833,5550}, {3872,4880}, {3897,5267}, {3913,5541}, {3962,4668}, {4127,4678}, {4134,4691}, {4153,4165}, {4304,5493}, {4513,5525}, {4646,5312}, {4857,5722}, {5046,5180}, {5250,5259}, {5252,5270}, {5253,5330}, {5435,5734}, {5694,5790}

X(5903) = reflection of X(i) in X(j) for these (i,j): (1,65), (5904,8)
X(5903) = isogonal conjugate of X(15446)
X(5903) = anticomplement of X(3878)
X(5903) = X(4)-of-reflection-triangle-of-X(1)
X(5903) = perspector of reflection triangle of X(1) and 2nd isogonal triangle of X(1)
X(5903) = Cundy-Parry Phi transform of X(36)
X(5903) = Cundy-Parry Psi transform of X(80)
X(5903) = X(6240)-of-excentral-triangle
X(5903) = {X(1),X(3)}-harmonic conjugate of X(37525)


X(5904) =  REFLECTION OF X(1) IN X(72)

Barycentrics   a2bc - a(b + c)(b2 + c2 - a2) : :    (Richard Hilton, March 2, 2015)

X(5904) is the incenter of the triangle A*B*C* described at X(5905) and also the incenter of the triangle A*B*C* described at X(5906). Also, X(5904) = {(X(1),X(9)}-harmonic conjugate of X(5259), and X(5904) = {(X(1),X(72)}-harmonic conjugate of X(5692). (Randy Hutson, July 7, 2014)

X(5904) lies on these lines: {1,6}, {2,3678}, {8,79}, {10,3681}, {20,2801}, {35,63}, {36,78}, {38,386}, {40,912}, {43,3670}, {46,200}, {55,191}, {56,3940}, {58,976}, {65,3679}, {69,1930}, {80,3436}, {144,4294}, {145,3878}, {165,1071}, {210,942}, {281,1844}, {329,1479}, {354,3624}, {382,517}, {474,3337}, {484,5687}, {519,3869}, {527,1770}, {551,3889}, {579,3949}, {595,3938}, {651,4347}, {936,3338}, {978,3953}, {982,3216}, {986,3293}, {997,3984}, {1046,3961}, {1066,2318}, {1125,3873}, {1158,5537}, {1282,2939}, {1376,3336}, {1482,5694}, {1697,1858}, {1699,5777}, {1756,4073}, {1759,3684}, {2093,4882}, {2340,4303}, {2771,5541}, {2774,4088}, {2802,3621}, {3057,3633}, {3059,4312}, {3149,5536}, {3189,4302}, {3218,4420}, {3219,5248}, {3241,3884}, {3244,3877}, {3419,3585}, {3501,4006}, {3579,3689}, {3616,3881}, {3617,3754}, {3622,3892}, {3623,3898}, {3626,4084}, {3635,3890}, {3666,5312}, {3697,3812}, {3711,5221}, {3730,3930}, {3735,3780}, {3740,4533}, {3742,4539}, {3746,3870}, {3753,4662}, {3831,4090}, {3833,4547}, {3875,4523}, {3916,5010}, {3919,4691}, {4018,4668}, {4188,4973}, {4251,5282}, {4292,5850}, {4309,5698}, {4388,4894}, {4413,5708}, {4423,5506}, {4641,5266}, {4658,5311}, {4678,4757}, {5270,5794}, {5445,5552}

X(5904) = reflection of X(i) in X(j) for these (i,j): (1,72), (5903,8)
X(5904) = anticomplement of X(3874)


X(5905) =  ANTICOMPLEMENT OF X(63)

Barycentrics   cos B + cos C - cos A : cos C + cos A - cos B : cos A + cos B - cos C
Barycentrics    Ra - R : Rb - R : Rc - R, where Ra, Rb, Rc are the exradii

Let A′B′C′ be the orthic triangle, and let LA be the reflection of line B′C′ in the internal bisector of angle A, and define LB and LC cyclically. Let A″ = LB∩LC, and define B″ and C″ cyclically. The triangle A″B″C″ is homothetic to ABC at X(57), homothetic to the medial triangle at X(908), and to the anticomplementary triangle at X(5905). Let MA be the reflection of the line B′C′ in the external bisector of angle A, and define MB and MC cyclically. Let A* = MB∩MC, and define B* and C* cyclically. The triangle A*B*C* is homothetic to ABC at X(9), homothetic to the medial triangle at X(5249), and to the anticomplementary triangle at X(5905). (Randy Hutson, July 7, 2014)

X(5905) lies on these lines: {2,7}, {4,912}, {6,3782}, {8,79}, {10,3951}, {20,5758}, {21,3487}, {46,5552}, {65,3436}, {69,321}, {72,377}, {75,4886}, {78,4190}, {81,4644}, {92,1947}, {100,3474}, {145,515}, {149,152}, {192,3151}, {193,1839}, {200,4312}, {239,5813}, {278,651}, {281,445}, {306,3729}, {312,320}, {345,3936}, {355,4018}, {388,3869}, {390,3957}, {442,3927}, {443,3876}, {481,3084}, {482,3083}, {497,3873}, {516,3870}, {518,1836}, {529,2099}, {535,3241}, {537,4865}, {554,5240}, {938,5046}, {940,4415}, {942,2478}, {944,5841}, {958,3649}, {993,3616}, {1004,1260}, {1046,5230}, {1056,3877}, {1058,3889}, {1068,3157}, {1071,5812}, {1081,5239}, {1086,4383}, {1210,5187}, {1211,4363}, {1215,4655}, {1329,5221}, {1331,1754}, {1351,2969}, {1479,3874}, {1532,2095}, {1621,3475}, {1707,3011}, {1750,1998}, {1770,3811}, {1797,4080}, {1851,3060}, {2476,5714}, {2550,3681}, {2886,5852}, {2975,3485}, {2999,4862}, {3091,5811}, {3175,4851}, {3210,4440}, {3583,3894}, {3585,3901}, {3617,5815}, {3663,5256}, {3664,4656}, {3715,3826}, {3742,4679}, {3751,3914}, {3772,4641}, {3816,4860}, {3920,4307}, {3925,5220}, {3962,5794}, {3970,3995}, {4001,4054}, {4187,5708}, {4189,5703}, {4293,4511}, {4387,4966}, {4416,5271}, {4419,5712}, {4438,4892}, {4463,5800}, {4666,5542}, {4847,5850}, {5086,5229}, {5154,5704}, {5289,5434}

X(5905) = isogonal conjugate of X(2164)
X(5905) = isotomic conjugate of X(2994)
X(5905) = anticomplement of X(63)
X(5905) = pole wrt polar circle of trilinear polar of X(7040)
X(5905) = X(48)-isoconjugate (polar conjugate) of X(7040)


X(5906) =  ANTICOMPLEMENT OF X(255)

Barycentrics   f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = sin B cos2B + sin C cos2C - sin A cos2A

Let A′B′C′ be the circumorthic triangle, and let LA be the reflection of line B′C′ in the internal bisector of angle A, and define LB and LC cyclically. Let A″ = LB∩LC, and define B″ and C″ cyclically. The triangle A″B″C″ is homothetic to ABC at X(3075) and homothetic to the anticomplementary triangle at X(5906). Let MA be the reflection of the line B′C′ in the external bisector of angle A, and define MB and MC cyclically. Let A* = MB∩MC, and define B* and C* cyclically. The triangle A*B*C*' is homothetic to ABC at X(3074) and to homothetic to the anticomplementary triangle at X(5906). (Randy Hutson, July 7, 2014)

X(5906) lies on these lines: {2,255}, {8,79}, {69,349}, {78,1448}, {651,5125}, {860,3157}, {962,2817}, {1259,3936}, {1788,2406}, {3868,5081}


X(5907) =  COMPLEMENT OF X(185)

Barycentrics   f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (tan B)(cos2C + cos2A) + (tan C)(cos2A + cos2B)
Barycentrics   g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin 2B)[1 - cos B cos(C - A)] + (sin 2C)[1 - cos C cos(A - B)]
Barycentrics   h(a,b,c) : h(b,c,a) : h(c,a,b) , where h(a,b,c) = (b^2 + c^2 - a^2)[2a^8 - 3a^6(b^2 + c^2) - a^4(b^4 - 10b^2c^2 + c^4) + 3a^2(b^2 - c^2)^2(b^2 + c^2) - (b^2 - c^2)^4]

Let A′B′C′ be the half-altitude triangle. Let A″ be the trilinear pole, with respect to A′B′C′, of the line BC, and define B″ and C″ cyclically. The lines A′A″, B′B″, C′C″ concur in X(5). Let A* be the trilinear pole, with respect to A′B′C′, of the line B″C″, and define B* and C* cyclically. The lines A′A*, B′B*, C′C* concur in X(5907). Also, X(5907) is the center of the conic described at X(5777) for P = X(69). In this case, triangle HAHBHC is perspective to ABC at X(64). (Randy Hutson, July 7, 2014)

X(5907) lies on the Burek-Hutson central cubic (K645) and these lines: {2,185}, {3,64}, {4,69}, {5,389}, {10,2807}, {20,3917}, {30,1216}, {40,3781}, {51,3091}, {52,381}, {84,3784}, {113,1209}, {114,130}, {140,5663}, {141,2883}, {143,3850}, {155,578}, {182,1181}, {235,343}, {373,5056}, {378,1092}, {394,1593}, {546,1154}, {550,5447}, {568,3851}, {916,942}, {970,3149}, {1071,2808}, {1147,4550}, {1204,5651}, {1364,1935}, {1568,1594}, {2979,3146}, {3060,3832}, {3523,5650}, {3545,3567}, {3574,5133}, {4260,5706}, {5068,5640}, {5777,5908}

X(5907) = reflection of X(389) in X(5)
X(5907) = complement of X(185)
X(5907) = X(4)-of-X(5)-Brocard-triangle
X(5907) = anticomplement of X(9729)


X(5908) =  INTERSECTION OF LINES X(1)X(3) AND X(4)X(189)

Barycentrics   a[(b + c)[a8 - 2a2(b2 + c2)[a4 - (b2 - c2)2] - (b2 - c2)4] + 2a[a6(b2 - bc + c2) - 3a4(b - c)(b3 - c3) + a2(b - c)2[3(b + c)(b3 + c3) + 4b2c2] - (b2 - c2)2[(b - c)(b3 - c3) + 4b2c2]]] : :    (Richard Hilton, March 2, 2015)

X(5908) is the center of the conic described at X(5777) for P = X(189). In this case, triangle HAHBHC is perspective to ABC at X(40). (Randy Hutson, July 7, 2014)

X(5908) lies on the Burek-Hutson central cubic (K645) and these lines: {1,3}, {4,189}, {5,5909}, {222,1753}, {282,2262}, {971,1872}, {1364,1887}, {1535,5174}, {5777,5907}

X(5908) = reflection of X(5909) in X(5)


X(5909) =  INTERSECTION OF LINES X(3)X(223) AND X(4)X(8)

Barycentrics   a[(b + c)[a8 - 2a4(b2 + c2)(a2 - 2bc) + 2a2(b - c)2[(b2 - c2)2 - 2bc(b2 + c2)] - (b2 - c2)2(b - c)4] + 2a[a6(b2 - bc + c2) - a4(3b4 - b3c - bc3 + 3c4) + (b2 - c2)2[a2(3b2 + bc + 3c2) - (b + c)(b3 + c3)]]] : :    (Richard Hilton, March 2, 2015)

X(5909) is the center of the conic described at X(5777) for P = X(329). In this case, triangle HAHBHC is perspective to ABC at X(3345). (Randy Hutson, July 7, 2014)

X(5909) lies on the Burek-Hutson central cubic (K645) and these lines: {3,223}, {4,8}, {5,5908}, {389,942}, {960,2817}, {2262,5715}, {2270,5709}

X(5909) = reflection of X(5908) in X(5)


X(5910) =  INTERSECTION OF LINES X(3)X(64) AND X(4)X(1032)

Barycentrics   ((b^2+c^2)*a^18-(9*b^4-4*b^2*c^2+9*c^4)*a^16+4*(b^2+c^2)*(9*b^4-16*b^2*c^2+9*c^4)*a^14-4*(b^2-c^2)^2*(21*b^4+34*b^2*c^2+21*c^4)*a^12+2*(b^4-c^4)*(b^2-c^2)*(63*b^4+86*b^2*c^2+63*c^4)*a^10-2*(b^2-c^2)^2*(63*b^8+63*c^8+2*(97*b^4+95*b^2*c^2+97*c^4)*b^2*c^2)*a^8+4*(b^4-c^4)*(b^2-c^2)*(21*b^8+21*c^8+2*(25*b^4+9*b^2*c^2+25*c^4)*b^2*c^2)*a^6-4*(b^2-c^2)^2*(9*b^12+9*c^12+(26*b^8+26*c^8+(39*b^4-20*b^2*c^2+39*c^4)*b^2*c^2)*b^2*c^2)*a^4+(b^4-c^4)*(b^2-c^2)^3*(9*b^8+9*c^8+10*(2*b^4+7*b^2*c^2+2*c^4)*b^2*c^2)*a^2-(b^4+4*b^2*c^2+c^4)*(b^2-c^2)^8)*a^2 : :

X(5910) is the center of the conic described at X(5777) for P = X(1032). In this case, triangle HAHBHC is perspective to ABC at X(1498). (Randy Hutson, July 7, 2014)

X(5910) lies on the Burek-Hutson central cubic (K645) and these lines: {3,64}, {4,1032}, {3079,5562}


X(5911) =  INTERSECTION OF LINES X(3)X(9) AND X(4)X(1034)

Barycentrics   a*((b+c)*a^14-2*(2*b^2-b*c+2*c^2)*a^13+(b+c)*(b^2-6*b*c+c^2)*a^12+4*(4*b^4+4*c^4-b*c*(3*b^2-2*b*c+3*c^2))*a^11-(b^2-c^2)*(b-c)*(19*b^2+10*b*c+19*c^2)*a^10-10*(2*b^4+2*c^4+b*c*(b+c)^2)*(b-c)^2*a^9+5*(b^2-c^2)*(b-c)*(9*b^4+9*c^4+2*b*c*(4*b^2+7*b*c+4*c^2))*a^8-8*(5*b^4+5*c^4+2*b*c*(2*b^2+b*c+2*c^2))*(b-c)^2*b*c*a^7-(b^2-c^2)*(b-c)*(45*b^6+45*c^6+(50*b^4+50*c^4+b*c*(67*b^2+60*b*c+67*c^2))*b*c)*a^6+2*(b^2-c^2)^2*(10*b^6+10*c^6+(15*b^4+15*c^4-2*b*c*(b^2-9*b*c+c^2))*b*c)*a^5+(b^2-c^2)^2*(b+c)*(19*b^6+19*c^6-(10*b^4+10*c^4-b*c*(29*b^2-12*b*c+29*c^2))*b*c)*a^4-4*(b^2-c^2)^2*(b+c)^2*(4*b^6+4*c^6-b*c*(5*b^2-2*b*c+5*c^2)*(b-c)^2)*a^3-(b^2-c^2)^4*(b+c)^5*a^2+2*(b^2-c^2)^4*(2*b^6+2*c^6+(b^4+c^4+2*b*c*(5*b^2+3*b*c+5*c^2))*b*c)*a-(b^2-c^2)^7*(b-c)) : :

X(5911) is the center of the conic described at X(5777) for P = X(1034). In this case, triangle HAHBHC is perspective to ABC at X(1490). (Randy Hutson, July 7, 2014)

X(5911) lies on the Burek-Hutson central cubic (K645) and these lines: {3,9}, {4,1034}


X(5912) =  EULER-PONCELET POINT OF QUADRANGLE X(13)X(14)X(15)X(16)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 2a^10 - 4a^8(b^2 + c^2) - 3a^6(b^4 - 6b^2c^2 + c^4) + 2a^4(b^2 + c^2)(b^4 - 4b^2c^2 + c^4) - a^2(b^8 + c^8 - 11b^6c^2 - 11b^2c^6 + 18b^4c^4) - 3b^2c^2(b^2 - c^2)^2(b^2 + c^2)

X(5912) is the point QA-P2 center of quadrangle X(13)X(14)X(15)X(16); see Euler-Poncelet Point.

X(5912) is the point common to the nine-points circles of these 4 triangles: X(14)X(15)X(16), X(13)X(15)X(16), X(13)X(14)X(16), X(13)X(14)X(15); also, X(5912) is the center of the rectangular hyperbola that passes through the points X(13), X(14), X(15), X(16). (Randy Hutson, July 7, 2014)

Let O(13,15) be the circle with segment X(13)X(15) as diameter (and center X(396)), and let O(14,16) be the circle with segment X(14)X(16) as diameter (and center X(395)); then X(5912) is the radical trace of O(13,15) and O(14,16). (Randy Hutson, August 17, 2014)

X(5912) lies on these lines: {2,6}, {98,843}, {111,523}

X(5912) = reflection of X(i) in X(j) for these (i,j): (5913,230), (111,5914)


X(5913) =  GERGONNE-STEINER POINT OF QUADRANGLE X(13)X(14)X(15)X(16)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 3 a^4 b^2 + 2 a^2 b^4 - b^6 + 3 a^4 c^2 - 10 a^2 b^2 c^2 + b^4 c^2 + 2 a^2 c^4 + b^2 c^4 - c^6

X(5913) is the QA-P3 center of the quadrangle X(13)X(14)X(15)X(16); see Gergonne-Steiner Point.

X(5913) = inverse-in-{circumcircle, nine-point circle}-inverter of X(6); see X(5577) for the definition of inverter.

The {circumcircle, nine-point circle}-inverter is the orthopic circle of the Steiner inscribed ellipse; its center is X(2), its radius is [(a2 + b2 + c2)/18]1/2, and the powers of A,B,C with respect to this circle are (-a2 + b2 + c2)/6, (a2 - b2 + c2)/6, (a2 + b2 - c2)/6. (Peter Moses, July 16, 2014)T

X(5913) lies on these lines: {2,6}, {23,2079}, {30,111}, {112,468}, {115,858}, {403,1560}, {843,1302}, {1499,1513}, {2030,5642}

X(5913) = reflection of X(5912) in X(230)
X(5913) = isogonal conjugate of X(6096)
X(5913) = complement of X(5971)


X(5914) =  PARABOLA AXES CROSSPOINT OF QUADRANGLE X(13)X(14)X(15)X(16)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 4 a^10 - 8 a^8 b^2 - 3 a^6 b^4 + 4 a^4 b^6 - 5 a^2 b^8 - 8 a^8 c^2 + 30 a^6 b^2 c^2 - 12 a^4 b^4 c^2 + 25 a^2 b^6 c^2 - 3 b^8 c^2 - 3 a^6 c^4 - 12 a^4 b^2 c^4 - 36 a^2 b^4 c^4 + 3 b^6 c^4 + 4 a^4 c^6 + 25 a^2 b^2 c^6 + 3 b^4 c^6 - 5 a^2 c^8 - 3 b^2 c^8

X(5914) is the QA-P6 center of the quadrangle X(13)X(14)X(15)X(16); see Parabola Axes Crosspoint.

X(5914) lies on these lines: {30,115}, {111,523}

X(5914) = midpoint of X(111) and X(5912)


X(5915) =  INSCRIBED SQUARE AXES CROSSPOINT OF QUADRANGLE X(13)X(14)X(15)X(16)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = -4 a^12 + 8 a^10 b^2 - 7 a^8 b^4 + 11 a^6 b^6 - 13 a^4 b^8 + 5 a^2 b^10 + 8 a^10 c^2 - 10 a^8 b^2 c^2 - 3 a^6 b^4 c^2 + 17 a^4 b^6 c^2 - 7 a^2 b^8 c^2 + 3 b^10 c^2 - 7 a^8 c^4 - 3 a^6 b^2 c^4 - 12 a^4 b^4 c^4 + 2 a^2 b^6 c^4 - 12 b^8 c^4 + 11 a^6 c^6 + 17 a^4 b^2 c^6 + 2 a^2 b^4 c^6 + 18 b^6 c^6 - 13 a^4 c^8 - 7 a^2 b^2 c^8 - 12 b^4 c^8 + 5 a^2 c^10 + 3 b^2 c^10

X(5915) is the QA-P23 center of the quadrangle X(13)X(14)X(15)X(16); see Inscribed Square Axes Crosspoint

X(5915) is the centroid of the trapezoid X(2378)X(5916)X(2379)X(5917), which is similar to and orthogonal to the trapezoid X(13)X(15)X(14)X(16), with similitude center X(111); see X(5916). (Randy Hutson, July 7, 2014)

X(5915) lies on these lines: {30,115}, {98,843}, {111,477}


X(5916) =  INTERSECTION OF LINES X(14)X(530) AND X(98)X(2379)

Barycentrics   2*a^12 - 4*a^10*b^2 + 2*a^8*b^4 - a^6*b^6 + 2*a^4*b^8 - a^2*b^10 - 4*a^10*c^2 + 8*a^8*b^2*c^2 - 3*a^6*b^4*c^2 - 4*a^4*b^6*c^2 + 2*a^2*b^8*c^2 - 3*b^10*c^2 + 2*a^8*c^4 - 3*a^6*b^2*c^4 + 6*a^4*b^4*c^4 - a^2*b^6*c^4 + 12*b^8*c^4 - a^6*c^6 - 4*a^4*b^2*c^6 - a^2*b^4*c^6 - 18*b^6*c^6 + 2*a^4*c^8 + 2*a^2*b^2*c^8 + 12*b^4*c^8 - a^2*c^10 - 3*b^2*c^10 + 2*Sqrt[3]*(a^2 - b^2)*(a^2 - c^2)*(2*a^2 - b^2 - c^2)*(b^2 - c^2)^2*S : :    (Richard Hilton, March 2, 2015)

X(5916) lies on these lines: {14,530}, {98,2379}, {523,2378}, {690,5917}

X(5916) = isogonal conjugate of X(15) with respect to the triangle X(13)X(14)X(16)
X(5916) = 2nd-Parry-to-ABC similarity image of X(13)


X(5917) =  INTERSECTION OF LINES X(13)X(531) AND X(98)X(2378)

Barycentrics   2*a^12 - 4*a^10*b^2 + 2*a^8*b^4 - a^6*b^6 + 2*a^4*b^8 - a^2*b^10 - 4*a^10*c^2 + 8*a^8*b^2*c^2 - 3*a^6*b^4*c^2 - 4*a^4*b^6*c^2 + 2*a^2*b^8*c^2 - 3*b^10*c^2 + 2*a^8*c^4 - 3*a^6*b^2*c^4 + 6*a^4*b^4*c^4 - a^2*b^6*c^4 + 12*b^8*c^4 - a^6*c^6 - 4*a^4*b^2*c^6 - a^2*b^4*c^6 - 18*b^6*c^6 + 2*a^4*c^8 + 2*a^2*b^2*c^8 + 12*b^4*c^8 - a^2*c^10 - 3*b^2*c^10 - 2*Sqrt[3]*(a^2 - b^2)*(a^2 - c^2)*(2*a^2 - b^2 - c^2)*(b^2 - c^2)^2*S : :    (Richard Hilton, March 2, 2015)

X(5917) lies on these lines: {13,531}, {98,2378}, {523,2379}, {690,5916}

X(5917) = isogonal conjugate of X(16) with respect to the triangle X(13)X(14)X(15); see X(5915)
X(5917) = 2nd-Parry-to-ABC similarity image of X(14)


X(5918) =  CENTROID OF HUTSON-EXTOUCH TRIANGLE

Barycentrics   a[(b + c)[a4 - 4a2bc - (b2 - c2)2] - 2b3(b2 - 4bc + c2) + 2a(b - c)2(b2 + c2)] : :    (Richard Hilton, March 2, 2015)

The Hutson-extouch and Hutson-intouch triangles are defined at X(5731).

X(5918) lies on these lines: {3,1709}, {20,65}, {55,5732}, {57,2951}, {63,3059}, {84,5584}, {165,210}, {170,241}, {354,516}, {376,6001}, {411,1776}, {517,3534}, {548,5887}, {940,1721}, {960,3522}, {990,3745}, {1040,1456}, {1155,1708}, {1407,4319}, {1427,3000}, {1742,3666}, {1750,4413}, {3057,4297}, {3146,3812}, {3555,5493}, {3689,6244}, {3698,5691}, {4640,5784}, {5731,5919}

X(5918) = reflection of X(i) in X(j) for these (i,j): (210,165), (5919,5731)


X(5919) =  CENTROID OF HUTSON-INTOUCH TRIANGLE

Barycentrics   a[(b + c)[a2 - (b - c)2] - 8abc]] : :    (Richard Hilton, March 2, 2015)

The Hutson-intouch and Hutson-extouch triangles are defined at X(5731).

X(5919) lies on these lines: {1,3}, {2,3880}, {8,3740}, {10,3893}, {12,3817}, {37,374}, {72,3244}, {145,960}, {210,392}, {226,4342}, {390,3476}, {497,5252}, {515,3058}, {516,5434}, {518,1992}, {551,2802}, {950,5927}, {956,3683}, {997,3689}, {1001,3872}, {1056,1836}, {1058,1837}, {1100,2267}, {1122,3672}, {1125,3698}, {1149,3752}, {1201,4646}, {1317,2801}, {1320,2346}, {1358,3663}, {1376,3895}, {1483,5887}, {1864,3488}, {1898,3486}, {2256,2264}, {3421,4679}, {3555,3635}, {3616,3848}, {3621,4662}, {3622,3812}, {3623,3869}, {3625,3697}, {3632,5044}, {3636,3922}, {3649,4301}, {3696,3902}, {3870,5289}, {3881,4018}, {3921,4669}, {4009,4737}, {4870,5603}, {5731,5918}

X(5919) = reflection of X(i) in X(j) for these (i,j): (354,1), (5918,5731)


X(5920) =  ORTHOLOGIC CENTER OF THESE TRIANGLES: HUTSON-INTOUCH TO HUTSON-EXTOUCH

Barycentrics   a*(-a+b+c)*((b+c)*a^7-(b+c)^2*a^6-(b+c)*(3*b^2+8*b*c+3*c^2)*a^5+(3*b^4+3*c^4+2*b*c*(b^2+11*b*c+c^2))*a^4+(b+c)*(3*b^4+3*c^4+2*b*c*(8*b^2+5*b*c+8*c^2))*a^3-(3*b^4+3*c^4+2*b*c*(2*b^2-3*b*c+2*c^2))*(b-c)^2*a^2-(b^2-c^2)*(b-c)*(b^4+c^4+2*b*c*(5*b^2-3*b*c+5*c^2))*a+(b^4-c^4)*(b^2-c^2)*(b-c)^2) : :

The Hutson-extouch and Hutson-intouch triangles are defined at X(5731).

The reciprocal orthologic center is X(3555). (Randy Hutson, November 2, 2017)

X(5920) lies on these lines: {1,7160}, {1697,12658}, {3601,12439}, {9785,9804}, {9953,10866}


X(5921) =  DARBOUX IMAGE OF X(20)

Barycentrics   5*a^6-5*(b^2+c^2)*a^4+(3*b^4+2*b^2*c^2+3*c^4)*a^2-3*(b^4-c^4)*(b^2-c^2) : :

Darboux images are discussed at X(5881).

X(5921) lies on these lines: {2,98}, {3,3620}, {4,193}, {6,3091}, {20,64}, {68,3089}, {141,3523}, {153,5848}, {381,1353}, {511,3146}, {524,3543}, {546,5093}, {611,5261}, {613,5274}, {962,5847}, {1992,3839}, {2888,5596}, {3090,5050}, {3580,4232}, {3618,5056}, {3619,5085}, {3818,3832}

X(5921) = reflection of X(20) in X(69)
X(5921) = X(20)-of-obverse-triangle-of-X(69)


X(5922) =  DARBOUX IMAGE OF X(64)

Barycentrics   (7*a^10-10*(b^2+c^2)*a^8+2*(b^4+6*b^2*c^2+c^4)*a^6-(b^2-c^2)^4*a^2+2*(b^4-c^4)*(b^2-c^2)^3)*(a^4+2*(b^2-c^2)*a^2-(3*b^2+c^2)*(b^2-c^2))*(a^4-2*(b^2-c^2)*a^2+(b^2-c^2)*(b^2+3*c^2)) : :

Darboux images are discussed at X(5881).

X(5922) lies on these lines: {20,64}, {122,1073}, {154,459}

X(5922) = reflection of X(64) in X(253)


X(5923) =  DARBOUX IMAGE OF X(84)

Barycentrics   [3a7 - a5(7b2 + 2bc + 2c2) + b3(b - c)2(5b2 + 6bc + 5c2) - a(b2 - c2)2(b2 - 6bc + c2) + 2(b + c)3[a2 - (b - c)2]2} / {a[(b + c)2 - a2] - (b + c)[a2 - (b - c)2]] : :    (Richard Hilton, March 2, 2015)

Darboux images are discussed at X(5881).

X(5923) lies on these lines: {8,20}, {282,5514}, {1256,1837}

X(5923) = reflection of X(84) in X(189)


X(5924) =  DARBOUX IMAGE OF X(1490)

Barycentrics    3*a^10-3*(b+c)*a^9-2*(5*b^2-2*b*c+5*c^2)*a^8+8*(b^3+c^3)*a^7+2*(7*b^4+2*b^2*c^2+7*c^4)*a^6-2*(b+c)*(3*b^4+3*c^4-2*b*c*(2*b-c)*(b-2*c))*a^5-4*(b^2-c^2)^2*(3*b^2+2*b*c+3*c^2)*a^4+8*(b^2-c^2)^2*(b+c)*b*c*a^3+(b^2-c^2)^2*(7*b^4+2*b^2*c^2+7*c^4)*a^2+(b^2-c^2)^3*(b-c)*(b^2-6*b*c+c^2)*a-2*(b^2-c^2)^4*(b-c)^2 : :

Darboux images are discussed at X(5881).

X(5924) lies on these lines: {4,2093}, {9,119}, {20,78}, {57,5715}, {84,5812}, {226,2096}, {2095,5735}, {2800,3586}

X(5924) = reflection of X(1490) in X(329)


X(5925) =  DARBOUX IMAGE OF X(1498)

Barycentrics    5*a^10-6*(b^2+c^2)*a^8-2*(5*b^4-14*b^2*c^2+5*c^4)*a^6+16*(b^4-c^4)*(b^2-c^2)*a^4-3*(b^2-c^2)^2*(b^4+6*b^2*c^2+c^4)*a^2-2*(b^4-c^4)*(b^2-c^2)^3 : :

Darboux images are discussed at X(5881).

X(5925) lies on these lines: {3,113}, {4,1192}, {20,394}, {30,64}, {154,550}, {221,4302}, {376,2883}, {382,1853}, {599,2892}, {1503,3529}, {1514,3147}, {1620,3542}, {1770,1854}, {2192,4299}, {3146,3580}

X(5925) = reflection of X(1498) in X(20)


X(5926) = CENTER OF CIRCUMCIRCLE-INVERSE OF LINE X(2)X(6))

Barycentrics    a^2*(b^2 - c^2)*(2*a^6 - 4*a^4*b^2 + 2*a^2*b^4 - 4*a^4*c^2 + a^2*b^2*c^2 - b^4*c^2 + 2*a^2*c^4 - b^2*c^4) : :

Barycentrics    a2(b2 - c2)(2a6 - 4a4b2 - 4a4c2 + 2a2b4 + 2a2c4 + a2b2c2 - b4c2 - b2c4) : :
X(5926) = 7 X[3523] + X[31299], 7 X[3526] - 5 X[31279], 3 X[5054] - X[31176], X[11616] + 3 X[39214], 3 X[15724] - X[19912], 3 X[39228] - 4 X[39477], X[39228] - 4 X[39481], X[39477] - 3 X[39481]

The circumcircle-inverse of a line is a circle; if the line does not pass through X(3), then the radius of the circle is finite. The appearance if (i,j) in the following list means that X(i) is on the line X(2)X(6) and that X(j) is the inverse of X(i): (2,23), (6,187), (69, 5866), (81,5867), (86,5937), (141,5938), (183, 5939), (193,5940), (230,5941), (352,353), (524,3), (5108,669).

X(5926) lies on these lines: {2, 39511}, {3, 669}, {24, 2501}, {25, 39533}, {32, 39518}, {140, 23301}, {182, 9009}, {351, 9128}, {512, 6132}, {523, 7575}, {525, 34952}, {549, 25423}, {574, 39501}, {924, 8552}, {1658, 8151}, {1995, 39492}, {2780, 8644}, {3523, 31299}, {3526, 31279}, {3800, 39201}, {4897, 39578}, {5054, 31176}, {6563, 7488}, {6642, 14341}, {7669, 14657}, {8651, 11615}, {9494, 30217}, {11186, 37184}, {14809, 37813}, {15724, 19912}, {16235, 32472}, {16678, 39545}, {19357, 30451}, {19543, 25537}, {34513, 39495}, {41357, 44272}

X(5926) = midpoint of X(3) and X(669)
X(5926) = reflection of X(i) in X(j) for these {i,j}: {6563, 32204}, {11615, 8651}, {23301, 140}, {32231, 9126}
X(5926) = anticomplement of X(39511)
X(5926) = crossdifference of every pair of points on line {566, 3291}


X(5927) =  CENTROID OF 2nd EXTOUCH TRIANGLE

Barycentrics   a{(b + c)[a4 + 2a2bc - (b - c)2(b2 + 4bc + c2)] - 2a[a2(b2 + c2) - (b2 - c2)2]} : :    (Richard Hilton, March 2, 2015)

The classical extouch triangle is regarded as the 1st extouch triangle. The 2nd, 3rd, 4th, and 5th extouch triangles are defined by Randy Hutson (July 11, 2014) as follows. Let AA, AB, AC be the touchpoints of the A-excircle and the lines BC, CA, AB, respectively, and define BB, BC, BA and CC, CA, CB cyclically.

Let A1 = AA, B1 = BB, C1 = CC; 1st extouch triangle = A1B1C1

Let A2 = BCBA∩CACB, and define B2 and C2 cyclically; 2nd extouch triangle = A2B2C2

Let A3 = CAAC∩ABBA, and define B3 and C3 cyclically; 3rd extouch triangle = A3B3C3

Let A4 = BCCA∩BACB, and define B4 and C4 cyclically; 4th extouch triangle = A4B4C4

Let D1 = BBBC∩CCCA, and define D2 and D3 cyclically. Let E1 = BBBA∩CCCB, and define E2 and E3 cyclically. Define A5 = D2E2∩D3E3, and define B5 and C5 cyclically; 5th extouch triangle = A5B5C5

Barycentric coordinates for A-vertices of the the five triangles:
A1 = 0 : a - b + c : a + b - c
A2 = 2a(b + c) : - a2 - b2 + c2 : - a2 + b2 - c2
A3 = 2a(b + c)(a - b + c)(a + b - c) : (a + b + c)(a - b - c)(a2 + b2 - c2) : (a + b + c)(a - b - c)(a2 - b2 + c2)
A4 = 2a(b + c)(a + b + c) : (a - b - c)(a2 - b2 + c2) : (a - b - c)(a2 + b2 - c2)
A5 = 2a(b + c)(a - b + c)(a + b - c) : (a - b - c)(a + b - c)[b2 + (a + c)2] : (a - b - c)(a - b + c)[c2 + (a + b)2]

A2B2C2 is perspective to ABC and A3B3C3 at X(4).
A2B2C2 is homothetic to the excentral triangle at X(9).
A2B2C2 is homothetic to the intouch triangle at X(226).
A2B2C2 is perspective to the extouch triangle and (extraversion triangle of X(65)) at X(72).
A2B2C2 is perspective to the anticevian triangle of X(8) at X(329).
A2B2C2 is homothetic to the hexyl triangle at X(1490).
A2B2C2 is perspective to the Feuerbach triangle at X(442).
A2B2C2 is perspective to A4B4C4 at X(5928).
A2B2C2 is homothetic to the inner Hutson triangle at X(5934).
A2B2C2 is homothetic to the outer Hutson triangle at X(5935).
A2B2C2 is homothetic to the 2nd circumperp triangle at X(405).
A2B2C2 is homothetic to the inverse-in-incircle triangle (see X(5571) at X(5728).
A2B2C2 is homothetic to the Hutson-intouch triangle at X(950).
A2B2C2 is perspective to the Hutson-extouch triangle at X(442).

In the following list, the appearance of (i,j) means that (X(i) of the 2nd extouch triangle) = X(j):
(3,4), (4,72), (5,5777), (6,9), (25,329), (26,5812), (54, 442), (184,226), (185,950), (195,3651), (578, 10), (647,1635), (1181,1)

A3B3C3 is perspective to the intouch triangle and (extraversion triangle of X(65)) at X(1439).
A3B3C3 is perspective to the extouch triangle and A5B5C5 at X(5930).
A3B3C3 is perspective to A4B4C4 at X(5929).
A3B3C3 is perspective to the anticevian triangle of X(7) at X(5932).

A4B4C4 is perspective to ABC at X(69).
A4B4C4 is perspective to the intouch triangle and A5B5C5 at X(65).
A4B4C4 is perspective to the anticevian triangle of X(7) at X(5933).

A5B5C5 is perspective to ABC at X(388).
A5B5C5 is perspective to the anticevian triangle of X(7) at X(8).

X(5927) is also the centroid of the triangle formed by the polars of the incenter with respect to the excircles. (Randy Hutson, July 11, 2014) Note added (11/25/2015): for more about this triangle, named the Atik triangle, see the preamble to X(8580).

X(5927) lies on these lines: {2,971}, {3,3305}, {4,8}, {5,1071}, {9,165}, {11,118}, {12,1898}, {20,5044}, {40,3697}, {44,1754}, {51,916}, {57,5729}, {63,5779}, {84,474}, {210,516}, {374,1903}, {377,6259}, {381,912}, {392,515}, {405,1490}, {442,6260}, {443,6223}, {518,1699}, {942,3091}, {946,3555}, {950,5919}, {960,5691}, {990,4383}, {1012,5440}, {1214,2635}, {1385,5284}, {1427,1736}, {1853,3753}, {2478,5787}, {2808,5943}, {3146,3876}, {3149,3916}, {3452,5784}, {3487,5049}, {3752,5400}, {3832,3868}, {3921,5657}, {4002,5818}, {4015,5493}, {4018,5693}, {4187,6245}, {5435,5825}, {5805,5905}

X(5927) = reflection of X(i) in X(j) for these (i,j): (165,3740), (354,3817), (3753,5587)
X(5927) = complement of X(11220)


X(5928) =  PERSPECTOR OF 2nd AND 4th EXTOUCH TRIANGLES

Barycentrics   a^6+(b+c)*a^5-(b^2+c^2)*a^4+(b^2-c^2)^2*a^2-(b^2-c^2)^2*(b+c)*a-(b^4-c^4)*(b^2-c^2) : :

X(5928) is also the perspector of the 2nd (and 4th) extouch triangle and the polar triangle of the Yiu conic; see X(5927).

X(5928) lies on these lines: {2,2182}, {4,65}, {6,1848}, {9,440}, {33,1503}, {69,189}, {222,226}, {225,5786}, {355,6358}, {1038,1490}, {1753,6247}, {1824,1899}, {1853,1861}, {4329,5739}, {5307,6354}

X(5928) = 2nd-extouch-isogonal conjugate of X(12689)


X(5929) =  PERSPECTOR OF 3rd AND 4th EXTOUCH TRIANGLES

Trilinears    (b + c)[a^5(b + c) + 2a^4 (b^2 + c^2) - 2a^2(b^4 - b^3c + b^2c^2 - bc^3 + c^4) - a(b - c)^2(b + c)^3 - 2bc(b - c)^2(b^2 + bc + c^2)] : :

See X(5927).

X(5929) lies on these lines: {4,69}, {65,1439}, {77,851}, {284,940}, {1211,3452}, {2898,5932}

X(5929) = perspector of [cross-triangle of ABC and 3rd extouch triangle] and [cross-triangle of ABC and 4th extouch triangle]


X(5930) =  PERSPECTOR OF 1st, 3rd AND 5th EXTOUCH TRIANGLES

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (3a^4 - b^4 - c^4 - 2a^2b^2 - 2a^2c^2 + 2b^2c^2)(b + c)/(b + c - a)

See X(5927).

X(5930) lies on these lines: {1,4}, {8,253}, {10,227}, {20,1394}, {40,3182}, {57,387}, {65,1439}, {77,377}, {109,1294}, {208,1763}, {221,516}, {222,4292}, {603,1754}, {610,1249}, {851,1410}, {1042,3914}, {1074,4303}, {1210,1465}, {1400,2082}, {1419,3332}, {1427,1834}, {1455,4297}, {1456,6284}, {1467,4000}, {1612,2078}, {1630,2202}, {1714,3911}, {1935,2328}, {3682,4551}, {3710,4552}, {3987,4848}, {4304,6357}

X(5930) = isotomic conjugate of X(5931)
X(5930) = X(8)-Ceva conjugate of X(65)


X(5931) =  ISOTOMIC CONJUGATE OF X(5930)

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b + c - a)(c + a)(a + b)/(3a^4 - b^4 - c^4 - 2a^2b^2 - 2a^2c^2 + 2b^2c^2)

X(5931) is the trilinear pole of the perspectrix of these three triangles: 3rd extouch, anticevian of X(7), and extraversion of X(7). (Randy Hutson, July 11, 2014) See X(5927).

X(5931) lies on these lines: {20,64}, {75,1895}

X(5931) = isotomic conjugate of X(5930)


X(5932) =  PERSPECTOR OF 3rd EXTOUCH TRIANGLE AND ANTICEVIAN TRIANGLE OF X(7)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = sec^2(A/2) [- a^2 cos B cos C sec^2(A/2) + b^2 cos C cos A sec^2(B/2) + c^2 cos A cos B sec^2(C/2)]
Barycentrics   g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = [a^6 - 2a^5(b + c) - a^4(b + c)^2 + 4a^3(b^3 + c^3) - a^2(b^2 - c^2)^2 - 2a(b - c)^2(b + c)(b^2 + c^2) + (b - c)^2(b + c)^4]/(b + c -a)

X(5932) is the perspector of these three triangles: 3rd extouch, anticevian of X(7), and extraversion of X(7). Also, X(5932) is the perspector of ABC and the pedal triangle of X(3182), as well as the perspector of ABC and the triangle obtained by reflecting the pedal triangle of X(223) in X(223). (Randy Hutson, July 11, 2014)

X(5932) lies on the Lucas cubic and these lines: {2,77}, {4,7}, {8,253}, {20,3182}, {57,5802}, {69,1034}, {151,4329}, {269,1210}, {329,1032}, {411,1804}, {1264,4554}, {1442,5703}, {1443,5704}, {1445,2270}, {2062,6060}, {2898,5929}, {3086,4341}

X(5932) = isotomic conjugate of X(1034)
X(5932) = complement of X(20212)
X(5932) = anticomplement of X(282)
X(5932) = X(69)-Ceva conjugate of X(7)
X(5932) = perspector of 3rd extouch triangle and cross-triangle of ABC and 3rd extouch triangle


X(5933) =  PERSPECTOR OF 4th EXTOUCH TRIANGLE AND ANTICEVIAN TRIANGLE OF X(7)

Barycentrics   [a3 - a(3b2 + 4bc + 3c2) - (b + c)(3a2 - b2 - c2)] / (b + c - a) : :    (Richard Hilton, March 2, 2015)

X(5933) lies on these lines: {7,8}, {57,3879} et al

X(5933) = perspector of 4th extouch triangle and cross-triangle of ABC and 4th extouch triangle


X(5934) =  HOMOTHEITIC CENTER OF 2nd EXTOUCH TRIANGLE AND INNER HUTSON TRIANGLE

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = -S*((2*R+r)*(4*r*R+r^2-2*b*c)+4*s*R*(s-a))+b*c*a^2*(b*cos(B)*sin(C/2)^3+c*cos(C)*sin(B/2)^3)-b*c*(2*s-a)*(s-b)*(s-c)*sin(A/2)      (César Lozada, January 15, 2015)
Trilinears       - p(a,b,c) + q(a,b,c,A,B,C) : - p(b,c,a) + q(b,c,a,B,C,A) : - p(c,a,b) + q(c,a,b,C,A,B), where p(a,b,c) = a*(a^2*(a^2+2*b^2+2*c^2)-3*(b^2-c^2)^2)+(b+c)*(-3*a^4+(b-c)^2*(2*a^2+b^2+6*b*c+c^2)) and
q(a,b,c,A,B,C) = -2*b*(-b-c+a)*(a-b+c)*(c^2+a^2-b^2)*sin(C/2)-2*c*(-b-c+a)*(a+b-c)*(a^2+b^2-c^2)*sin(B/2)-4*b*c*(b+c)*(a+b-c)*(a-b+c)*sin(A/2)      (César Lozada, January 15, 2015)

X(5934) = X(222)-of-2nd-extouch-triangle. (Inner Hutson triangle is defined at X(363).)

X(5934) lies on these lines: {9,363}, {503,1750}


X(5935) =  HOMOTHEITIC CENTER OF 2nd EXTOUCH TRIANGLE AND OUTER HUTSON TRIANGLE

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = S*((2*R+r)*(4*r*R+r^2-2*b*c)+4*s*R*(s-a)) +b*c*a^2*(b*cos(B)*sin(C/2)^3+c*cos(C)*sin(B/2)^3)-b*c*(2*s-a)*(s-b)*(s-c)*sin(A/2)      (César Lozada, January 15, 2015)
Trilinears       p(a,b,c) + q(a,b,c,A,B,C) : - p(b,c,a) + q(b,c,a,B,C,A) : - p(c,a,b) + q(c,a,b,C,A,B), where p(a,b,c) = a*(a^2*(a^2+2*b^2+2*c^2)-3*(b^2-c^2)^2)+(b+c)*(-3*a^4+(b-c)^2*(2*a^2+b^2+6*b*c+c^2)) and
q(a,b,c,A,B,C) = -2*b*(-b-c+a)*(a-b+c)*(c^2+a^2-b^2)*sin(C/2)-2*c*(-b-c+a)*(a+b-c)*(a^2+b^2-c^2)*sin(B/2)-4*b*c*(b+c)*(a+b-c)*(a-b+c)*sin(A/2)      (César Lozada, January 15, 2015)

X(5935) = X(219)-of-2nd-extouch-triangle. (The outer Hutson triangle is defined at X(363).)

X(5935) lies on these lines: {9,164}, {503,1750}


X(5936) =  ISOTOMIC CONJUGATE OF X(3616)

Barycentrics   1/(3a + b + c) : 1/(a + 3b + c) : 1/(a + b + 3c)

Let A21B21C21 be the Gemini triangle 21. Let LA be the line through A21 parallel to BC, and define LB and LC cyclically. Let A′21 = LB∩LC, and define B′21, C′21 cyclically. Triangle A′21B′21C′21 is homothetic to ABC at X(5936). (Randy Hutson, November 30, 2018)

X(5936) lies on these lines: {2,2321}, {7,10}, {8,86}, {27,281}, {75,3701}, {272,4313}, {310,3596}, {335,4699}, {594,5308}, {673,2345}, {903,5224}, {936,306}, {966,6172}, {1002,4111}, {1088,1441}, {1440,3160}, {1698,3672}, {3241,5564}, {3616,4460}, {3679,3945}, {3879,4678}, {4357,4373}, {4360,5550}, {4409,4748}, {4461,5257}, {4472,5839}, {4677,4909}

X(5936) = trilinear pole of the line X(514)X(1635) (which is the Lemoine axis of the 2nd extouch triangle)


X(5937) =  INVERSE-IN-CIRCUMCIRCLE OF X(86)

Barycentrics   a2{a4(b + c) - (a2 + bc)[(b3 + c3) - b2c2 / (b + c)] + a[a2(b2 + c2) - b4 + b2c2 - c4]] : :    (Richard Hilton, March 2, 2015)

X(5937) lies on these lines: {3,86}, {669,4367}


X(5938) =  INVERSE-IN-CIRCUMCIRCLE OF X(141)

Barycentrics   a2[a8 - a2b2c2(b2 + c2 - a2) - (b4 - c4)2] : :    (Richard Hilton, March 2, 2015)

X(5938) lies on these lines: {3,66}, {25,5523}, {353,3148}, {525,669}, {755,2715}


X(5939) =  INVERSE-IN-CIRCUMCIRCLE OF X(183)

Barycentrics   2a8 + a4(b2 - c2)2 - b2c2(b4 - 4b2c2 + c4) - a2(b2 + c2)(a4 + 2b4 - 3b2c2 + 2c4) : :    (Richard Hilton, March 2, 2015)

X(5939) = X(187)-of-circummedial triangle. Let A′B′C′ be the triangle of which ABC is the 1st Brocard triangle; here called the 1st anti-Brocard triangle, with circumcircle called the anti-Brocard circle; then X(5939) = X(187)-of-A′B′C′, and X(5939) = inverse-in-anti-Brocard-circle of X(99). (Randy Hutson, July 18, 2014)

Barycentrics for the vertices of the 1st anti-Brocard triangle are as follows (Peter Moses, August 21, 2014):

A′ = a4 - b2c2 : c4 - a2b2 : b4 - a2c2
B′ = c4 - b2a2 : b4 - c2a2 : a4 - b2c2
C′ = b4 - c2a2 : a4 - c2b2 : c4 - a2b2

For more properties of A′B′C′, see X(5976).

X(5939) lies on these lines: {2,353}, {3,76}, {147,1007}, {187,543}, {325,542}, {385,5104}, {669,804}, {671,3972}, {2023,3329}


X(5940) =  INVERSE-IN-CIRCUMCIRCLE OF X(193)

Barycentrics   a^2*(a^8-6*(b^2+c^2)*a^6+43*b^2*c^2*a^4+2*(b^2+c^2)*(3*b^4-17*b^2*c^2+3*c^4)*a^2-(b^4-5*b^2*c^2+c^4)*(b^2+c^2)^2) : :

X(5940) lies on these lines: {3,193}, {353,5585}


X(5941) =  INVERSE-IN-CIRCUMCIRCLE OF X(230)

Barycentrics   a^2*(a^12-2*(b^2+c^2)*a^10+(b^4+7*b^2*c^2+c^4)*a^8-5*(b^2+c^2)*b^2*c^2*a^6-(b^8+c^8-3*b^2*c^2*(3*b^4-4*b^2*c^2+3*c^4))*a^4+(b^4-c^4)*(b^2-c^2)*(2*b^4-3*b^2*c^2+2*c^4)*a^2-(b^2-c^2)^2*(b^8+c^8-2*(b^4-3*b^2*c^2+c^4)*b^2*c^2)) : :

X(5941) lies on these lines: {3,230}, {25,669}


X(5942) =  ANTICOMPLEMENT OF X(77)

Barycentrics   f(a,b,c) : f(b,c,a) : f(a,b,c), where f(a,b,c) = b/(1 + sec B) + c/(1 + sec C) - a/(1 + sec A)
Barycentrics   g(A,B,C) : g(B,C,A) : g(A,B,C), where g(A,B,C) = (1 - cos B) cot B + (1 - cos C) cot C - (1 - cos A) cot A
Barycentrics   h(a,b,c) : h(b,c,a) : h(c,a,b), where h(a,b,c) = a4 + b4 + c4 - 2a3(b + c) -2a(b - c)2(b + c) + 2bc(b2 + c2 - 3bc) + 2a2(b2 + c2 - bc) (Randy Hutson, July 18, 2014)

X(5942) lies on these lines: {2,77}, {7,4858}, {8,144}, {63,3686}, {69,1229}, {92,1947}, {281,651}, {329,2893}, {894,5554}, {1654,3152}, {3416,3436}


X(5943) =  CENTROID OF HALF-ALTITUDE TRIANGLE

Trilinears    bc + ac cos C + ab cos B : :
Barycentrics    a2(b4 + c4 - a2b2 - a2c2 - 4b2c2)
X(5943) = 2X(5) + X(389)      (barycentrics and combo, Peter Moses, July 15, 2014)

The locus of the centroid of the pedal triangle of P as P varies around the nine-point circle is an ellipse with center X(5943). Also, X(5943) is the centroid of the pedal triangle of X(5), as well as the centroid of the 6 points of intersection of the nine-point circle and the sidelines of ABC. (Randy Hutson, July 18, 2014). The ellipse is here named the Hutson centroidal ellipse.

Let A′B′C′ be any one of the following nine triangles: medial, 1st Brocard, McCay, 1st Neuberg, 2nd Neuberg, inner Napoleon, outer Napoleon, inner Vecten, outer Vecten; and let Ba and Ca be the orthogonal projections of B′ and C′ on BC, respectively. Define Cb and Ac cyclically, and define Ab and Bc cyclically. X(5943) is the centroid of {Ba, Ca, Cb, Ab, Ac, Bc}. (Randy Hutson, March 25, 2016)

If you have The Geometer's Sketchpad, you can view X(5943), with the Hutson centroidal ellipse.

X(5943) lies on these lines: {2,51}, {5,389}, {6,1196}, {22,5092}, {23,5643}, {25,182}, {30,5892}

X(5943) = midpoint of X(i) and X(j) for these (i,j): (2,51), (5,5946)
X(5943) = complement of X(3917)
X(5943) = {X(51),X(373)}-isoconjugate of X(2)


X(5944) =  CENTER OF HUNG CIRCLE

Trilinears     f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a[S2 + 3S2A - 2SA(3Sω - 5R2)]

Let d be a line tangent to the nine-point circle of a triangle ABC. Let DA be the reflection of d in line BC, and define DB and DC cyclically. Let XYZ be the triangle formed by the lines DA, DB, DC. The envelope of the circumcircle of the variable triangle XYZ is a circle. (Tran Quang Hung, ADGEOM #1387, July 9, 2014). The circle is here named the Hung circle.

The diameter of the Hung circle is the segment X(3)X(1614), so that X(5944) is the midpoint of this segment. The radius of the circle is (R/2)(3 + k)/(1 + k), where k = 2(cos 2A + cos 2B + cos 2C). The lines AX, BY, CZ concur in a point Q = Q(P) on the circumcircle of ABC. The appearance of (i,j) in the following list means that X(j) = Q(X(i)): (11,953), (113,477), (114,2698), (115,2698), (116,2724), (117,2734), (118,2724), (119,953), (124,2734), (125,477), (1312,74), (1313,74), (2039,98), (2040,98). (César Lozada, ADGEOM #1388 et al, July 9, 2014)

The triangles XYZ form a family of similar triangles, and Q is the incenter of XYZ. If P = p : q : r is a point on the nine-point circle, then

Q = Q(P) = a2/[p(v + w) - u(q + r)] : b2/[q(w + u) - v(r + p)] : c2/[r(u + v) - w(p + q)],

where u : v : w = X(5). (Peter Moses, August 1, 2014)

If ABC is acute, then Q is the incenter of XYZ, and XYZ has the orientation opposite that of ABC. Let J = |OH|/R and σ = area(ABC). Maximal area(XYZ) = σ(J - 1)/(J + 1) occurs with P = X(1312) and minimal area(XYZ) = σ(J + 1)/(J - 1) occurs with P = X(1313). If ABC is not acute, then Q is an excenter of XYZ, and XYZ has the same orientation as ABC. In this case, maximal area(XYZ) = σ(J + 1)/(J - 1) occurs with P = X(1313) and minimal area(XYZ) = 0, which occurs when angle X(5)-to-P-to-X(4) is a right angle and XYZ is a one of the points of intersection of the circumcircle and the Hung circle. Also, there is a local maximum when P = X(1312), and in this case, area(XYZ) = σ(J - 1)/(J + 1). (Peter Moses, August 9, 2014)

Let A′ be the reflection of X(5) in line BC, and define B′ and C′ cyclically. Let A″ be the circumcenter of triangle BCA′, and define B″ and C″ cyclically. The lines A′A″, B′B″, C′C″ concur in X(5944). (Randy Hutson, August 17, 2014)

If you have The Geometer's Sketchpad 5, you can view X(5944).

X(5944) lies on these lines: {3,74}, {24,5946}, {49,1154}, {52,1493}, {54,143}, {184,1658}, {546,1495}, {567,3518}, {3146,3431}


X(5945) =  CENTER OF HOFSTADTER 0-ELLIPSE

\Barycentrics    [(sin2A)/A][(sin2B)/B + (sin2C)/C - (sin2A)/A] : :

The family of Hofstadter ellipses are introduced at X(359) and further described at MathWorld. The ellipses are indexed as E(r) for 0 <= r <= 1, and E(1 - r) = E(r). Thus, the Hofstadter 0-ellipse and the Hofstadter 1-ellipse are identical. (Submitted by Valery Nemychnikova, Moscow Chemical Lyceum, July 28, 2014.)

X(5945) = X(2)-Ceva conjugate of X(359)


X(5946) =  NINE-POINT CENTER OF ORTHOCENTROIDAL TRIANGLE

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a^2 (a^6 b^2-3 a^4 b^4+3 a^2 b^6-b^8+a^6 c^2-4 a^2 b^4 c^2+3 b^6 c^2-3 a^4 c^4-4 a^2 b^2 c^4-4 b^4 c^4+3 a^2 c^6+3 b^2 c^6-c^8)
X(5946) = X(3) + 2X(143) = X(5) + 2X(389)      (Peter Moses, August 9, 2014)

X(5946) lies on these lines: {2,568}, {3,143}, {4,3521}, {5,389}, {6,1511}, {24,5944}, {26,3796}, {30,51}, {49,1199}, {52,140}, {185,546}, {186,567}, {373,547}, {378,1112}, {381,5640}, {511,549}, {550,5446}, {569,973}, {632,1216}, {970,5428}, {974,1539}, {1147,1493}, {1656,5889}, {1995,5609}, {2070,5012}, {2781,5476}, {2979,5054}, {3628,5562}

X(5946) = midpoint of X(2) and X(568)
X(5946) = reflection of X(5) in X(5943)
X(5946) = orthocentroidal-circle-inverse of X(38724)
X(5946) = X(2)-of-reflection-triangle-of-X(5)


X(5947) =  CENTROID OF FEUERBACH TRIANGLE

Barycentrics 3 a^7 b^2+3 a^6 b^3-9 a^5 b^4-9 a^4 b^5+9 a^3 b^6+9 a^2 b^7-3 a b^8-3 b^9+2 a^7 b c+5 a^6 b^2 c-6 a^5 b^3 c-17 a^4 b^4 c+2 a^3 b^5 c+15 a^2 b^6 c+2 a b^7 c-3 b^8 c+3 a^7 c^2+5 a^6 b c^2-2 a^5 b^2 c^2-14 a^4 b^3 c^2-18 a^3 b^4 c^2-2 a^2 b^5 c^2+16 a b^6 c^2+12 b^7 c^2+3 a^6 c^3-6 a^5 b c^3-14 a^4 b^2 c^3-26 a^3 b^3 c^3-22 a^2 b^4 c^3-2 a b^5 c^3+12 b^6 c^3-9 a^5 c^4-17 a^4 b c^4-18 a^3 b^2 c^4-22 a^2 b^3 c^4-26 a b^4 c^4-18 b^5 c^4-9 a^4 c^5+2 a^3 b c^5-2 a^2 b^2 c^5-2 a b^3 c^5-18 b^4 c^5+9 a^3 c^6+15 a^2 b c^6+16 a b^2 c^6+12 b^3 c^6+9 a^2 c^7+2 a b c^7+12 b^2 c^7-3 a c^8-3 b c^8-3 c^9 a: :      (Peter Moses, August 10, 2014)
Barycentrics    (3*b^2+2*b*c+3*c^2)*a^7+(b+c)*(3*b^2+2*b*c+3*c^2)*a^6-(9*b^4+9*c^4+2*b*c*(3*b^2+b*c+3*c^2))*a^5-(b+c)*(9*b^4+9*c^4+2*b*c*(4*b^2+3*b*c+4*c^2))*a^4+(9*b^6+9*c^6+2*(b^4+c^4-b*c*(9*b^2+13*b*c+9*c^2))*b*c)*a^3+(b^2-c^2)*(b-c)*(9*b^4+9*c^4+b*c*(24*b^2+31*b*c+24*c^2))*a^2-(b^2-c^2)^2*(b+c)^2*(3*b^2-8*b*c+3*c^2)*a-3*(b^2-c^2)^4*(b+c) : :      (César Lozada, 5, 2022)

X(5947) is the Feuerbach-isogonal conjugate of X(5949); i.e., the hisogonal-conjugate-with-respect-to-Feuerbach-triangle of X(5949).

X(5947) lies on these lines: {3,31750}, {4,31764}, {5,5948}, {10,31756}, {11,10276}, {52,31754}, {119,10277}, {442,10209}, {946,31759}, {952,10281}, {3614,5953}, {5562,31765}, {14866,31761}, {38109,44847}


X(5948) =  ORTHOCENTER OF FEUERBACH TRIANGLE

Barycentrics   a^11 b^2+a^10 b^3-5 a^9 b^4-5 a^8 b^5+10 a^7 b^6+10 a^6 b^7-10 a^5 b^8-10 a^4 b^9+5 a^3 b^10+5 a^2 b^11-a b^12-b^13+2 a^11 b c+3 a^10 b^2 c-8 a^9 b^3 c-13 a^8 b^4 c+12 a^7 b^5 c+22 a^6 b^6 c-8 a^5 b^7 c-18 a^4 b^8 c+2 a^3 b^9 c+7 a^2 b^10 c-b^12 c+a^11 c^2+3 a^10 b c^2-2 a^9 b^2 c^2-14 a^8 b^3 c^2-5 a^7 b^4 c^2+17 a^6 b^5 c^2+18 a^5 b^6 c^2+2 a^4 b^7 c^2-18 a^3 b^8 c^2-14 a^2 b^9 c^2+6 a b^10 c^2+6 b^11 c^2+a^10 c^3-8 a^9 b c^3-14 a^8 b^2 c^3-6 a^7 b^3 c^3+11 a^6 b^4 c^3+22 a^5 b^5 c^3+18 a^4 b^6 c^3-8 a^3 b^7 c^3-22 a^2 b^8 c^3+6 b^10 c^3-5 a^9 c^4-13 a^8 b c^4-5 a^7 b^2 c^4+11 a^6 b^3 c^4+16 a^5 b^4 c^4+8 a^4 b^5 c^4+13 a^3 b^6 c^4+5 a^2 b^7 c^4-15 a b^8 c^4-15 b^9 c^4-5 a^8 c^5+12 a^7 b c^5+17 a^6 b^2 c^5+22 a^5 b^3 c^5+8 a^4 b^4 c^5+12 a^3 b^5 c^5+19 a^2 b^6 c^5-15 b^8 c^5+10 a^7 c^6+22 a^6 b c^6+18 a^5 b^2 c^6+18 a^4 b^3 c^6+13 a^3 b^4 c^6+19 a^2 b^5 c^6+20 a b^6 c^6+20 b^7 c^6+10 a^6 c^7-8 a^5 b c^7+2 a^4 b^2 c^7-8 a^3 b^3 c^7+5 a^2 b^4 c^7+20 b^6 c^7-10 a^5 c^8-18 a^4 b c^8-18 a^3 b^2 c^8-22 a^2 b^3 c^8-15 a b^4 c^8-15 b^5 c^8-10 a^4 c^9+2 a^3 b c^9-14 a^2 b^2 c^9-15 b^4 c^9+5 a^3 c^10+7 a^2 b c^10+6 a b^2 c^10+6 b^3 c^10+5 a^2 c^11+6 b^2 c^11-a c^12-b c^12-c^13 : :      (Peter Moses, August 10, 2014)
Barycentrics   (b+c)^2*a^11+(b+c)^3*a^10-(5*b^4+5*c^4+2*b*c*(4*b^2+b*c+4*c^2))*a^9-(5*b^2-2*b*c+5*c^2)*(b+c)^3*a^8+(10*b^6+10*c^6+(12*b^4+12*c^4-b*c*(5*b^2+6*b*c+5*c^2))*b*c)*a^7+(10*b^4+10*c^4-b*c*(8*b^2-11*b*c+8*c^2))*(b+c)^3*a^6-2*(5*b^8+5*c^8+(4*b^6+4*c^6-(9*b^4+9*c^4+b*c*(11*b^2+8*b*c+11*c^2))*b*c)*b*c)*a^5-2*(b^2-c^2)^2*(b+c)*(5*b^4+5*c^4+b*c*(4*b^2+5*b*c+4*c^2))*a^4+(b^2-c^2)^2*(5*b^6+5*c^6+2*(b^4+c^4-2*b*c*(2*b^2+b*c+2*c^2))*b*c)*a^3+(b^2-c^2)^3*(b-c)*(5*b^4+5*c^4+b*c*(12*b^2+13*b*c+12*c^2))*a^2-(b^2-c^2)^6*a-(b^2-c^2)^6*(b+c) : :

X(5948) is the Feuerbach-isogonal conjugate of X(5) and also the anticomplement of X(5) with respect to the Feuerbach triangle. (Randy Hutson, August 5, 2014)

X(5948) lies on these lines: {3,31764}, {4,31750}, {5,5947}, {10,31759}, {11,10277}, {12,79}, {30,10209}, {52,31765}, {119,5953}, {946,31756}, {5164,14132}, {5562,31754}, {10276,23513}, {12506,31761}


X(5949) =  SYMMEDIAN POINT OF FEUERBACH TRIANGLE

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b+c)^2 (a^3+a^2 b-a b^2-b^3+a^2 c+3 a b c+b^2 c-a c^2+b c^2-c^3)      (Peter Moses, August 10, 2014)

X(5949) is the Feuerbach-isogonal conjugate of X(5947).

X(5949) lies on these lines: {2,1029}, {5,572}, {6,2476}, {9,46}, {12,594}, {37,115}, {338,1441}, {1030,2475}, {1834,5725}, {2908,3136}, {3841,4047}


X(5950) =  X(74) OF FEUERBACH TRIANGLE

Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (a^5 b-a^4 b^2-2 a^3 b^3+2 a^2 b^4+a b^5-b^6+a^5 c+4 a^4 b c+a^3 b^2 c-2 a^2 b^3 c-2 a b^4 c-2 b^5 c-a^4 c^2+a^3 b c^2-2 a^2 b^2 c^2+a b^3 c^2+b^4 c^2-2 a^3 c^3-2 a^2 b c^3+a b^2 c^3+4 b^3 c^3+2 a^2 c^4-2 a b c^4+b^2 c^4+a c^5-2 b c^5-c^6) (a^6 b+2 a^5 b^2-a^4 b^3-4 a^3 b^4-a^2 b^5+2 a b^6+b^7+a^6 c-2 a^5 b c+a^3 b^3 c+a b^5 c-b^6 c+2 a^5 c^2+4 a^3 b^2 c^2+a^2 b^3 c^2-2 a b^4 c^2-3 b^5 c^2-a^4 c^3+a^3 b c^3+a^2 b^2 c^3-2 a b^3 c^3+3 b^4 c^3-4 a^3 c^4- 2 a b^2 c^4+3 b^3 c^4-a^2 c^5+a b c^5-3 b^2 c^5+2 a c^6-b c^6+c^7)      (Peter Moses, August 10, 2014)

X(5950) lies on the nine-point circle and these lines: {2,5951}, {4,5606}, {5,5952}, {11,79}

X(5950) = reflection of X(5952) in X(5)
X(5950) = complement of X(5951)


X(5951) =  CEVAPOINT OF X(35) AND X(484)

Trilinears       1/(2E2 + 2F2 - 4EF + 2DE + 2DF + 2D - E - F - 1), where D = cos A, E = cos B, F= cos C         (Randy Hutson, August 17, 2014)
Barycentrics   f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a (a^6+2 a^5 b-a^4 b^2-4 a^3 b^3-a^2 b^4+2 a b^5+b^6-a^5 c+2 a^4 b c-a^3 b^2 c-a^2 b^3 c+2 a b^4 c-b^5 c-2 a^4 c^2+2 a^3 b c^2+2 a^2 b^2 c^2+2 a b^3 c^2-2 b^4 c^2+2 a^3 c^3-a^2 b c^3-a b^2 c^3+2 b^3 c^3+a^2 c^4-4 a b c^4+b^2 c^4-a c^5-b c^5) (a^6-a^5 b-2 a^4 b^2+2 a^3 b^3+a^2 b^4-a b^5+2 a^5 c+2 a^4 b c+2 a^3 b^2 c-a^2 b^3 c-4 a b^4 c-b^5 c-a^4 c^2-a^3 b c^2+2 a^2 b^2 c^2-a b^3 c^2+b^4 c^2-4 a^3 c^3-a^2 b c^3+2 a b^2 c^3+2 b^3 c^3-a^2 c^4+2 a b c^4-2 b^2 c^4+2 a c^5-b c^5+c^6)     (Peter Moses, August 10, 2014)

X(5951) lies on the circumcircle and these lines: {2,5950}, {3,5606}, {4,5952}, {100,3648}, {110,3579}

X(5951) = reflection of X(5606) in X(3)
X(5951) = anticomplement of X(5950)
X(5951) = cevapoint of X(35) and X(484)


X(5952) =&n