s1
Glossary Search Sketches Links Thanks More

PART 1

Long ago, someone drew a triangle and three segments across it, each starting at a vertex and stopping at the midpoint of the opposite side. The segments met in a point. The person was impressed and repeated the experiment on a different shape of triangle. Again the segments met in a point. The person drew yet a third triangle, very carefully, with the same result. He told his friends. To their surprise and delight, the coincidence worked for them, too. Word spread, and the magic of the three segments was regarded as the work of a higher power.

Centuries passed, and someone proved that the three medians do indeed concur in a point, now called the centroid. The ancients found and proved other points, too, now called the incenter, circumcenter and orthocenter. More centuries passed, more special points were discovered, and a definition of triangle center emerged. Like the definition of continuous function, this definition is satisfied by infinitely many objects, of which only finitely many will ever be published. The Encyclopedia of Triangle Centers (ETC) extends a list of 400 triangle centers published in the book Triangle Centers and Central Triangles.


NOTATION AND COORDINATES


The reference triangle is ABC, with sidelengths a,b,c. Each triangle center P has homogeneous trilinear coordinates, or simply trilinears, of the form x : y : z. This means there is a nonzero function h of (a,b,c) such that

x = hx', y = hy', z = hz',

where x', y', z' are the directed distances from P to sidelines BC, CA, AB. Likewise, u : v : w are barycentrics if there is a function k of (a,b,c) such that

u = ku', v = kv', w = kw',

where u', v', w' are the signed areas of triangles PBC, PCA, PAB. Both coordinate systems are widely used; if trilinears for a point are x : y : z, then barycentrics are ax : by : cz.

Possibly your browser does not recognize Greek letters; for example, pi appears on your browser as π, omega as ω, Psi as Ψ, Lambda as Λ, not equals as ≠, and intersect as ∩.


HOW TO USE ETC


You won't have to scroll down very far to find well known centers. Other named centers can be found using your computer's searcher - for example, search for "Nagel" to find "Nagel point" as X(8).

To determine if a possibly new center is already listed, click SEARCH at the top of this page. If you're unsure of a term, click GLOSSARY. For visual constructions of selected centers, click SKETCHES.


X(1) = INCENTER

Trilinears       1 : 1 : 1
Barycentrics  a : b : c

The point of concurrence of the interior angle bisectors of ABC; the point inside ABC whose distances from sidelines BC, CA, AB are equal. This equal distance, r, is the radius of the incircle, and is given by

r = 2*area(ABC)/(a + b + c).

Three more points are also equidistant from the sidelines; they are given by these names and trilinears:

A-excenter = -1 : 1 : 1,     B-excenter = 1 : -1 : 1,     C-excenter = 1 : 1 : -1.

The radii of the excircles are

2*area(ABC)/(-a + b + c), 2*area(ABC)/(a - b + c), 2*area(ABC)/(a + b - c).

Writing the A-exradius as r(a,b,c), the others are r(b,c,a) and r(c,a,b). If these exradii are abbreviated as ra, rb, rc, then 1/r = 1/ra + 1/rb + 1/rc. Moreover,

area(ABC) = sqrt(r*ra*rb*rc) and ra + rb + rc = r + 4R,

where R denotes the radius of the circumcircle.

The incenter is the identity of the group of triangle centers under "trilinear multiplication" defined by

(x : y : z)*(u : v : w) = xu : yv : zw.

A construction for * is easily obtained from the construction for "barycentric multiplication" mentioned in connection with X(2), just below.

The incenter and the other classical centers are discussed in these highly recommended books:

Nathan Altshiller Court, College Geometry, Barnes & Noble, 1952;
Roger A. Johnson, Advanced Euclidean Geometry, Dover, 1960.

X(1) lies on these lines:
2,8   3,35   4,33   5,11   6,9   7,20   19,28   21,31   24,1061   25,1036   29,92   30,79   32,172   39,291   41,101   49,215   60,110   61,203   62,202   71,579  75,86   76,350   82,560   84,221   87,192   88,100   90,155   99,741   102,108   104,109   142,277   147,150   163,293   164,258   167,174   168,173   181,970   182,983   185,296   188,361   190,537   196,207   201,212   224,377   229,267   256,511   257,385   281,282   289,363   312,1089   320,752   321,964   329,452   335,384   336,811   341,1050   364,365   376,553   378,1063   393,836   512,875   513,764   514,663   528,1086   561,718   564,1048   572,604   573,941   607,949   631,1000   647,1021   659,891   662,897   672,1002   689,719   727,932   731,789   748,756   761,825   765,1052   908,998   1037,1041   1053,1110

X(1) = midpoint between X(I) and X(J) for these (I,J): (7,390), (8,145)

X(1) = reflection of X(I) about X(J) for these (I,J): (8,10), (40,3), (46,56), (80,11), (100,214), (191,21), (267,229), (355,5), (484,36)

X(1) = isogonal conjugate of X(1)
X(1) = isotomic conjugate of X(75)
X(1) = inverse of X(36) in the circumcircle
X(1) = inverse of X(80) in the Fuhrmann circle
X(1) = complement of X(8)
X(1) = anticomplement of X(10)
X(1) = eigencenter of cevian triangle of X(I) for I = 1, 88, 162
X(1) = eigencenter of anticevian triangle of X(I) for I = 1, 44, 513

X(1) = X(I)-Ceva conjugate of X(J) for these (I,J):
(2,9), (4,46), (6,43), (7,57), (8,40), (9,165), (10,191), (21,3), (29,4), (75,63), (77,223), (80,484), (81,6), (82,31), (85,169), (86,2), (88,44), (92,19), (100,513), (104,36), (105,238), (174,173), (188,164), (220,170), (259,503), (266,361), (280,84), (366,364), (508,362)

X(1) = cevapoint of X(I) and X(J) for these (I,J):
(2,192), (6,55), (11,523), (15,202), (16,203), (19,204), (31,48), (34,207), (37,42), (50,215), (56,221), (65,73), (244,513)

X(1) = X(I)-cross conjugate of X(J) for these (I,J):
(2,87), (3,90), (6,57), (31,19), (33,282), (37,2), (38,75), (42,6), (44,88), (48,63), (55,9), (56,84), (58,267), (65,4), (73,3), (192,43), (221,40), (244,513), (259,258), (266,505), (354,7), (367,366), (500,35), (513,100), (517,80), (518,291)

X(1) = crosspoint of X(I) and X(J) for these (I,J):
(2,7), (8,280), (21,29), (59,110), (75,92), (81,86)

X(1) = X(I)-Hirst inverse of X(J) for these (I,J):
(2,239), (4,243), (6,238), (9,518), (19,240), (57,241), (105,294), (291,292).

X(1) = X(6)-line conjugate of X(44)

X(1) = X(I)-aleph conjugate of X(J) for these (I,J):
(1,1), (2,63), (4,920), (21,411), (29,412), (88,88), (100,100), (162,162), (174,57), (188,40), (190,190), (266,978), (365,43), (366,9), (507,173), (508,169), (513,1052), (651, 651), (653,653), (655,655), (658,658), (660,660), (662,662), (673,673), (771,771), (799,799), (823,823), (897,897)

X(1) = X(I)-beth conjugate of X(J) for these (I,J):
(1,56), (2,948), (8,8), (9,45), (21,1), (29,34), (55,869), (99,85), (100,1), (110,603), (162,208), (643,1), (644,1), (663,875), (664,1), (1043,78)

Let X = X(1) and let V be the vector-sum XA + XB + XC; then V = X(8)X(1) = X(1)X(145).

Let W be the vector-sum XA' + XB' + XC', where A'B'C' is the pedal triangle of X;
then W = X(65)X(1) = X(8)X(72).


X(2) = CENTROID

Trilinears       1/a : 1/b : 1/c
                        = bc : ca : ab
                        = csc A : csc B : csc C

Barycentrics  1 : 1 : 1

The point of concurrence of the medians of ABC, situated 1/3 of the distance from each vertex to the midpoint of the opposite side. More generally, if L is any line in the plane of ABC, then the distance from X(2) to L is the average of the distances from A, B, C to L. An idealized triangular sheet balances atop a pin head located at X(2) and also balances atop any knife-edge that passes through X(2). The triangles BXC, CXA, AXB have equal areas if and only if X = X(2).

X(2) is the centroid of the set of 3 vertices, the centroid of the triangle including its interior, but not the centroid of the triangle without its interior; that centroid is X(10).

X(2) is the identity of the group of triangle centers under "barycentric multiplication" defined by

(x : y : z)*(u : v : w) = xu : yv : zw.

A simple construction for * (and for square roots of points) is known:

Paul Yiu, "The uses of homogeneous barycentric coordinates in plane euclidean geometry," International Journal of Mathematical Education in Science and Technology, forthcoming.

A preprint can be downloaded from Paul Yiu's website.

X(2) lies on these lines:
1,8   3,4   6,69   7,9   11,55   12,56   13,16   14,15   17,62   18,61   19,534   31,171   32,83   33,1040   34,1038   36,535  37,75   38,244   39,76   40,946   44,89   45,88   51,262   54,68   58,540   65,959   66,206   74,113   77,189   80,214   85,241   92,273   94,300   95,97   98,110   99,111   101,116   102,117   103,118   104,119   106,121   107,122   108,123   109,124   112,127   136,925   137,930   165,516   174,236   178,188   187,316   196,653   210,354   216,232   222,651   253,1073   254,847   261,593   271,1034   254,847   261,593   271,1034   272,284   280,318   283,580   290,327   292,334   294,949   308,702   311,570   314,941   319,1100   322,1108   330,1107   351,804   355,944   366,367   371,486   372,485   392,517   476,842   495,956   496,1058   514,1022   561,716   578,1092   647,850   650,693   668,1015   670,1084   689,733   743,789   799,873

X(2) = midpoint between X(I) and X(J) for these (I,J): (3,381), (4,376), (210,354)
X(2) = reflection of X(I) about X(J) for these (I,J): (4,381), (20,376), (376,3), (381,5)
X(2) = isogonal conjugate of X(6)
X(2) = isotomic conjugate of X(2)
X(2) = cyclocevian conjugate of X(4)
X(2) = inverse of X(23) in the circumcircle
X(2) = inverse of X(858) in the nine-point circle
X(2) = inverse of X(110) in the Brocard circle
X(2) = complement of X(2)
X(2) = anticomplement of X(2)

X(2) = X(I)-Ceva conjugate of X(J) for these (I,J):
(1,192), (4,193), (6,194), (7,145), (8,144), (69,20), (75,8), (76,69), (83,6), (85,7), (86,1), (87,330), (95,3), (98,385), (99,523), (190,514), (264,4), (274,75), (276, 264), (287,401), (290,511), (308,76), (312,329), (325,147), (333,63), (348,347), (491,487), (492,488), (523,148)

X(2) = cevapoint of X(I) and X(J) for these (I,J):
(1,9), (3,6), (5,216), (10,37), (32,206), (39,141), (44,214), (57,223), (114,230), (115,523), (128,231), (132,232), (140,233), (188,236)

X(2) = X(I)-cross conjugate of X(J) for these (I,J):
(1,7), (3,69), (4,253), (5,264), (6,4), (9,8), (10,75), (32,66), (37,1), (39,6), (44,80), (57,189), (75,330), (114,325), (140,95), (141,76), (142,85), (178,508), (187,67), (206,315), (214,320), (216,3), (223,329), (226,92), (230,98), (233,5), (281,280), (395,14), (396,13), (440,306), (511,290), (514,190), (523,99)

X(2) = crosspoint of X(I) and X(J) for these (I,J):
(1,87), (75,85), (76,264), (83,308), (86,274), (95,276)

X(2) = X(I)-Hirst inverse of X(J) for these (I,J):
(1,239), (3,401), (4,297), (6,385), (21,448), (27,447), (69,325), (75,350), (98,287), (115,148), (193,230), (291,335), (298,299), (449,452)

X(2) = X(3)-line conjugate of X(237) = X(316)-line conjugate of X(187)

X(2) = X(I)-aleph conjugate of X(J) for these (I,J):
(1,1045), (2,191), (86,2), (174,1046), (333,20), (366,846)

X(2) = X(I)-beth conjugate of X(J) for these (I,J):
(2,57), (21,995) (190,2), (312,312), (333,2), (643,55), (645,2), (646,2), (648,196), (662,222)

X(2) is the unique point X (as a function of a,b,c) for which the vector-sum XA + XB + XC is the zero vector.

Let W be the vector-sum XA' + XB' + XC', where A'B'C' is the pedal triangle of X; then W = X(51)X(2).


X(3) = CIRCUMCENTER

Trilinears       cos A : cos B : cos C
                        = a(b2 + c2 - a2) : b(c2 + a2 - b2) : c(a2 + b2 - c2)

Barycentrics  sin 2A : sin 2B : sin 2C

The point of concurrence of the perpendicular bisectors of the sides of ABC. The lengths of segments AX, BX, CX are equal if and only if X = X(3). This common distance is the radius of the circumcircle, which passes through vertices A,B,C. Called the circumradius, it is given by

R = a/(2 sin A) = abc/(4*area(ABC)).

X(3) lies on these lines:
1,35   2,4   6,15   7,943   8,100   9,84   10,197   11,499   12,498   13,17   14,18   31,601   37,975   38,976   41,218   42,967   48,71   49,155   54,97   63,72   64,154   66,141   67,542  68,343   69,332   73,212   74,110   76,98   83,262   95,264   101,103   102,109   105,277   113,122   114,127   119,123   125,131   142,516   158,243   169,910   194,385   200,963   223,1035   225,1074   238,978   252,930   256,987   269,939   296,820   298,617   299,616   302,621   303,622   315,325   352,353   388,495   390,1058   395,398   396,397   476,477   485,590   486,615   489,492   490,491   496,497   525,878   595,995   618,635   619,636   623,629   624,630   639,641   640,642   662,1098   667,1083   691,842   847,925   901,953   934,972   960,997   1037,1066   1093,1105

X(3) = midpoint between X(I) and X(J) for these (I,J):
(1,40), (2,376), (4,20), (22,378), (74,110), (98,99), (100,104), (101,103), (102,109), (476,477)

X(3) = reflection of X(I) about X(J) for these (I,J):
(4,5), (5,140), (6,182), (52,389), (195,54), (265,125), (355,10), (381,2), (382,4), (399,110)

X(3) = isogonal conjugate of X(4)
X(3) = isotomic conjugate of X(264)
X(3) = inverse of X(5) in the orthocentric circle
X(3) = complement of X(4)
X(3) = anticomplement of X(5)
X(3) = eigencenter of the medial triangle
X(3) = eigencenter of the tangential triangle

X(3) = X(I)-Ceva conjugate of X(J) for these (I,J):
(2,6), (4,155), (5,195), (21,1), (22,159), (30,399), (63,219), (69,394), (77,222), (95,2), (96,68), (99,525), (100,521), (110,520), (250, 110), (283,255)

X(3) = cevapoint of X(I) and X(J) for these (I,J):
(6,154), (48,212), (55,198), (71,228), (185,417), (216,418)

X(3) = X(I)-cross conjugate of X(J) for these (I,J):
(48,222), (55,268), (71,63), (73,1), (184,6), (185,4), (212,219), (216,2), (228,48), (520,110)

X(3) = crosspoint of X(I) and X(J) for these (I,J):
(1,90), (2,69), (4,254), (21,283), (54,96), (59,100), (63,77), (78,271), (81,272), (95,97), (99,249), (110,250), (485,486)

X(3) = X(I)-Hirst inverse of X(J) for these (I,J): (2, 401), (4,450), (6,511), (21,416), (194, 385)
X(3) = X(2)-line conjugate of X(468)

X(3) = X(I)-aleph conjugate of X(J) for these (I,J): (1,1046), (21,3), (188,191), (259,1045)

X(3) = X(I)-beth conjugate of X(J) for these (I,J):
(3,603), (8,355), (21,56), (78,78), (100,3), (110,221), (271,84), (283,3), (333,379), (643,8)

Let X = X(3) and let V be the vector-sum XA + XB + XC; then V = X(4)X(3) = X(382)X(4) = X(3)X(20) = X(355)X(40) = X(265)X(74) = X(52)X(185) = X(381)X(376) = X(146)X(399).

Let W be the vector-sum XA' + XB' + XC', where A'B'C' is the pedal triangle of X;
then W = X(4)X(3) = X(382)X(4) = X(3)X(20) = X(355)X(40) = X(265)X(74) = X(52)X(185) = X(381)X(376) = X(146)X(399). These are the same vectors as in the preceding list; i.e., XA + XB + XC = XA' + XB' + XC'. It is easy to prove that the unique solution X of this equation is X(3).


X(4) = ORTHOCENTER

Trilinears       sec A : sec B : sec C
Barycentrics  tan A : tan B : tan C

The point of concurrence of the altitudes of ABC. The orthocenter and the vertices A,B,C comprise an orthocentric system, defined as a set of four points, one of which is the orthocenter of the triangle of the other three (so that each is the orthocenter of the other three). The incenter and excenters also form an orthocentric system.

Suppose P is not on a sideline of ABC. Let A'B'C' be the cevian triangle of P. Let D,E,F be the circles having diameters AA', BB',CC'. The radical center of D,E,F is X(4). (Floor van Lamoen, Hyacinthos@onelist, Jan. 24, 2000.)

Ross Honsberger, Episodes in Nineteenth and Twentieth Century Euclidean Geometry, Mathematical Association of America, 1995. Chapter 2: The Orthocenter.

X(4) lies on these lines:
1,33   2,3   6,53   7,273   8,72   9,10   11,56   12,55   13,61   14,62   15,17   16,18   32,98   35,498   36,499   39,232   46,90   49,156   51,185   52,68   54,184   57,84   65,158   67,338   69,76   74,107   78,908   83,182   93,562  94,143   96,231   99,114   100,119   101,118   102,124   103,116   109,117   110,113   128,930   131,135   137,933   145,149   147,148   150,152   155,254   162,270   171,601   195,399   218,294   238,602   240,256   276,327   371,485   372,486   390,495   487,489   488,490   496,999   512,879   542,576   575,598   616,627   617,628   801,1092   842,935   1036,1065   1037,1067   1038,1076   1039,1096   1040,1074

X(4) = midpoint between X(I) and X(J) for these (I,J):
(3,382), (147,148), (149,153), (150,152)

X(4) = reflection of X(I) about X(J) for these (I,J):
(2,381), (3,5), (8,355), (20,3), (24,235), (40,10), (74,125), (98,115), (99,114), (100,119), (101,118), (102,124), (103,116), (104,11), (107,133), (109,117), (110,113), (112,132), (185,389), (186,403), (376,2), (378,427)

X(4) = isogonal conjugate of X(3)
X(4) = isotomic conjugate of X(69)
X(4) = cyclocevian conjugate of X(2)
X(4) = inverse of X(186) in the circumcircle
X(4) = inverse of X(403) in the nine-point circle
X(4) = complement of X(20)
X(4) = anticomplement of X(3)
X(4) = eigencenter of cevian triangle of X(i) for i = 1, 88, 162
X(4) = eigencenter of anticevian triangle of X(i) for i = 1, 44, 513

X(4) = X(I)-Ceva conjugate of X(J) for these (I,J):
(7,196), (27,19), (29,1), (92,281), (107,523), (264,2), (273,278), (275,6), (286,92), (393, 459)

X(4) = cevapoint of X(I) and X(J) for these (I,J):
(1,46), (2,193), (3,155), (5,52), (6,25), (11,513), (19,33), (30,113), (34,208), (37,209), (39,211), (51,53), (65,225), (114,511), (115,512), (116,514), (117,515), (118,516), (119,517), (120,518), (121,519), (122,520), (123,521), (124,522), (125,523), (126,524), (127,525), (185,235), (371,372), (487,488)

X(4) = X(I)-cross conjugate of X(J) for these (I,J):
(3,254), (6,2), (19,278), (25,393), (33,281), (51,6), (52,24), (65,1), (113,403), (125,523), (185,3), (193,459), (225,158), (389,54), (397,17), (398,18), (407,225), (427,264), (512,112), (513,108), (523,107)

X(4) = crosspoint of X(I) and X(J) for these (I,J): (2,253), (7,189), (27,286), (92,273)

X(4) = X(I)-Hirst inverse of X(J) for these (I,J):
(1,243), (2,297), (3,350), (19,242), (21,425), (24,421), (25,419), (27,423), (28,422), (29,415), (420,427), (424,451), (459,460), (470,471)

X(4) = X(I)-aleph conjugate of X(J) for these (I,J): (1,1047), (29,4)

X(4) = X(I)-beth conjugate of X(J) for these (I,J):
(4,34), (8,40), (29,4), (162,56), (318,318), (811,331)

Let X = X(4) and let V be the vector-sum XA + XB + XC; then V = X(20)X(4) = X(3)X(382).

Let W be the vector-sum XA' + XB' + XC', where A'B'C' is the pedal triangle of X;
then W = X(185)X(4) = X(52)X(382).


X(5) = NINE-POINT CENTER

Trilinears       cos(B - C) : cos(C - A) : cos(A - B)
                        = f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = cos A + 2 cos B cos C
                        = g(a,b,c) : g(b,c,a): g(c,a,b), where g(a,b,c) = bc[a2(b2 + c2) - (b2 - c2)2]

Barycentrics  a cos(B - C) : b cos(C - A) : c cos(A - B)
                        = h(a,b,c) : h(b,c,a) : h(c,a,b), where h(a,b,c) = a2(b2 + c2) - (b2 - c2)2

The center of the nine-point circle. Euler showed in that this circle passes through the midpoints of the sides of ABC and the feet of the altitudes of ABC, hence six of the nine points. The other three are the midpoints of segments A-to-X(4), B-to-X(4), C-to-X(4). The radius of the nine-point circle is one-half the circumradius.

Dan Pedoe, Circles: A Mathematical View, Mathematical Association of America, 1995.

X(5) lies on these lines:
1,11   2,3   6,68   10,517   13,18   14,17   32,230   33,1062   34,1060   39,114   49,54   51,52   53,216   55,498   56,499   72,908   76,262   83,98   113,125   116,118   117,124   122,133   127,132   128,137   129,130   131,136   141,211   142,971   156,184   182,206   183,315   226,912   264,1093   298,634   299,633   302,622   303,621   371,590   372,615   388,999   491,637   492,638   524,576   542,575   601,750   602,748   618,629   619,630   1090,1091

X(5) = midpoint between X(I) and X(J) for these (I,J):
(1,355), (2,381), (3,4), (11,119), (20,382), (68,155), (110,265), (113,125), (114,115), (116,118), (117,124), (122,133), (127,132), (128,137), (129,130), (131,136)

X(5) = reflection of X(I) about X(J) for these (I,J): (3,140), (52,143)
X(5) = isogonal conjugate of X(54)
X(5) = isotomic conjugate of X(95)
X(5) = inverse of X(3) in the orthocentroidal circle
X(5) = complement of X(3)
X(5) = anticomplement of X(140)
X(5) = eigencenter of anticevian triangle of X(523)

X(5) = X(I)-Ceva conjugate of X(J) for these (I,J):
(2,216), (4,52), (110,523), (264, 324), (265,30), (311,343), (324,53)

X(5) = cevapoint of X(I) and X(J) for these (I,J): (3,195), (51,216)

X(5) = X(I)-cross conjugate of X(J) for these (I,J): (51,53), (216,343), (233,2)
X(5) = crosspoint of X(I) and X(J) for these (I,J): (2,264), (311,324)
X(5) = X(1)-aleph conjugate of X(1048)

Let X = X(5) and let V be the vector-sum XA + XB + XC; then V = X(5)X(4) = X(3)X(5).


X(6) = SYMMEDIAN POINT (LEMOINE POINT, GREBE POINT)

Trilinears       a : b : c
                        = sin A : sin B : sin C

Barycentrics  a2 : b2 : c2

The point of concurrence of the symmedians (reflections of medians about corresponding angle bisectors); the point (x, y, z), given here in actual trilinear distances, that minimizes x2 + y2 + z2.

Let A'B'C' be the pedal triangle of an arbitrary point X, and let S(X) be the vector sum XA' + XB' + XC'. Then

S(X) = (0 vector) if and only if X = X(6).

The "if" implication is equivalent to the well known fact that X(6) is the centroid of its pedal triangle, and the converse was proved by Barry Wolk on Hyacinthos@onelist.com, Dec. 23, 1999.

Ross Honsberger, Episodes in Nineteenth and Twentieth Century Euclidean Geometry, Mathematical Association of America, 1995. Chapter 7: The Symmedian Point.

X(6) lies on these lines:
1,9   2,69   3,15   4,53   5,68   7,294   8,594   13,14   17,18   19,34   21,941   22,251   23,353   24,54   25,51   26,143   31,42   33,204   36,609  40,380   41,48   43,87   57,222   64,185   66,427   67,125   74,112   75,239   76,83   77,241   88,89   98,262   99,729   100,739   101,106   105,1002   110,111   145,346   157,248   160,237   169,942   181,197   190,192   194,384   210,612   264,287   291,985   292,869   297,317   314,981   354,374   513,1024   517,998   519,996   523,879   561,720   598,671   603,1035   662,757   688,882   689,703   691,843   694,1084   717,789   750,899   753,825   755,827   840,919   846,1051   959,961   971,990   986,1046

X(6) = midpoint between X(69) and X(193)
X(6) = reflection of X(I) about X(J) for these (I,J): (3,182), (67,125), (69,141), (159,206)
X(6) = isogonal conjugate of X(2)
X(6) = isotomic conjugate of X(76)
X(6) = cyclocevian conjugate of X(1031)
X(6) = inverse of X(187) in the circumcircle
X(6) = inverse of X(115) in the orthocentroidal circle
X(6) = complement of X(69)
X(6) = anticomplement of X(141)

X(6) = X(I)-Ceva conjugate of X(J) for these (I,J):
(1,55), (2,3), (3,154), (4,25), (8,197), (9,198), (10,199), (54,184), (57, 56), (58,31), (68,161), (69,159), (76,22), (81,1), (83,2), (88,36), (95,160), (98,237), (110,512), (111,187), (222,221), (249,110), (251,32), (264,157), (275,4), (284,48), (288,54), (323,399)

X(6) = cevapoint of X(I) and X(J) for these (I,J): (1,43), (2,194), (31,41), (32,184), (42,213), (51,217)

X(6) = X(I)-cross conjugate of X(J) for these (I,J):
(25,64), (31,56), (32,25), (39,2), (41,55), (42,1), (51,4), (184,3), (187,111), (213,31), (217,184), (237,98), (512,110)

X(6) = crosspoint of X(I) and X(J) for these (I,J):
(1,57), (2,4), (9,282), (54,275), (58,81), (83, 251), (110,249), (266,289)

X(6) = X(I)-Hirst inverse of X(J) for these (I,J): (1,238), (2,385), (3,511), (15,16), (25,232)
X(6) = X(I)-line conjugate of X(J) for these (I,J): (1,518), (2,524), (3,511)
X(6) = X(I)-aleph conjugate of X(J) for these (I,J): (1,846), (81,6), (365,1045), (366,191), (509,1046)

X(6) = X(I)-beth conjugate of X(J) for these (I,J):
(6,604), (9,9), (21,1001), (101,6), (284,6), (294,6), (644,6), (645,6), (651,6), (652,7), (666,6)

Let X = X(6) and let V be the vector-sum XA + XB + XC; then V = X(6)X(193) = X(69)X(6).


X(7) = GERGONNE POINT

Trilinears       bc/(b + c - a) : ca/(c + a - b) : ab/(a + b - c)
                        = sec2(A/2) : sec2(B/2) : sec2(C/2)

Barycentrics  1/(b + c - a) : 1/(c + a - b) : 1/(a + b - c)

Let A', B', C' denote the points in which the incircle meets the sides BC, CA, AB, respectively. The lines A'A', BB', CC' concur in X(7).

X(7) lies on these lines:
1,20   2,9   3,943   4,273   6,294   8,65   11,658   21,56   27,81   37,241   33,1041   34,1039   58,272   72,443   80,150   92,189   100,1004   104,934   108,1013   109,675   171,983   174,234   177,555   190,344   192,335   193,239   218,277   225,969   253,280   256,982   274,959   281,653   286,331   310,314   354,479   513,885   517,1000   528,664   554,1082   594,599   840,927   987,1106

X(7) = reflection of X(I) about X(J) for these (I,J): (9,142), (144,9), (390,1)
X(7) = isogonal conjugate of X(55)
X(7) = isotomic conjugate of X(8)
X(7) = cyclocevian conjugate of X(7)
X(7) = complement of X(144)
X(7) = anticomplement of X(9)
X(7) = X(I)-Ceva conjugate of X(J) for these (I,J): (75,347), (85,2), (86,77), (286,273), (331,278)

X(7) = cevapoint of X(I) and X(J) for these (I,J):
(1,57), (2,145), (4,196), (11,514), (55,218), (56,222), (63,224), (65,226), (81,229), (177,234)

X(7) = X(I)-cross conjugate of X(J) for these (I,J):
(1,2), (4,189), (11,514), (55,277), (56,278), (57,279), (65,57), (177,174), (222,348), (226,85), (354,1), (497,8), (517,88)

X(7) = crosspoint of X(I) and X(J) for these (I,J): (75,309), (86,286)

X(7) = X(I)-beth conjugate of X(J) for these (I,J):
(7,269), (21,991), (75,75), (86,7), (99,7), (190,7), (290,7), (314,69), (645,344), (648,7), (662,6), (664,7), (666,7), (668,7), (670,7), (671,7), (811,264), (886,7), (889,7), (892,7), (903,7)


X(8) = NAGEL POINT

Trilinears       (b + c - a)/a : (c + a - b)/b : (a + b - c)/c
                        = csc2(A/2) : csc2(B/2) : csc2(C/2)

Barycentrics  b + c - a : c + a - b : a + b - c

Let A'B'C' be the points in which the A'-excircle meets BC, the B-excircle meets CA, and the C-excircle meets AB, respectively. The lines A'A', BB', CC' concur in X(8). Another construction of A' is to start at A and trace around ABC half its perimeter, and similarly for B' and C'. Also, X(8) is the incenter of the anticomplementary triangle.

X(8) lies on these lines:
1,2   3,100   4,72   6,594   7,65   9,346   20,40   21,55   29,219   31,987   33,1039   34,1041   35,993   37,941   38,986   56,404   58,996   76,668   79,758   80,149   81,1010   144,516   177,556   178,236   181,959   190,528   192,256   193,894   194,730   210,312   213,981   220,294   221,651   224,914   238,983   253,307   274,1002   291,330   315,760   344,480   348,664   392,1000   405,943   406,1061   442,495   443,942   474,999   475,1063   599,1086   643,1098   860,1068   908,946   1016,1083

X(8) = reflection of X(I) about X(J) for these (I,J): (1,10), (4,355), (20,40), (145,1), (149,80), (390,9)
X(8) = isogonal conjugate of X(56)
X(8) = isotomic conjugate of X(7)
X(8) = cyclocevian conjugate of X(189)
X(8) = complement of X(145)
X(8) = anticomplement of X(1)
X(8) = X(I)-Ceva conjugate of X(J) for these (I,J): (69,329), (72,2), (312,346), (314,312), (333,9)

X(8) = X(I)-cross conjugate of X(J) for these (I,J):
(1,280), (9,2), (10,318), (11,522), (55,281), (72,78), (200,346), (210,9), (219,345), (497,7), (521,100)

X(8) = cevapoint of X(I) and X(J) for these (I,J):
(1,40), (2,144), (6,197), (9,200), (10,72), (11,522), (55,219), (175,176)

X(8) = crosspoint of X(I) and X(J) for these (I,J): (75,312), (314,333)
X(8) = X(1)-alpeh conjugate of X(1050)
X(8) = X(I)-beth conjugate of X(J) for these (I,J): (8,1), (341,341), (643,3), (668,8), (1043,8)


X(9) = MITTENPUNKT

Trilinears       b + c - a : c + a - b : a + b - c
                        = cot(A/2) : cot(B/2) : cot(C/2)

Barycentrics  a(b + c - a) : b(c + a - b) : c(a + b - c)

The symmedian point of the excentral triangle.

X(9) lies on these lines:
1,6   2,7   3,84   4,10   8,346   21,41   31,612   32,987   33,212   34,201   35,90   38,614      39,978   42,941   43,256   46,79   48,101   55,200   58,975   100,1005   164,168   165,910   173,177   192,239   223,1073   228,1011   241,269   261,645   312,314   342,653   348,738   364,366   374,517   478,1038   498,920   522,657   607,1039   608,1041   750,896

X(9) = midpoint between X(I) and X(J) for these (I,J): (7,144), (8,390)
X(9) = reflection of X(7) about X(142)
X(9) = isogonal conjugate of X(57)
X(9) = isotomic conjugate of X(85)
X(9) = complement of X(7)
X(9) = anticomplement of X(142)
X(9) = X(I)-Ceva conjugate of X(J) for these (I,J):
(2,1), (8,200), (21,55), (63,40), (190,522), (312,78), (318,33), (333,8)

X(9) = cevapoint of X(I) and X(J) for these (I,J): (1,165), (6,198), (31,205), (37,71), (41,212), (55,220)

X(9) = X(I)-cross conjugate of X(J) for these (I,J):
(6,282), (37,281), (41,33), (55,1), (71,219), (210,8), (212,78), (220,200)

X(9) = crosspoint of X(I) and X(J) for these (I,J): (2,8), (21,333), (63,271), (312,318)
X(9) = X(I)-Hirst inverse of X(J) for these (I,J): (1, 518), (192,239)

X(9) = X(I)-aleph conjugate of X(J) for these (I,J):
(1,43), (2,9), (9,170), (188,165), (190,1018), (366,1), (507,361), (508,57), (509,978)

X(9) = X(I)-beth conjugate of X(J) for these (I,J):
(9,6), (190,6), (346,346), (644,9), (645,75)


X(10) = SPIEKER CENTER

Trilinears       bc(b + c) : ca(c + a) : ab(a + b)
Barycentrics  b + c : c + a : a + b

The Spieker circle is the incircle of the medial triangle; its center, X(10), is the centroid of the perimeter of ABC.

X(10) lies on these lines:
1,2   3,197   4,9   5,517   11,121   12,65   20,165   21,35   31,964   33,406   34,475   36,404   37,594   38,596   39,730   44,752   46,63   55,405   56,474   57,388   58,171   69,969   75,76   82,83   86,319   87,979   98,101   116,120   117,123   119,124   140,214   141,142   158,318   190,671   191,267   201,225   219,965   274,291   321,756   480,954   514,764   537,1086   626,760   631,944   775,801   894,1046   908,994

X(10) = midpoint between X(I) and X(J) for these (I,J): (1,8), (3,355), (4,40), (65,72), (80,100)
X(10) = isogonal conjugate of X(58)
X(10) = isotomic conjugate of X(86)
X(10) = complement of X(1)

X(10) = X(I)-Ceva conjugate of X(J) for these (I,J):
(2,37), (8,72), (75,321), (80,519), (100,522), (313,306)

X(10) = cevapoint of X(I) and X(J) for these (I,J):
(1,191), (6,199), (12,201), (37,210), (42,71), (65,227)

X(10) = X(I)-cross conjugate of X(J) for these (I,J): (37,226), (71,306), (191,502), (201,72)
X(10) = crosspoint of X(I) and X(J) for these (I,J): (2,75), (8,318)
X(10) = X(I)-beth conjugate of X(J) for these (I,J): (8,10), (10,65), (100,73), (318,225), (643,35), (668,349)


X(11) = FEUERBACH POINT

Trilinears       1 - cos(B - C) : 1 - cos(C - A) : 1 - cos(A - B)
                        = f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = sin2(B/2 - C/2)
                        = g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = bc(b + c - a)(b - c)2

Barycentrics  a(1 - cos(B - C)) : b(1 - cos(C - A)) : c(1 - cos(A - B))
                         = h(a,b,c) : h(b,c,a) : h(c,a,b), where h(A,B,C) = (b + c - a)(b - c)2

The point of tangency of the nine-point circle and the incircle. The nine-point circle is the circumcenter of the medial triangle, as well as the orthic triangle. Feuerbach's famous theorem states that the nine-point circle is tangent to the incircle and the three excircles.

X(11) lies on these lines:
1,5   2,55   3,499   4,56   7,658   10,121   13,202   14,203   30,36   33,427   34,235   35,140   65,117   68,1069   110,215   113,942   115,1015   118,226   153,388   212,748   214,442   244,867   325,350   381,999   429,1104   518,908   523,1090

X(11) = midpoint between X(I) and X(J) for these (I,J): (1,80), (4,104), (100,149)
X(11) = reflection of X(119) about X(5)
X(11) = isogonal conjugate of X(59)
X(11) = X(I)-Ceva conjugate of X(J) for these (I,J): (1,523), (4,513), (7,514), (8,522)
X(11) = crosspoint of X(I) and X(J) for these (I,J): (7,514), (8,522)
X(11) = X(I)-beth conjugate of X(J) for these (I,J): (11,244), (522,11), (693,11)

Let X = X(11) and let V be the vector-sum XA + XB + XC; then V = X(100)X(11) = X(11)X(149).


X(12) = HARMONIC CONJUGATE OF X(11) WRT X(1) AND X(5)

Trilinears       1 + cos(B - C) : 1 + cos(C - A) : 1 + cos(A - B)
                        = f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = cos2(B/2 - C/2)
                        = g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = bc(b + c)2/(b + c - a)

Barycentrics  a(1 + cos(B - C)) : b(1 + cos(C - A)) : c(1 + cos(A - B))
                         = h(a,b,c) : h(b,c,a) : h(c,a,b), where h(a,b,c) = (b + c)2/(b + c - a)

Let A'B'C' be the touch points of the nine-point circle with the A-, B-, C- excircles, respectively. The lines AA', BB', CC' concur in X(12).

X(12) lies on these lines:
1,5   2,56   3,498   4,55   10,65   17,203   18,202   30,35   33,235   34,427   36,140   37,225   54,215   79,484   85,120   108,451   172,230   201,756   228,407   313,349   499,999   603,750   908,960   1091,1109

X(12) = isogonal conjugate of X(60)
X(12) = isotomic conjugate of X(261)
X(12) = X(10)-Ceva conjugate of X(201)
X(12) = X(I)-beth conjugate of X(J) for these (I,J): (10,12), (1089,1089)


X(13) = 1st ISOGONIC CENTER (FERMAT POINT, TORRICELLI POINT)

Trilinears       csc(A + π/3) : csc(B + π/3) : csc(C + π/3)
                        = sec(A - π/6) : sec(B - π/6) : sec(C - π/6)

Barycentrics  f(a,b,c) : f(b,c,a) : f(c,a,b), where
                        f(a,b,c) = a4 - 2(b2 - c2)2 + a2(b2 + c2 + 4*SQR(3)*Area(ABC))

Construct the equilateral triangle BA'C having base BC and vertex A' on the negative side of BC; similarly construct equilateral triangles CB'A and AC'B based on the other two sides. The lines AA',BB',CC' concur in X(13). If each of the angles A, B, C is < 2*π/3, then X(13) is the only center X for which the angles BXC, CXA, AXB are equal, and X(13) minimizes the sum |AX| + |BX| + |CX|. The antipedal triangle of X(13) is equilateral.

X(13) lies on these lines:
2,16   3,17   4,61   5,18   6,14   11,202   15,30   76,299   98,1080   99,303   148,617   226,1082   262,383   275,472   298,532   531,671   533,621   634,635

X(13) = reflection of X(I) about X(J) for these (I,J): (14,115), (15,396)
X(13) = isogonal conjugate of X(15)
X(13) = isotomic conjugate of X(298)
X(13) = inverse of X(14) in the orthocentroidal circle
X(13) = complement of X(616)
X(13) = anticomplement of X(618)
X(13) = cevapoint of X(15) and X(62)
X(13) = X(I)-cross conjugate of X(J) for these (I,J): (15,18), (30,14), (396,2)


X(14) = 2nd ISOGONIC CENTER

Trilinears       csc(A - π/3) : csc(B - π/3) : csc(C - π/3)
                        = sec(A + π/6) : sec(B + π/6) : sec(C + π/6)

Barycentrics  f(a,b,c) : f(b,c,a) : f(c,a,b), where
                        f(a,b,c) = a4 - 2(b2 - c2)2 + a2(b2 + c2 - 4*SQR(3)*Area(ABC))

Construct the equilateral triangle BA'C having base BC and vertex A' on the positive side of BC; similarly construct equilateral triangles CB'A and AC'B based on the other two sides. The lines AA',BB',CC' concur in X(14). The antipedal triangle of X(14) is equilateral.

X(14) lies on these lines:
2,15   3,18   4,62   5,17   6,13   11,203   16,30   76,298   98,383   99,302   148,616   226,554   262,1080   275,473   299,533   397,546   530,671   532,622   633,636

X(14) = reflection of X(I) about X(J) for these (I,J): (13,115), (16,395)
X(14) = isogonal conjugate of X(16)
X(14) = isotomic conjugate of X(299)
X(14) = inverse of X(13) in the orthocentroidal circle
X(14) = complement of X(617)
X(14) = anticomplement of X(619)
X(14) = cevapoint of X(16) and X(61)
X(14) = X(I)-cross conjugate of X(J) for these (I,J): (16,17), (30,13), (395,2)


X(15) = 1st ISODYNAMIC POINT

Trilinears       sin(A + π/3) : sin(B + π/3) : sin(C + π/3)
                        = cos(A - π/6) : cos(B - π/6) : cos(C - π/6)

Barycentrics  a sin(A + π/3) : b sin(B + π/3) : c sin(C + π/3)

Let U and V be the points on sideline BC met by the interior and exterior bisectors of angle A. The circle having diameter UV is the A-Apollonian circle. The B- and C- Apollonian circles are similarly constructed. Each circle passes through one vertex and both isodynamic points. The pedal triangle of X(15) is equilateral.

X(15) lies on these lines:
2,14   3,6   4,17   13,30   18,140   36,202   55,203   298,533   303,316   395,549   397,550   532,616   628,636

X(15) = reflection of X(I) about X(J) for these (I,J): (13,396), (16,187)
X(15) = isogonal conjugate of X(13)
X(15) = isotomic conjugate of X(300)
X(15) = inverse of X(16) in the circumcircle
X(15) = inverse of X(16) in Brocard circle
X(15) = complement of X(621)
X(15) = anticomplement of X(623)
X(15) = X(I)-Ceva conjugate of X(J) for these (I,J): (1,202), (13,62), (74,16)
X(15) = crosspoint of X(I) and X(J) for these (I,J): (13,18), (298,470)
X(15) = X(6)-Hirst inverse of X(16)


X(16) = 2nd ISODYNAMIC POINT

Trilinears       sin(A - π/3) : sin(B - π/3) : sin(C - π/3)
                        = cos(A + π/6) : cos(B + π/6) : cos(C + π/6)

Barycentrics  a sin(A - π/3) : b sin(B - π/3) : c sin(C - π/3)

Let U and V be the points on sideline BC met by the interior and exterior bisectors of angle A. The circle having diameter UV is the A-Apollonian circle. The B- and C- Apollonian circles are similarly constructed. Each circle passes through a vertex and both isodynamic points. The pedal triangle of X(16) is equilateral.

X(16) lies on these lines:
2,13   3,6   4,18   14,30   17,140   36,203   55,202   299,532   302,316   396,549   398,550   533,617   627,635

X(16) = reflection of X(I) about X(J) for these (I,J): (14,395), (15,187)
X(16) = isogonal conjugate of X(14)
X(16) = isotomic conjugate of X(301)
X(16) = inverse of X(15) in the circumcircle
X(16) = inverse of X(15) in the Brocard
X(16) = complement of X(622)
X(16) = anticomplement of X(624)
X(16) = X(I)-Ceva conjugate of X(J) for these (I,J): (1,203), (14,61), (74,15)
X(16) = crosspoint of X(I) and X(J) for these (I,J): (14,17), (299,471)
X(16) = X(6)-Hirst inverse of X(15)


X(17) = 1st NAPOLEON POINT

Trilinears       csc(A + π/6) : csc(B + π/6) : csc(C + π/6)
                        = sec(A - π/3) : sec(B - π/3) : sec(C - π/3)

Barycentrics  a csc(A + π/6) : b csc(B + π/6) : c csc(C + π/6)

Let X,Y,Z be the centers of the equilateral triangles in the construction of X(13). The lines AX, BY, CZ concur in X(17).

John Rigby, "Napoleon revisited," Journal of Geometry, 33 (1988) 126-146.

X(17) lies on these lines:
2,62   3,13   4,15   5,14   6,18   12,203   16,140   76,303   83,624   202,499   275,471   299,635   623,633

X(17) = isogonal conjugate of X(61)
X(17) = isotomic conjugate of X(302)
X(17) = complement of X(627)
X(17) = anticomplement of X(629)
X(17) = X(I)-cross conjugate of X(J) for these (I,J): (16,14), (140,18), (397,4)


X(18) = 2nd NAPOLEON POINT

Trilinears       csc(A - π/6) : csc(B - π/6) : csc(C - π/6)
                        = sec(A + π/3) : sec(B + π/3) : sec(C + π/3)

Barycentrics  a csc(A - π/6) : b csc(B - π/6) : c csc(C - π/6)

Let X,Y,Z be the centers of the equilateral triangles in the construction of X(14). The lines AX, BY, CZ concur in X(18).

X(18) lies on these lines:
2,61   3,14   4,16   5,13   6,17   12,202   15,140   76,302   83,623   203,499   275,470   298,636   624,634

X(18) = isogonal conjugate of X(62)
X(18) = isotomic conjugate of X(303)
X(18) = complement of X(628)
X(18) = anticomplement of X(630)
X(18) = X(I)-cross conjugate of X(J) for these (I,J): (15,13), (140,17), (398,4)


X(19) = CLAWSON POINT

Trilinears       tan A : tan B : tan C
                        = f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = sin 2B + sin 2C - sin 2A
                        = g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = 1/(b2 + c2 - a2)

Barycentrics  a tan A : b tan B : c tan C

The homothetic center of the orthic and extangents triangles. Further information is available from
Paul Yiu's Website.

X(19) lies on these lines:
1,28   2,534   4,9   6,34   25,33   27,63   31,204   46,579   47,921   56,207   57,196   81,969   91,920   101,913   102,282   112,759   162,897   163,563   208,225   219,517   232,444   273,653   294,1041   604,609   960,965

X(19) = isogonal conjugate of X(63)
X(19) = isotomic conjugate of X(304)

X(19) = X(I)-Ceva conjugate of X(J) for these (I,J):
(1,204), (4,33), (27,4), (28,25), (57,208), (92,1), (196,207), (278,34)

X(19) = X(I)-cross conjugate of X(J) for these (I,J): (25,34), (31,1)
X(19) = crosspoint of X(I) and X(J) for these (I,J): (4,278), (27,28), (57,84), (92,158)
X(19) = X(I)-Hirst inverse of X(J) for these (I,J): (1,240), (4,242)
X(19) = X(I)-aleph conjugate of X(J) for these (I,J): (2,610), (92,19), (508,223), (648,163)
X(19) = X(I)-beth conjugate of X(J) for these (I,J): (9,198), (19,608), (112,604), (281,281), (648,273), (653,19)



leftri Centers 20- 30, rightri
2- 5, 140, 186, 199, 235, 237, 297, 376- 379, 381- 384,
401- 475, 546- 550, 631, 632 lie on the Euler line.

underbar

X(20) = DE LONGCHAMPS POINT

Trilinears       cos A - cos B cos C : cos B - cos C cos A : cos C - cos A cos B

Barycentrics  tan B + tan C - tan A : tan C + tan A - tan B: tan A + tan B - tan C
                        = f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = [-3a4 + 2a2(b2 + c2) + (b2 - c2)2]

The reflection of X(4) about X(3); also, the orthocenter of the anticomplementary triangle.

X(20) lies on these lines:
1,7   2,3   8,40   10,165   33,1038   34,1040   55,388   56,497   57,938   58,387   64,69   68,74   72,144   78,329   98,148   99,147   100,153   101,152   103,150   104,149   109,151   110,146   145,517   155,323   185,193   391,573   393,577   394,1032   487,638   488,637   616,633   617,635   621,627   622,628   999,1058

X(20) = reflection of X(I) about X(J) for these (I,J): (2,376), (4,3), (8,40), (146,110), (147,99), (148,98), (149,104), (150,103), (151,109), (152,101), (153,100), (382,5)

X(20) = isogonal conjugate of X(64)
X(20) = isotomic conjugate of X(253)
X(20) = cyclocevian conjugate of X(1032)
X(20) = anticomplement of X(4)
X(20) = X(I)-Ceva conjugate of X(J) for these (I,J): (69,2), (489,487), (490,488)
X(20) = X(I)-aleph conjugate of X(J) for these (I,J): (8,191), (9,1045), (188,1046), (333,2), (1043,20)
X(20) = X(I)-beth conjugate of X(J) for these (I,J): (664,20), (1043,280)


X(21) = SCHIFFLER POINT

Trilinears       1/(cos B + cos C) : 1/(cos C + cos A) : 1/(cos A + cos B)
                        = f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b + c - a)/(b + c)

Barycentrics  a/(cos B + cos C) : b/(cos C + cos A) : c/(cos A + cos B)

Write I for the incenter; the Euler lines of the four triangles IBC, ICA, IAB, and ABC concur in X(21).

X(21) lies on these lines:
1,31   2,3   6,941   7,56   8,55   9,41   10,35   32,981   36,79   37,172   51,970   60,960   72,943   75,272   84,285   90,224   99,105   104,110   144,954   145,956   238,256   261,314   268,280   332,1036   612,989   614,988   741,932   748,978   884,885   915,925   976,983   1038,1041   1039,1040   1060,1063   1061,1062

X(21) = midpoint between X(1) and X(191)
X(21) = isogonal conjugate of X(65)
X(21) = anticomplement of X(422)
X(21) = X(I)-Ceva conjugate of X(J) for these (I,J): (86,81), (261,333)
X(21) = cevapoint of X(I) and X(J) for these (I,J): (1,3), (9,55)

X(21) = X(I)-cross conjugate of X(J) for these (I,J):
(1,29), (3,283), (9,333), (55,284), (58,285), (284,81), (522,100)

X(21) = crosspoint of X(86) and X(333)
X(21) = X(I)-Hirst inverse of X(J) for these (I,J): (2,448), (3,416), (4,425)
X(21) = X(I)-beth conjugate of X(J) for these (I,J): (21,58), (99,21), (643,21), (1043,1043), (1098,21)

Let X = X(21) and let V be the vector-sum XA + XB + XC; then V = X(79)X(1).


X(22) = EXETER POINT

Trilinears       a(b4 + c4 - a4) : b(c4 + a4 - a4) : c(a4 + b4 - c4)
Barycentrics  a2(b4 + c4 - a4) : b2(c4 + a4 - a4) : c2(a4 + b4 - c4)

The perspector of the circummedial triangle and the tangential triangle; also X(22) = X(55)-of-the-tangential triangle if ABC is acute.

X(22) lies on these lines:
2,3   6,251   35,612   36,614   51,182   56,977   69,159   98,925   99,305   100,197   110,154   157,183   160,325   161,343   184,511   232,577

X(22) = reflection of X(378) about X(3)
X(22) = isogonal conjugate of X(66)
X(22) = inverse of X(858) in the circumcircle
X(22) = anticomplement of X(427)
X(22) = X(76)-Ceva conjugate of X(6)
X(22) = cevapoint of X(3) and X(159)
X(22) = crosspoint of X(99) and X(250)
X(22) = X(I)-beth conjugate of X(J) for these (I,J): (643,345), (833,22)


X(23) = FAR-OUT POINT

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a[b4 + c4 - a4 - b2c2]
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

The inverse of the centroid in the circumcircle.

X(23) lies on these lines:
2,3   6,353   51,575   94,98   110,323   111,187   159,193   184,576   232,250   385,523

X(23) = reflection of X(323) about X(110)
X(23) = isogonal conjugate of X(67)
X(23) = inverse of X(2) in the circumcircle
X(23) = anticomplement of X(427)
X(23) = crosspoint of X(111) and X(251)


X(24) = PERSPECTOR OF ABC AND ORTHIC-OF-ORTHIC TRIANGLE

Trilinears       sec A cos 2A : sec B cos 2B : sec C cos 2C
                        = sec A - 2 cos A : sec B - 2 cos B : sec C - 2 cos C

Barycentrics   tan A cos 2A : tan B cos 2B : tan C cos 2C
                        = tan A - sin 2A : tan A - sin 2B : tan C - sin 2C

Constructed as indicated by the name; also X(24) = X(56)-of-the-tangential triangle if ABC is acute.

X(24) lies on these lines:
2,3   6,54   32,232   33,35   34,36   49,568   51,578   64,74   96,847   107,1093   108,915   110,155   184,389   254,393   511,1092

X(24) = reflection of X(4) about X(235)
X(24) = isogonal conjugate of X(68)
X(24) = inverse of X(403) in the circumcircle
X(24) = X(249)-Ceva conjugate of X(112)
X(24) = X(52)-cross conjugate of X(4)
X(24) = crosspoint of X(107) and X(250)
X(24) = X(4)-Hirst inverse of X(421)


X(25) = HOMOTHETIC CENTER OF ORTHIC AND TANGENTIAL TRIANGLES

Trilinears       sin A tan A : sin B tan B : sin C tan C = cos A - sec A : cos B - sec B cos C - sec C
                        = f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a/(b2 + c2 - a2)

Barycentrics  sin 2A - 2 tan A : sin 2B - 2 tan B : sin 2C - 2 tan C
                        = g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = a2/(b2 + c2 - a2)

Constructed as indicated by the name; also X(25) is the pole of the orthic axis (the line having trilinear coefficients cos A : cos B : cos C) with respect to the circumcircle. Also, X(25) is X(57)-of-the-tangential triangle.

X(25) lies on these lines:
1,1036   2,3   6,51   19,33   31,608   34,56   41,42   52,155   53,157   58,967   92,242   98,107   105,108   111,112   114,135   132,136   143,156   183,264   185,1078   262,275   317,325   371,493   372,494   393,1033   394,511   669,878   692,913

X(25) = isogonal conjugate of X(69)
X(25) = isotomic conjugate of X(305)
X(25) = inverse of X(468) in the circumcircle
X(25) = inverse of X(427) in the orthocentroidal circle
X(25) = X(I)-Ceva conjugate of X(J) for these (I,J): (4,6), (28,19), (250,112)
X(25) = X(32)-cross conjugate of X(6)
X(25) = crosspoint of X(I) and X(J) for these (I,J): (4,393), (6,64), (19,34), (112,250)
X(25) = X(I)-Hirst inverse of X(J) for these (I,J): (4,419), (6,232)
X(25) = X(I)-beth conjugate of X(J) for these (I,J): (33,33), (108,25), (162,278)


X(26) = CIRCUMCENTER OF THE TANGENTIAL TRIANGLE

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a[b2cos 2B + c2cos 2C - a2cos 2A]
Barycentrics  g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = a2(b2cos 2B + c2cos 2C - a2cos 2A)

Theorems involving X(26), published in 1889 by A. Gob, are discussed in
Roger A. Johnson, Advanced Euclidean Geometry, Dover, 1960, 259-260.

X(26) lies on these lines: 2,3   6,143   52,184   68,161   154,155   206,511

X(26) = reflection of X(155) about X(156)
X(26) = isogonal conjugate of X(70)


X(27)  CEVAPOINT OF ORTHOCENTER AND CLAWSON CENTER

Trilinears       (sec A)/(b + c) : (sec B)/(c + a) : (sec C)/(a + b)
Barycentrics  (tan A)/(b + c) : (tan B)/(c + a) : (tan C)/(a + b)

X(27) lies on these lines:
2,3   7,81   19,63   57,273   58,270   103,107   110,917   226,284   295,335   306,1043   393,967   648,903   662,913

X(27) = isogonal conjugate of X(71)
X(27) = isotomic conjugate of X(306)
X(27) = inverse of X(469) in the orthocentroidal circle
X(27) = anticomplement of X(440)
X(27) = X(286)-Ceva conjugate of X(29)
X(27) = cevapoint of X(I) and X(J) for these (I,J): (4,19), (57,278)
X(27) = X(I)-cross conjugate of X(J) for these (I,J): (4,286), (19,28), (57,81), (58,86)
X(27) = X(I)-Hirst inverse of X(J) for these (I,J): (2,447), (4,423)
X(27) = X(I)-beth conjugate of X(J) for these (I,J): (648,27), (923,27)


X(28)

Trilinears       (tan A)/(b + c) : (tan B)/(c + a) : (tan C)/(a + b)
Barycentrics  (sin A tan A)/(b + c) : (sin B tan B)/(c + a) : (sin C tan C)/(a + b)

X(28) lies on these lines:
1,19   2,3   33,975   34,57   56,278   60,81   88,162   104,107   105,112   108,225   110,915   228,943   242,261   272,273   279,1014   281,958   607,1002   608,959

X(28) = isogonal conjugate of X(72)
X(28) = X(I)-Ceva conjugate of X(J) for these (I,J): (270,58), (286,81)
X(28) = cevapoint of X(I) and X(J) for these (I,J): (19,25), (34,56)
X(28) = X(I)-cross conjugate of X(J) for these (I,J): (19,27), (58,58)
X(28) = X(4)-Hirst inverse of X(422)
X(28) = X(I)-beth conjugate of X(J) for these (I,J): (29,29), (107,28), (162,28), (270,28)


X(29)  CEVAPOINT OF INCENTER AND ORTHOCENTER

Trilinears       (sec A)/(cos B + cos C) : (sec B)/(cos C + cos A) : (sec C)/(cos A + cos B)
Barycentrics  (tan A)/(cos B + cos C) : (tan B)/(cos C + cos A) : (tan C)/(cos A + cos B)

X(29) lies on these lines:
1,92   2,3   8,219   33,78   34,77   58,162   65,296   81,189   102,107   226,951   242,257   270,283   284,950   314,1039   388,1037   497,1036   515,947   1056,1059   1057,1058

X(29) = isogonal conjugate of X(73)
X(29) = isotomic conjugate of X(307)
X(29) = X(286)-Ceva conjugate of X(27)
X(29) = cevapoint of X(I) and X(J) for these (I,J): (1,4), (33,281)
X(29) = X(I)-cross conjugate of X(J) for these (I,J): (1,21), (284,333), (497,314)
X(29) = X(4)-Hirst inverse of X(415)
X(29) = X(I)-beth conjugate of X(J) for these (I,J): (29,28), (811,29)


X(30) = EULER INFINITY POINT

Trilinears       cos A - 2 cos B cos C : cos B - 2 cos C cos A : cos C - 2 cos A cos B
                        = f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc[2a4 - (b2 - c2)2 - a2(b2 + c2)]

Barycentrics  g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = 2a4 - (b2 - c2)2 - a2(b2 + c2)

The point of intersection of the Euler line and the line at infinity. Thus, each of the 22 lines listed below is parallel to the Euler line.

X(30) lies on these lines:
1,79   2,3   11,36   12,35   13,15   14,16   33,1060   34,1062   40,191   52,185   53,577   55,495   56,496   61,397   62,398   64,68   74,265   80,484   98,671   99,316   110,477   115,187   143,389   146,323   148,385   155,1078   182,597   262,598   298,616   299,617   390,1056   489,638   490,637   497,999   511,512   551,946   553,942   618,623   619,624   620,625   944,962

X(30) = isogonal conjugate of X(74)
X(30) = X(I)-Ceva conjugate of X(J) for these (I,J): (4,113), (265,5), (476,523)
X(30) = cevapoint of X(3) and X(399)
X(30) = crosspoint of X(I) and X(J) for these (I,J): (13,14), (94,264)


X(31) = 2nd POWER POINT

Trilinears       a2 : b2 : c2
Barycentrics  a3 : b3 : c3

X(31) lies on these lines:
1,21   2,171   3,601   6,42   8,987   9,612   10,964   19,204   25,608   32,41   35,386   36,995   40,580   43,100   44,210   48,560   51,181   56,154   57,105   65,1104   72,976   75,82   76,734   91,1087   92,162   101,609   110,593   163,923   184,604   etc.

X(31) = isogonal conjugate of X(75)
X(31) = isotomic conjugate of X(561)
X(31) = X(I)-Ceva conjugate of X(J) for these (I,J): (1,48), (6,41), (9,205), (58,6), (82,1)
X(31) = X(213)-cross conjugate of X(6)
X(31) = crosspoint of X(I) and X(J) for these (I,J): (1,19), (6,56)
X(31) = X(I)-aleph conjugate of X(J) for these (I,J): (82,31), (83,75)
X(31) = X(I)-beth conjugate of X(J) for these (I,J): (21,993), (55,55), (109,31), (110,57), (643,31), (692,31)


X(32) = 3rd POWER POINT

Trilinears       a3 : b3 : c3
                        = sin(A - ω) : sin(B - ω) : sin(C - ω)

Barycentrics  a4 : b4 : c4

X(32) lies on these lines:
1,172   2,83   3,6   4,98   5,230   9,987   21,981   24,232   31,41   56,1015   75,746   76,384   81,980   99,194   100,713   101,595   110,729   163,849   184,211   218,906   512,878   538,1003   561,724   590,640   604,1106   615,639   731,825   733,827   910,1104   993,1107

X(32) = midpoint between X(371) and X(372)
X(32) = isogonal conjugate of X(76)
X(32) = inverse of X(39) in the Brocard circle
X(32) = complement of X(315)
X(32) = anticomplement of X(626)
X(32) = X(I)-Ceva conjugate of X(J) for these (I,J): (2,206), (6,184), (112,512), (251,6)
X(32) = crosspoint of X(I) and X(J) for these (I,J): (2,66), (6,25)
X(32) = X(184)-Hirst inverse of X(237)
X(32) = X(I)-beth conjugate of X(J) for these (I,J): (41,41), (163,56), (919,32)


X(33) = PERSPECTOR OF THE ORTHIC AND INTANGENTS TRIANGLES

Trilinears       1 + sec A : 1 + sec B : 1 + sec C = tan A cot(A/2) : tan B cot(B/2) : tan C cot(C/2)
                        = f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b + c - a)/(b2 + c2 - a2)
                        = g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = sec A cos2(A/2)

Barycentrics  sin A + tan A : sin B + tan B : sin C + tan C
                        = h(A,B,C) : h(B,C,A) : h(C,A,B), where h(A,B,C) = tan A cos2(A/2)

X(33) lies on these lines:
1,4   2,1040   5,1062   6,204   7,1041   8,1039   9,212   10,406   11,427   12,235   19,25   20,1038   24,35   28,975   29,78   30,1060   36,378   40,201   42,393   47,90   56,963   57,103   63,1013   64,65   79,1063   80,1061   84,603   112,609   200,281   210,220   222,971   264,350

X(33) = isogonal conjugate of X(77)
X(33) = X(I)-Ceva conjugate of X(J) for these (I,J): (4,19), (29,281), (318,9)
X(33) = X(I)-cross conjugate of X(J) for these (I,J): (41,9), (42,55)
X(33) = crosspoint of X(I) and X(J) for these (I,J): (1,282), (4,281)
X(33) = X(33)-beth conjugate of X(25)


X(34)

Trilinears       1 - sec A : 1 - sec B : 1 - sec C
                        = tan A tan(A/2) : tan B tan(B/2) : tan C tan(C/2)
                        = f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 1/[(b + c - a)(b2 + c2 - a2)]
                        = g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = sec A sin2(A/2)

Barycentrics  sin A - tan A : sin B - tan B : sin C - tan C
                        = h(A,B,C) : h(B,C,A) : h(C,A,B), where h(A,B,C) = tan A sin2(A/2)

The center of perspective of the orthic triangle and the reflection about the incenter of the intangents triangle.

X(34) lies on these lines:
1,4   2,1038   5,1060   6,19   7,1039   8,1041   9,201   10,475   11,235   12,427   20,1040   24,36   25,56   28,57   29,77   30,1062   35,378   40,212   46,47   55,227   79,1061   80,1063   87,242   106,108   196,937   207,1042   222,942   244,1106   331,870   347,452   860,997

X(34) = isogonal conjugate of X(78)
X(34) = X(I)-Ceva conjugate of X(J) for these (I,J): (1,207), (4,208), (28,56), (273,57), (278,19)
X(34) = X(25)-cross conjugate of X(19)

X(34) = X(I)-beth conjugate of X(J) for these (I,J):
(1,221), (4,4), (28,34), (29,1), (107,158), (108,34), (110,47), (162,34), (811,34)


X(35)

Trilinears       1 + 2 cos A : 1 + 2 cos B : 1 + 2 cos C
                        = f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b2 + c2 - a2 + bc)

Barycentrics  sin A + sin 2A : sin B + sin 2B: sin C + sin 2C
                        = g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = a2(b2 + c2 - a2 + bc)

X(35) lies on these lines:
1,3   4,498   8,993   9,90   10,21   11,140   12,30   22,612   24,33   31,386   34,378   37,267   42,58   43,1011   47,212   71,284   72,191   73,74   79,226   172,187   etc.

X(35) = isogonal conjugate of X(79)
X(35) = inverse of X(484) in the circumcircle
X(35) = X(500)-cross conjugate of X(1)
X(35) = X(943)-aleph conjugate of X(35)
X(35) = X(I)-beth conjugate of X(J) for these (I,J): (100,35), (643,10)


X(36) = INVERSE OF THE INCENTER IN THE CIRCUMCIRCLE

Trilinears       1 - 2 cos A : 1 - 2 cos B : 1 - 2 cos C
                        = f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b2 + c2 - a2 - bc)
                        = g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = sec A cos2(A/2)

Barycentrics  sin A - sin 2A : sin B - sin 2B: sin C - sin 2C
                        = g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = a2(b2 + c2 - a2 - bc)

X(36) lies on these lines:
1,3   2,535   4,499   6,609   10,404   11,30   12,140   15,202   16,203   21,79   22,614   24,34   31,995   33,378   39,172   47,602   48,579   54,73   58,60   59,1110   63,997   80,104   84,90   99,350   100,519   101,672   106,901   109,953   187,1015   191,960   214,758   226,1006   238,513   255,1106   376,497   388,498   474,958   495,549   496,550   573,604   1030,1100

X(36) = midpoint between X(1) and X(484)
X(36) = isogonal conjugate of X(80)
X(36) = inverse of X(1) in the circumcircle
X(36) = inverse of X(942) in the incircle>BR> X(36) = X(I)-Ceva conjugate of X(J) for these (I,J): (88,6), (104,1)
X(36) = crosspoint of X(58) and X(106)
X(36) = X(104)-aleph conjugate of X(36)
X(36) = X(I)-beth conjugate of X(J) for these (I,J): (21,36), (100,36), (643,519)


X(37) = CROSSPOINT OF INCENTER AND CENTROID

Trilinears       b + c : c + a : a + b
Barycentrics  a(b + c) : b(c + a) : c(a + b)

X(37) lies on these lines:
1,6   2,75   3,975   7,241   8,941   10,594  12,225   19,25   21,172   35,267   38,354   39,596   12,225   41,584   48,205   63,940   65,71   73,836   78,965   82,251   86,190   91,498   100,111   101,284   141,742   142,1086   145,391   158,281   171,846   226,440   256,694   347,948   513,876   517,573   537,551   579,942   626,746   665,900   971,991

X(37) = midpoint between X(I) and X(J) for these (I,J): (75,192), (190,335)
X(37) = isogonal conjugate of X(81)
X(37) = isotomic conjugate of X(274)
X(37) = complement of X(75)

X(37) = X(I)-Ceva conjugate of X(J) for these (I,J):
(1,42), (2,10), (4,209), (9,71), (10,210), (190,513), (226,65), (321,72), (335,518)

X(37) = cevapoint of X(213) and X(228)
X(37) = X(I)-cross conjugate of X(J) for these (I,J): (42,65), (228,72)
X(37) = crosspoint of X(I) and X(J) for these (I,J): (1,2), (9,281), (10,226)
X(37) = X(1)-line conjugate of X(238)
X(37) = X(1)-aleph conjugate of X(1051)
X(37) = X(I)-beth conjugate of X(J) for these (I,J): (9,37), (644,37), (645,894), (646,37), (1018,37)

Let X = X(37) and let V be the vector-sum XA + XB + XC; then V = X(75)X(37) = X(37)X(192).


X(38)

Trilinears       b2 + c2 : c2 + a2 : a2 + b2
                         =csc A sin(A + ω) : csc B sin(B + ω) : csc C sin(C + ω)

Barycentrics  a(b2 + c2) : b(c2 + a2) : c(a2 + b2)
                        = sin(A + ω) : sin(B + ω) : sin(C + ω)

X(38) lies on these lines:
1,21   2,244   3,976   8,986   9,614   10,596   37,354   42,518   56,201   57,612   75,310   78,988   92,240   99,745   210,899   321,726   869,980   912,1064   1038,1106

X(38) = isogonal conjugate of X(82)
X(38) = crosspoint of X(1) and X(75)
X(38) = X(643)-beth conjugate of X(38)


X(39) = BROCARD MIDPOINT

Trilinears       a(b2 + c2) : b(c2 + a2) : c(a2 + b2)
                        = sin(A + ω) : sin(B + ω) : sin(C + ω)

Barycentrics  a2(b2 + c2) : b2(c2 + a2) : c2(a2 + b2)

The midpoint between the 1st and 2nd Brocard points, given by trilinears c/b : a/c : b/a and b/c : c/a : a/b .

X(39) lies on these lines:
1,291   2,76   3,6   4,232   5,114   9,978   10,730   36,172   37,596   51,237   54,248   83,99   110,755   140,230   141,732   185,217   213,672   325,626   395,618   493,494   512,881   588,589   590,642   597,1084   615,641

Ross Honsberger, Episodes in Nineteenth and Twentieth Century Euclidean Geometry, Mathematical Association of America, 1995. Chapter 10: The Brocard Points.

X(39) = midpoint between X(76) and X(194)
X(39) = isogonal conjugate of X(83)
X(39) = isotomic conjugate of X(308)
X(39) = inverse of X(32) in the Brocard circle
X(39) = complement of X(76)
X(39) = eigencenter of anticevian triangle of X(512)
X(39) = X(I)-Ceva conjugate of X(J) for these (I,J): (2,141), (4,211), (99,512)
X(39) = crosspoint of X(I) and X(J) for these (I,J): (2,6), (141,427)

Let X = X(39) and let V be the vector-sum XA + XB + XC; then V = X(76)X(39) = X(39)X(194).


X(40) = REFLECTION OF THE INCENTER IN CIRCUMCENTER

Trilinears       cos B + cos C - cos A - 1 : cos C + cos A - cos B - 1 : cos A + cos B - cos C - 1
                        = f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b/(c + a - b) + c/(a + b - c) - a/(b + c - a)
                        = g(A,B,C) : g(B,C,A) : g(C,A,B), where
                        g(A,B,C) = sin2(B/2) + sin2(C/2) - sin2(A/2)

Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

The point of concurrence of the perpendiculars from the excenters to the respective sides; also, the circumcenter of the excentral triangle.

X(40) lies on these lines:
1,3   2,926   4,9   6,380   8,20   30,191   31,580   33,201   34,212   42,581   43,970   58,601   64,72   77,947   78,100   80,90   92,412   101,972   108,207   109,255   164,188   190,341   196,208   219,610   220,910   221,223   256,989   376,519   386,1064   387,579   390,938   392,474   511,1045   550,952   595,602   728,1018   936,960   958,1012   978,1050

X(40) = midpoint between X(8) and X(20)
X(40) = reflection of X(I) about X(J) for these (I,J): (1,3), (4,10)
X(40) = isogonal conjugate of X(84)
X(40) = isotomic conjugate of X(309)
X(40) = complement of X(962)
X(40) = anticomplement of X(946)
X(40) = X(I)-Ceva conjugate of X(J) for these (I,J): (8,1), (63,9), (347,223)
X(40) = X(I)-cross conjugate of X(J) for these (I,J): (198,223), (221,1)
X(40) = crosspoint of X(I) and X(J) for these (I,J): (329,347)
X(40) = X(I)-aleph conjugate of X(J) for these (I,J): (1,978), (2,57), (8,40), (188,1), (556,63)
X(40) = X(I)-beth conjugate of X(J) for these (I,J): (8,4), (40,221), (40,40), (643,78), (644,728)


X(41)

Trilinears       a2(b + c - a) : b2(c + a - b) : c2(a + b - c)
                        = a2cot(A/2) : b2cot(B/2) : c2cot(C/2)

Barycentrics  a3(b + c - a) : b3(c + a - b) : c3(a + b - c)

X(41) lies on these lines: 1,101   3,218   6,48   9,21   25,42   31,32   37,584   55,220   58,609   65,910   219,1036   226,379   560,872   601,906   603,911   663,884

X(41) = isogonal conjugate of X(85)
X(41) = X(I)-Ceva conjugate of X(J) for these (I,J): (6,31), (9,212), (284,55)
X(41) = crosspoint of X(I) and X(J) for these (I,J): (6,55), (9,33)
X(41) = X(I)-beth conjugate of X(J) for these (I,J): (41,32), (101,41), (220,220)


X(42)  CROSSPOINT OF INCENTER AND SYMMEDIAN POINT

Trilinears       a(b + c) : b(c + a) : c(a + b)
                        = (1 + cos A)(cos B + cos C) : (1 + cos B)(cos C + cos A) : (1 + cos C)(cos A + cos B)
Barycentrics  a2(b + c) : b2(c + a) : c2(a + b)

X(42) lies on these lines:
1,2   3,967   6,31   9,941   25,41   33,393   35,58   37,210   38,518   40,581   48,197   57,1001   65,73   81,100   101,111   165,991   172,199   181,228   244,354   308,313   321,740   517,1064   560,584   649,788   694,893   748,1001   750,940   894,1045   942,1066

X(42) = isogonal conjugate of X(86)
X(42) = isotomic conjugate of X(310)
X(42) = X(I)-Ceva conjugate of X(J) for these (I,J): (1,37), (6,213), (10,71), (55,228)
X(42) = crosspoint of X(I) and X(J) for these (I,J): (1,6), (33,55), (37,65)
X(42) = X(1)-line conjugate of X(239)
X(42) = X(I)-beth conjugate of X(J) for these (I,J): (21,551), (55,42), (100,226), (210,210), (643,171)


X(43)  X(6)-CEVA CONJUGATE OF X(1)

Trilinears       ab + ac - bc : bc + ba - ca : ca + cb - ab
                        = csc B + csc C - csc A : csc C + csc A - csc B : csc A + csc B - csc

Barycentrics  a(ab + ac - bc) : b(bc + ba - ca) : c(ca + cb - ab)

X(43) lies on these lines:
1,2   6,87   9,256   31,100   35,1011   40,970   46,851   55,238   57,181   58,979   72,986   75,872   81,750   165,573   170,218   210,984   312,740   518,982

X(43) = isogonal conjugate of X(87)
X(43) = X(6)-Ceva conjugate of X(1)
X(43) = X(192)-cross conjugate of X(1)
X(43) = X(55)-Hirst inverse of X(238)

X(43) = X(I)-aleph conjugate of X(J) for these (I,J):
(1,9), (6,43), (55,170), (100,1018), (174,169), (259,165), (365,1), (366,63), (507,362), (509,57)

X(43) = X(660)-beth conjugate of X(43)


X(44)  X(6)-LINE CONJUGATE OF X(1)

Trilinears       b + c - 2a : c + a - 2b : a + b - 2c
Barycentrics  a(b + c - 2a) : b(c + a - 2b) : c(a + b - 2c)

X(44) lies on these lines: 1,6   2,89   10,752   31,210   51,209   65,374   88,679   181,375   190,239   193,344   214,1017   241,651   292,660   354,748   513,649   527,1086   583,992   678,902

X(44) = midpoint between X(190) and X(239)
X(44) = isogonal conjugate of X(88)
X(44) = complement of X(320)
X(44) = X(I)-Ceva conjugate of X(J) for these (I,J): (2,214), (88,1), (104,55)
X(44) = crosspoint of X(I) and X(J) for these (I,J): (1,88), (2,80)
X(44) = X(6)-line conjugate of X(1)
X(44) = X(88)-cross conjugate of X(44)
X(44) = X(I)-beth conjugate of X(J) for these (I,J): (9,44), (644,44), (645,239), (44,44)


X(45)

Trilinears       2b + 2c - a : 2c + 2a - b : 2a + 2b - c
Barycentrics  a(2b + 2c - a) : b(2c + 2a - b) : c(2a + 2b - c)

X(45) lies on these lines: 1,6   2,88   53,281   55,678   141,344   198,1030   210,968   346,594

X(45) = isogonal conjugate of X(89)
X(45) = X(I)-beth conjugate of X(J) for these (I,J): (9,1), (644,45)


X(46)   X(4)-CEVA CONJUGATE OF X(1)

Trilinears       cos B + cos C - cos A : cos C + cos A - cos B : cos A + cos B - cos C
Barycentrics  a(cos B + cos C - cos A) : b(cos C + cos A - cos B) : c(cos A + cos B - cos C)

X(46) lies on these lines:
1,3   4,90   9,79   10,63   19,579   34,47   43,851   58,998   78,758   80,84   100,224   158,412   169,672   200,1004   218,910   222,227   225,254   226,498   269,1103   404,997   474,960   499,946   595,614   750,975   978,1054

X(46) = reflection of X(1) about X(56)
X(46) = isogonal conjugate of X(90)
X(46) = X(4)-Ceva conjugate of X(1)

X(46) = X(I)-aleph conjugate of X(J) for these (I,J): (4,46), (174,223), (188,1079), (366,610), (653, 1020) X(46) = X(100)-beth conjugate of X(46)


X(47)

Trilinears       cos 2A : cos 2B : cos 2C = f(a,b,c) : f(b,c,a) : f(c,a,b), where
                        f(a,b,c) = a2[a4 + b4 + c4 - 2a2b2 - 2a2c2]

Barycentrics  a cos 2A : b cos 2B : c cos 2C

X(47) lies on these lines:
1,21   19,921   33,90   34,46   35,212   36,602   91,92   158,162   171,498   238,499

X(47) = isogonal conjugate of X(91)
X(47) = eigencenter of cevian triangle of X(92)
X(47) = eigencenter of anticevian triangle of X(48)
X(47) = X(92)-Ceva conjugate of X(48)
X(47) = X(275)-aleph conjugate of X(92)
X(47) = X(I)-beth conjugate of X(J) for these (I,J): (110,34), (643,47)


X(48)

Trilinears       sin 2A : sin 2B : sin 2C
                        = f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = tan B + tan C
                        = g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = a2(b2 + c2 - a2)

Barycentrics  a sin 2A : b sin 2B : c sin 2C

X(48) lies on these lines:
1,19   3,71   6,41   9,101   31,560   36,579   37,205   42,197   55,154   63,326   75,336   163,1094   184,212   220,963   255,563   281,944   282,947   354,584   577,603   692,911   949,1037   958,965

X(48) = isogonal conjugate of X(92)
X(48) = X(I)-Ceva conjugate of X(J) for these (I,J): (1,31), (3,212), (63,255), (92,47), (284, 6)
X(48) = X(228)-cross conjugate of X(3)
X(48) = crosspoint of X(I) and X(J) for these (I,J): (1,63), (3,222), (91,92), (219,268)
X(48) = X(1)-line conjugate of X(240)
X(48) = X(I)-beth conjugate of X(J) for these (I,J): (101,48), (219,219), (284,604), (906,48)


X(49) = CENTER OF SINE-TRIPLE-ANGLE CIRCLE

Trilinears       cos 3A : cos 3B : cos 3C
Barycentrics  sin A cos 3A : sin B cos 3B : sin C cos 3C

V. Thebault, "Sine-triple-angle-circle," Mathesis 65 (1956) 282-284.

X(49) lies on these lines: 1,215   3,155   4,156   5,54   24,568   52,195   93,94   381,578

X(49) = isogonal conjugate of X(93)
X(49) = eigencenter of cevian triangle of X(94)
X(49) = eigencenter of anticevian triangle of X(50)
X(49) = X(94)-Ceva conjugate of X(50)


X(50)

Trilinears       sin 3A : sin 3B : sin 3C
Barycentrics  sin A sin 3A : sin B sin 3B : sin C sin 3C

X(50) lies on these lines: 3,6   67,248   112,477   115,231   230,858   338,401   647,654

X(50) = isogonal conjugate of X(94)
X(50) = inverse of X(566) in the Brocard circle
X(50) = X(I)-Ceva conjugate of X(J) for these (I,J): (1,215), (74,184), (94,49)
X(50) = crosspoint of X(I) and X(J) for these (I,J): (93,94), (186,323)


X(51) = CENTROID OF THE ORTHIC TRIANGLE

Trilinears       a2cos(B - C) : b2cos(C - A) : c2cos(A - B)
                        = f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a[a2(b2 + c2) - (b2 - c2)2]

Barycentrics  a3cos(B - C) : b3cos(C - A) : c3cos(A - B)

X(51) lies on these lines:
2,262   4,185   5,52   6,25   21,970   22,182   23,575   24,578   26,569   31,181   39,237   44,209   54,288   107,275   125,132   129,137   130,138   199,572   210,374   216,418   381,568   397,462   398,463   573,1011

X(51) = reflection of X(210) about X(375)
X(51) = isogonal conjugate of X(95)
X(51) = X(I)-Ceva conjugate of X(J) for these (I,J): (4,53), (5,216), (6,217)
X(51) = X(217)-cross conjugate of X(216)
X(51) = crosspoint of X(I) and X(J) for these (I,J): (4,6), (5,53)

Let X = X(51) and let V be the vector-sum XA + XB + XC; then V = X(3)X(52) = X(20)X(185)

Let W be the vector-sum XA' + XB' + XC', where A'B'C' is the pedal triangle of X; then W = X(428)X(51).


X(52) = ORTHOCENTER OF THE ORTHIC TRIANGLE

Trilinears       cos 2A cos(B - C) : cos 2B cos(C - A) : cos 2C cos(A - B)
                        = f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = sec A (sec 2B + sec 2C)

Barycentrics  tan A (sec 2B + sec 2C ) : tan B (sec 2C + sec 2A) : tan C (sec 2A + sec 2B)

X(52) lies on these lines:
3,6   4,68   5,51   25,155   26,184   30,185   49,195   113,135   114,211   128,134   129,139

X(52) = reflection of X(I) about X(J) for these (I,J): (3,389), (5,143)
X(52) = isogonal conjugate of X(96)
X(52) = inverse of X(569) in the Brocard circle
X(52) = X(I)-Ceva conjugate of X(J) for these (I,J): (4,5), (317,467), (324,216)
X(52) = crosspoint of X(4) and X(24)


X(53) = SYMMEDIAN POINT OF THE ORTHIC TRIANGLE

Trilinears       tan A cos(B - C) : tan B cos(C - A) : tan C cos(A - B)
Barycentrics  a tan A cos(B - C) : b tan B cos(C - A) : c tan C cos(A - B)

X(53) lies on these lines:
4,6   5,216   25,157   30,577   45,281   115,133   128,139   137,138   141,264   232,427   273,1086   275,288   311,324   317,524   318,594   395,472   396,473

X(53) = isogonal conjugate of X(97)
X(53) = X(I)-Ceva conjugate of X(J) for these (I,J): (4,51), (324,5)
X(53) = X(51)-cross conjugate of X(5)


X(54) = KOSNITA POINT

Trilinears       sec(B - C) : sec(C - A) : sec(A - B)
Barycentrics  tan(B - C) : tan(C - A) : tan(A - B)

John Rigby, "Brief notes on some forgotten geometrical theorems," Mathematics and Informatics Quarterly 7 (1997) 156-158.

X(54) lies on these lines:
2,68   3,97   4,184   5,49   6,24   12,215   36,73   39,248   51,288   64,378   69,95   71,572   72,1006   74,185   112,217   140,252   156,381   186,389   276,290   575,895   826,879

X(54) = midpoint between X(3) and X(195)
X(54) = isogonal conjugate of X(5)
X(54) = isotomic conjugate of X(311)
X(54) = X(I)-Ceva conjugate of X(J) for these (I,J): (95,97), (288,6)
X(54) = cevapoint of X(6) and X(184)
X(54) = X(I)-cross conjugate of X(J) for these (I,J): (3,96), (6,275), (186,74), (389,4), (523,110)
X(54) = crosspoint of X(95) and X(275)


X(55) = INTERNAL CENTER OF SIMILITUDE OF CIRCUMCIRCLE AND INCIRCLE

Trilinears       a(b + c - a) : b(c + a - b) : c(a + b - c)
                        = 1 + cos A : 1 + cos B : 1 + cos C
                        = cos2(A/2) : cos2(B/2) : cos2(B/2)
                        = tan(B/2) + tan(C/2) : tan(C/2) + tan(A/2) : tan(A/2) + tan(B/2)

Barycentrics  a2(b + c - a) : b2(c + a - b) : c2(a + b - c)

The center of homothety of three triangles:   tangential, intangents, and extangents.

X(55) lies on these lines:
1,3   2,11   4,12   5,498   6,31   8,21   9,200   10,405   15,203   16,202   19,25   20,388   30,495   34,227   41,220   43,238   45,678   48,154   63,518   64,73   77,1037   78,960   81,1002   92,243   103,109   104,1000   108,196   140,496   181,573   182,613  183,350   184,215   192,385   199,1030   201,774   204,1033   219,284   226,516   255,601   256,983   329,1005   376,1056   386,595   392,997   411,962   511,611   515,1012   519,956   574,1015   603,963   631,1058   650,884   654,926   748,899   840,901   846,984   869,893   1026,1083   1070,1076   1072,1074

X(55) = isogonal conjugate of X(7)

X(55) = X(I)-Ceva conjugate of X(J) for these (I,J):
(1,6), (3,198), (7,218), (8,219), (9,220), (21,9), (59,101), (104,44), (260,259), (284,41)

X(55) = cevapoint of X(42) and X(228) for these (I,J)
X(55) = X(I)-cross conjugate of X(J) for these (I,J): (41,6), (42,33), (228,212)
X(55) = crosspoint of X(I) and X(J) for these (I,J): (1,9), (3,268), (7,277), (8,281), (21,284), (59,101)
X(55) = X(43)-Hirst inverse of X(238)
X(55) = X(1)-line conjugate of X(241)
X(55) = X(I)-beth conjugate of X(J) for these (I,J): (21,999), (55,31), (100,55), (200,200), (643,2), (1021,1024)


X(56) = EXTERNAL CENTER OF SIMILITUDE OF CIRCUMCIRCLE AND INCIRCLE

Trilinears       a/(b + c - a) : b/(c + a - b) : c/(a + b - c)
                        = 1 - cos A : 1 - cos B : 1 - cos C
                        = sin2(A/2) : sin2(B/2) : sin2(C/2)

Barycentrics  a2/(b + c - a) : b2/(c + a - b) : c2/(a + b - c)

The perspector of the tangential triangle and the reflection of the intangents triangle about X(1).

X(56) lies on these lines:
1,3   2,12   4,11   5,499   6,41   7,21   8,404   10,474   19,207   20,497   22,977   25,34   28,278   30,496   31,154   32,1015   33,963   38,201   58,222   61,202   62,203   63,960   72,997   77,1036   78,480   81,959   85,870   87,238   100,145   101,218   105,279   106,109   140,495   181,386   182,611   197,227   212,939   219,579   220,672   223,937   226,405   255,602   266,289   269,738   330,385   376,1058   411,938   511,613   551,553   607,911   631,1056   667,764   946,1012   978,979   1025,1083   1070,1074   1072,1076

X(56) = midpoint between X(1) and X(46)
X(56) = isogonal conjugate of X(8)
X(56) = X(I)-Ceva conjugate of X(J) for these (I,J): (1,221), (7,222), (28,34), (57,6), (59,109), (108,513)
X(56) = X(31)-cross conjugate of X(6)
X(56) = crosspoint of X(I) and X(J) for these (I,J): (1,84), (7,278), (28,58), (57,269), (59,109)
X(56) = X(266)-aleph conjugate of X(1050)

X(57) = X(I)-beth conjugate of X(J) for these (I,J):
(1,1), (21,3), (56,1106), (58,56), and (P,57) for all P on the circumcircle


X(57)  ISOGONAL CONJUGATE OF X(9)

Trilinears       1/(b + c - a) : 1/(c + a - b) : 1/(a + b - c)
                        = tan(A/2) : tan(B/2) : tan(C/2)

Barycentrics  a/(b + c - a) : b/(c + a - b) : c/(a + b - c)

X(57) lies on these lines:
1,3   2,7   4,84   6,222   10,388   19,196   20,938   27,273   28,34   31,105   33,103   38,612   42,1002   43,181   72,474   73,386   77,81   78,404   79,90   85,274   88,651   92,653   164,177   169,277   173,174   200,518   201,975   234,362   239,330   255,580  279,479   345,728   497,516   499,920   649,1024   658,673   748,896   758,997   955,991   957,995   959,1042   961,1106   978,1046   1020,1086

X(57) = isogonal conjugate of X(9)
X(57) = isotomic conjugate of X(312)
X(57) = complement of X(329)

X(57) = X(I)-Ceva conjugate of X(J) for these (I,J):
(2,223), (7,1), (27,278), (81,222), (85,77), (273,34), (279,269)

X(57) = cevapoint of X(I) and X(J) for these (I,J): (6,56), (19,208)
X(57) = X(I)-cross conjugate of X(J) for these (I,J): (6,1), (19,84), (56,269), (65,7)
X(57) = crosspoint of X(I) and X(J) for these (I,J): (2,189), (7,279), (27,81), (85,273)
X(57) = X(1)-Hirst inverse of X(241)

X(57) = X(I)-aleph conjugate of X(J) for these (I,J):
(2,40), (7,57), (57,978), (174,1), (366,165), (507,503), (508,9), (509,43)

X(57) = X(I)-beth conjugate of X(J) for these (I,J):
(2,2), (81,57), (88,57), (100,57), (110,31), (162,57), (190,57), (333,63), (648,92), (651,57), (653,57), (655,57), (658,57), (660,57), (662,57), (673,57), (771,57), (799,57), (823,57), (897, 57)


X(58)  ISOGONAL CONJUGATE OF X(10)

Trilinears       a/(b + c) : b/(c + a) : c/(a + b)
Barycentrics  a2/(b + c) : b2/(c + a) : c2/(a + b)

X(58) lies on these lines:
1,21   2,540   3,6   7,272   8,996   9,975   10,171   20,387   25,967   27,270   28,34   29,162   35,42   36,60   40,601   41,609   43,979   46,998   56,222   65,109   82,596   84,990   86,238   87,978   99,727   101,172   103,112   106,110   229,244   269,1014   274,870   314,987   405,940   519,1043   942,1104   977,982   1019,1027

X(58) = isogonal conjugate of X(10)
X(58) = isotomic conjugate of X(313)
X(58) = inverse of X(386) in the Brocard circle
X(58) = X(I)-Ceva conjugate of X(J) for these (I,J): (81,284), (267,501), (270,28)
X(58) = cevapoint of X(6) and X(31)
X(58) = X(I)-cross conjugate of X(J) for these (I,J): (6,81), (36,106), (56,28), (513,109)
X(58) = crosspoint of X(I) and X(J) for these (I,J): (1,267), (21,285), (27,86), (60,270)
X(58) = X(I)-beth conjugate of X(J) for these (I,J): (21,21), (60,58), (110,58), (162,58), (643,58), (1098,283)


X(59)  ISOGONAL CONJUGATE OF X(11)

Trilinears       1/[1 - cos(B - C)] : 1/[1 - cos(C - A) : 1/[1 - cos(A - B)]
Barycentrics  a/[1 - cos(B - C)] : b/[1 - cos(C - A) : c/[1 - cos(A - B)]

X(59) lies on these lines: 36,1110   60,1101   100,521   101,657   109,901   513,651   518,765   523,655

X(59) = isogonal conjugate of X(11)
X(59) = cevapoint of X(I) and X(J) for these (I,J): (55,101), (56,109)
X(59) = X(I)-cross conjugate of X(J) for these (I,J): (1,110), (3,100), (55,101), (56,109)
X(59) = X(765)-beth conjugate of X(765)


X(60)

Trilinears       1/[1 + cos(B - C)] : 1/[1 + cos(C - A) : 1/[1 + cos(A - B)]
Barycentrics  a/[1 + cos(B - C)] : b/[1 + cos(C - A) : c/[1 + cos(A - B)]

X(60) lies on these lines: 1,110   21,960   28,81   36,58   59,1101   86,272   283,284   404,662   757,1014

X(60) = isogonal conjugate of X(12)
X(60) = X(58)-cross conjugate of X(270)
X(60) = X(I)-beth conjugate of X(J) for these (I,J): (60,849), (1098,1098)


X(61)

Trilinears       sin(A + π/6) : sin(B + π/6) : sin(C + π/6)
                        = cos(A - π/3) : cos(B - π/3) : cos(C - π/3)

Barycentrics  sin A sin(A + π/6) : sin B sin(B + π/6) : sin C sin(C + π/6)

X(61) lies on these lines:
1,203   2,18   3,6   4,13   5,14   30,397   56,202   140,395   299,636   302,629   618,627

X(61) = isogonal conjugate of X(17)
X(61) = inverse of X(62) in the Brocard circle
X(61) = complement of X(633)
X(61) = anticomplement of X(635)
X(61) = eigencenter of cevian triangle of X(14)
X(61) = eigencenter of anticevian triangle of X(16)
X(61) = X(14)-Ceva conjugate of X(16)
X(61) = crosspoint of X(302) and X(473)

Let W be the vector-sum XA' + XB' + XC', where A'B'C' is the pedal triangle of X = X(61); then W = X(397)X(61).


X(62)

Trilinears       sin(A - π/6) : sin(B - π/6) : sin(C - π/6)
                        = cos(A + π/3) : cos(B + π/3) : cos(C + π/3)

Barycentrics  sin A sin(A - π/6) : sin B sin(B - π/6) : sin C sin(C - π/6)

X(62) lies on these lines:
1,202   2,17   3,6   4,14   5,13   30,398   56,203   140,396   298,635   303,630   619,628

X(62) = isogonal conjugate of X(18)
X(62) = inverse of X(61) in the Brocard circle
X(62) = complement of X(634)
X(62) = anticomplement of X(636)
X(62) = eigencenter of cevian triangle of X(13)
X(62) = eigencenter of anticevian triangle of X(15)
X(62) = X(13)-Ceva conjugate of X(15)
X(62) = crosspoint of X(303) and X(472)

Let W be the vector-sum XA' + XB' + XC', where A'B'C' is the pedal triangle of X = X(62); then W = X(398)X(62).


X(63)

Trilinears       cot A : cot B : cot C
                        = b2 + c2 - a2 : c2 + a2 - b2 : c2 + b2 - c2

Barycentrics  cos A : cos B : cos C

X(63) lies on these lines:
1,21   2,7   3,72   8,20   10,46   19,27   33,1013   36,997   37,940   48,326   55,518   56,960   65,958   69,71   77,219   91,921   100,103   162,204   169,379   171,612   190,312   194,239   201,603   210,1004   212,1040   213,980   220,241   223,651   238,614   240,1096   244,748   304,1102   318,412   354,1001   392,999   404,936   405,942   452,938   484,535   517,956   544,1018   561,799   654,918   750,756

X(63) = isogonal conjugate of X(19)
X(63) = isotomic conjugate of X(92)
X(63) = anticomplement of X(226)
X(63) = X(I)-Ceva conjugate of X(J) for these (I,J): (7,224), (69,78), (75,1), (304,326), (333,2), (348,77)
X(63) = cevapoint of X(I) and X(J) for these (I,J): (3,219), (9,40), (48,255), (71,72)
X(63) = X(I)-cross conjugate of X(J) for these (I,J): (3,77), (9,271), (48,1), (71,3), (72,69), (219,78), (255,326)
X(63) = crosspoint of X(I) and X(J) for these (I,J): (69,348), (75,304)

X(63) = X(I)-aleph conjugate of X(J) for these (I,J):
(2,1), (75,63), (92,920), (99,662), (174,978), (190,100), (333,411), (366,43), (514,1052), (556,40), (648,162), (664,651), (668,190), (670,799), (671,897), (903,88)

X(63) = X(I)-beth conjugate of X(J) for these (I,J):
(63,222), (190,63), (333,57), (345,345), (643,63), (645,312), (662,223)


X(64)

Trilinears       1/(cos A - cos B cos C) : 1/(cos B - cos C cos A) : 1/(cos C - cos A cos B)
Barycentrics  a/(cos A - cos B cos C) : b/(cos B - cos C cos A) : c/(cos C - cos A cos B)

X(64) lies on these lines:
3,154   6,185   20,69   24,74   30,68   33,65   40,72   54,378   55,73   71,198   265,382

X(64) = isogonal conjugate of X(20)
X(64) = X(25)-cross conjugate of X(6)
X(64) = X(1)-beth conjugate of X(207)


X(65) = ORTHOCENTER OF THE INTOUCH TRIANGLE

Trilinears       cos B + cos C : cos C + cos A : cos A + cos B
                        = (b + c)/(b + c - a) : (c + a)/(c + a - b) : (a + b)/(a + b - c)
                        = sin(A/2) cos(B/2 - C/2) : sin(B/2) cos(C/2 - A/2) : sin(C/2) cos(A/2 - B/2)

Barycentrics  a(b + c)/(b + c - a) : b(c + a)/(c + a - b) : c(a + b)/(a + b - c)

The perspector of ABC and the Yff central triangle.

X(65) lies on these lines:
1,3   2,959   4,158   6,19   7,8   10,12   11,117   29,296   31,1104   33,64   37,71   41,910   42,73   44,374   58,109   63,958   68,91   74,108   77,969   79,80   81,961   110,229   169,218   172,248   224,1004   225,407   243,412   257,894   278,387   279,1002   386,994   409,1098   474,997   497,938   516,950   519,553   604,1100   651,895   1039,1041   1061,1063

X(65) = reflection of X(72) about X(10)
X(65) = isogonal conjugate of X(21)
X(65) = isotomic conjugate of X(314)
X(65) = anticomplement of X(960)
X(65) = X(I)-Ceva conjugate of X(J) for these (I,J): (1,73), (4,225), (7,226), (10,227), (109,513), (226,37)
X(65) = X(42)-cross conjugate of X(37)
X(65) = crosspoint of X(I) and X(J) for these (I,J): (1,4), (7,57)

X(65) = X(I)-beth conjugate of X(J) for these (I,J):
(1,65), (8,72), (10,10), (65,1042), (80,65), (100,65), (101,213), (291,65), (668,65), (1018, 65)


X(66)

Trilinears       bc/(b4 + c4 - a4) : ca/(c4 + a4 - b4) : ab/(a4 + b4 - c4)
Barycentrics  1/(b4 + c4 - a4) : 1/(c4 + a4 - b4) : 1/(a4 + b4 - c4)

X(66) lies on these lines:
2,206   3,141   6,427   68,511   73,976   193,895   248,571   290,317   879,924

X(66) = reflection of X(159) about X(141)
X(66) = isogonal conjugate of X(22)
X(66) = isotomic conjugate of X(315)
X(66) = anticomplement of X(206)
X(66) = cevapoint of X(125) and X(512)
X(66) = X(32)-cross conjugate of X(2)

Let W be the vector-sum XA' + XB' + XC', where A'B'C' is the pedal triangle of X = X(66); then W = X(185)X(64).


X(67)

Trilinears       bc/(b4 + c4 - a4 - b2c2) : ca/(c4 + a4 - b4 - c2a2) : ab/(a4 + b4 - c4 - a2b2)
Barycentrics  1/(b4 + c4 - a4 - b2c2) : 1/(c4 + a4 - b4 - c2a2) : 1/(a4 + b4 - c4 - a2b2)

X(67) lies on these lines:
3,542   4,338   6,125   50,248   74,935   110,141   265,511   290,340   524,858   526,879

X(67) = reflection of X(I) about X(J) for these (I,J): (6,125), (110,141)
X(67) = isogonal conjugate of X(23)
X(67) = isotomic conjugate of X(316)
X(67) = cevapoint of X(141) and X(524)
X(67) = X(187)-cross conjugate of X(2)


X(68)

Trilinears       cos A sec 2A : cos B sec 2B : cos C sec 2C
Barycentrics  tan 2A : tan 2B : tan 2C

X(68) lies on these lines:
2,54   3,343   4,52   5,6   11,1069   20,74   26,161   30,64   65,91   66,511   73,1060   136,254   290,315   568,973

X(68) = reflection of X(155) about X(5)
X(68) = isogonal conjugate of X(24)
X(68) = isotomic conjugate of X(317)
X(68) = X(96)-Ceva conjugate of X(3)
X(68) = cevapoint of X(I) and X(J) for these (I,J): (6,161), (125,520)
X(68) = X(115)-cross conjugate of X(525)

Let W be the vector-sum XA' + XB' + XC', where A'B'C' is the pedal triangle of X = X(68); then W = X(52)X(68).


X(69) = SYMMEDIAN POINT OF THE ANTICOMPLEMENTARY TRIANGLE

Trilinears       (cos A)/a2 : (cos B)/b2 : (cos C)/c2
                        = bc(b2 + c2 - a2) : ca(c2 + a2 - b2) : ab(a2 + b2 - c2)

Barycentrics  cot A : cot B : cot C
                        = b2 + c2 - a2 : c2 + a2 - b2 : a2 + b2 - c2

X(69) lies on these lines:
2,6   3,332   4,76   7,8   9,344   10,969   20,64   22,159   54,95   63,71   72,304   73,77   74,99   110,206   125,895   144,190   150,668   189,309   192,742   194,695   200,269   248,287   263,308   265,328   274,443   290,670   297,393   347,664   350,497   404,1014   478,651   485,639   486,640   520,879

X(69) = reflection of X(I) about X(J) for these (I,J): (6,141), (193,6)
X(69) = isogonal conjugate of X(25)
X(69) = isotomic conjugate of X(4)
X(69) = cyclocevian conjugate of X(253)
X(69) = complement of X(193) = anticomplement of X(6)
X(69) = X(I)-Ceva conjugate of X(J) for these (I,J): (76,2), (304,345), (314,75), (332,326)
X(69) = cevapoint of X(I) and X(J) for these (I,J): (2,20), (3,394), (6,159), (8,329), (63,78), (72,306), (125,525)

X(69) = X(I)-cross conjugate of X(J) for these (I,J):
(3,2), (63,348), (72,63), (78,345), (125,525), (306,304), (307,75), (343,76)

X(69) = crosspoint of X(I) and X(J) for these (I,J): (76,305), (314,332)
X(69) = X(2)-Hirst inverse of X(325)
X(69) = X(I)-beth conjugate of X(J) for these (I,J): (69,77), (99,347), (314,7), (332,69), (645,69), (668,69)

Let W be the vector-sum XA' + XB' + XC', where A'B'C' is the pedal triangle of X = X(69); then W = X(185)X(20).


X(70)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc/[b2 cos 2B + c2 cos 2C - a2 cos 2A]
Barycentrics  g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = 1/[b2 cos 2B + c2 cos 2C - a2 cos 2A]

X(70) = isogonal conjugate of X(26)


X(71)

Trilinears       (b + c) cos A : (c + a ) cos B : (a + b) cos C
Barycentrics  (b + c) sin 2A : (c + a ) sin 2B : (a + b) sin 2C

X(71) lies on these lines:
1,579   3,48   4,9   6,31   35,284   37,65   54,572   63,69   64,198   74,101   165,610   190,290   583,1100

X(71) = isogonal conjugate of X(27)
X(71) = X(I)-Ceva conjugate of X(J) for these (I,J): (3,228), (9, 37), (10,42), (63,72)
X(71) = X(228)-cross conjugate of X(73)
X(71) = crosspoint of X(I) and X(J) for these (I,J): (3,63), (9,219), (10,306)
X(71) = X(4)-line conjugate of X(242)
X(71) = X(I)-beth conjugate of X(J) for these (I,J): (219,71), (1018,71)


X(72)

Trilinears       (b + c) cot A : (c + a) cot B : (a + b) cot C
                        = (b + c)(b2 + c2 - a2) : (c + a)(c2 + a2 - b2) : (a + b)(a2 + b2 - c2)

Barycentrics  (b + c) cos A : (c + a) cos B : (a + b) cos C

X(72) lies on these lines:
1,6   2,942   3,63   4,8   5,908   7,443   10,12   20,144   21,943   31,976   35,191   40,64   43,986   54,1006   56,997   57,474   69,304   73,201   74,100   145,452   171,1046   185,916   190,1043   222,1038   248,293   290,668   295,337   306,440   394,1060   519,950   672,1009   894,1010   940,975   978,982

X(72) = reflection of X(65) about X(10)
X(72) = isogonal conjugate of X(28)
X(72) = isotomic conjugate of X(286)
X(72) = anticomplement of X(942)
X(72) = X(I)-Ceva conjugate of X(J) for these (I,J): (8,10), (63,71), (69,306), (321,37)
X(72) = X(I)-cross conjugate of X(J) for these (I,J): (201,10), (228,37)
X(72) = crosspoint of X(I) and X(J) for these (I,J): (8,78), (63,69), (306,307)
X(72) = X(I)-beth conjugate of X(J) for these (I,J): (8,65), (72,73), (78,72), (100,227), (644,72)


X(73)  CROSSPOINT OF INCENTER AND CIRCUMCENTER

Trilinears       (cos B + cos C) cos A : (cos C + cos A) cos B : (cos A + cos B) cos C
Barycentrics  (cos B + cos C) sin 2A : (cos C + cos A) sin 2B : (cos A + cos B) sin 2C

X(73) lies on these lines:
1,4   3,212   6,41   21,651   35,74   36,54   37,836   42,65   55,64   57,386   66,976   68,1060   69,77   72,201   102,947   228,408   284,951   290,336   1036,1037   1057,1059

X(73) = isogonal conjugate of X(29)
X(73) = X(1)-Ceva conjugate of X(65)
X(73) = X(228)-cross conjugate of X(71)
X(73) = crosspoint of X(I) and X(J) for these (I,J): (1,3), (77,222), (226,307)
X(73) = X(1)-Hirst inverse of X(243)
X(73) = X(I)-beth conjugate of X(J) for these (I,J): (1,1042), (3,73), (21,946), (72,72), (100,10), (101,73), (295,73)


X(74)  ISOGONAL CONJUGATE OF EULER INFINITY POINT

Trilinears       1/(cos A - 2 cos B cos C) : 1/(cos B - 2 cos C cos A) : 1/(cos C - 2 cos A cos B)
                        = f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a/[2a4 - (b2 - c2)2 - a2(b2 + c2)]

Barycentrics  a/(cos A - 2 cos B cos C) : b/(cos B - 2 cos C cos A) : c/(cos C - 2 cos A cos B)

As the isogonal conjugate of the point in which the Euler line meets the line at infinity, X(74) lies on the circumcircle; its antipode is X(110). X(74) is the cevapoint of the isodynamic points.

X(74) lies on these lines:
2,113   3,110   4,107   6,112   20,68   24,64   30,265   35,73   54,185   65,108   67,935   69,99   71,101   72,100   98,690   187,248   477,523   511,691   512,842   550,930

X(74) = reflection of X(I) about X(J) for these (I,J): (4,125), (110,3), (146,113)
X(74) = isogonal conjugate of X(30)
X(74) = complement of X(146)
X(74) = anticomplement of X(113)
X(74) = cevapoint of X(I) and X(J) for these (I,J): (15,16), (50,184)
X(74) = X(I)-cross conjugate of X(J) for these (I,J): (186,54), (526,110)


X(75)  ISOTOMIC CONJUGATE OF INCENTER

Trilinears       1/a2 : 1/b2 : 1/c2
Barycentrics  1/a : 1/b : 1/c

This is the center X(37) of the anticomplementary triangle.

X(75) lies on these lines:
1,86   2,37   6,239   7,8   9,190   10,76   19,27   21,272   31,82   32,746   38,310   43,872   48,336   77,664   99,261   100,675   101,767   141,334   144,391   158,240   194,1107   225,264   234,556   257,698   280,309   299,554   523,876   537,668   689,745   700,971   753,789   758,994   799,897   811,1099

X(75) = reflection of X(192) about X(37)
X(75) = isogonal conjugate of X(31)
X(75) = isotomic conjugate of X(1)
X(75) = complement of X(192)
X(75) = anticomplement of X(37)
X(75) = X(I)-Ceva conjugate of X(J) for these (I,J): (76,312), (274,2), (310,76), (314,69)
X(75) = cevapoint of X(I) and X(J) for these (I,J): (1,63), (2,8), (7,347), (10,321), (244,514)

X(75) = X(I)-cross conjugate of X(J) for these (I,J):
(1,92), (2,85), (7,309), (8,312), (10,2), (38,1), (63,304), (244,514), (307,69), (321,76), (347,322), (522,190)

X(75) = crosspoint of X(I) and X(J) for these (I,J): (2,330), (274,310)
X(75) = X(I)-Hirst inverse of X(J) for these (I,J): (2,350), (334,335)
X(75) = X(83)-aleph conjugate of X(31)

X(75) = X(I)-beth conjugate of X(J) for these (I,J):
(8,984), (75,7), (99,77), (314,75), (522,876), (645,9), (646,75), (668,75), (811,342)


X(76) = 3rd BROCARD POINT

Trilinears       1/a3 : 1/b3 : 1/c3
                        = csc(A - ω) : csc(B - ω) : csc(C - ω)

Barycentrics  1/a2 : 1/b2 : 1/c2

X(76) lies on these lines:
1,350   2,39   3,98   4,69   5,262   6,83   8,668   10,75   13,299   14,298   17,303   18,302   31,734   32,384   85,226   95,96   100,767   115,626   141,698   275,276   297,343   321,561   335,871   338,599  485,491   486,492   524,598   689,755   693,764   761,789   826,882

X(76) = reflection of X(194) about X(39)
X(76) = isogonal conjugate of X(32)
X(76) = isotomic conjugate of X(6)
X(76) = complement of X(194)
X(76) = anticomplement of X(39)
X(76) = X(I)-Ceva conjugate of X(J) for these (I,J): (308,2), (310,75)
X(76) = cevapoint of X(I) and X(J) for these (I,J): (2,69), (6,22), (75,312), (311,343), (313,321), (339,525)
X(76) = X(I)-cross conjugate of X(J) for these (I,J): (2,264), (69,305), (141,2), (321,75), (343,69), (525,99)
X(76) = X(I)-beth conjugate of X(J) for these (I,J): (76,85), (799,348)


X(77)

Trilinears       1/(1 + sec A) : 1/(1 + sec B) : 1/(1 + sec C)
                        = cos A sec2(A/2) : cos B sec2(B/2) : cos C sec2(C/2)
                        = (b2 + c2 - a2)/(b + c - a) : (c2 + a2 - b2)/(c + a - b) : (a2 + b2 - c2)/(a + b - c)

Barycentrics  a/(1 + sec A) : b/(1 + sec B) : c/(1 + sec C)

X(77) lies on these lines:
1,7   2,189   6,241   9,651   29,34   40,947   55,1037   56,1036   57,81   63,219   65,969   69,73   75,664   102,934   283,603   309,318   738,951   988,1106   999,1057

X(77) = isogonal conjugate of X(33)
X(77) = isotomic conjugate of X(318)
X(77) = X(I)-Ceva conjugate of X(J) for these (I,J): (85,57), (86,7), (348,63)
X(77) = cevapoint of X(I) and X(J) for these (I,J): (1,223), (3,222)
X(77) = X(I)-cross conjugate of X(J) for these (I,J): (3,63), (73,222)

X(77) = X(I)-beth conjugate of X(J) for these (I,J):
(21,990), (69,69), (86,269), (99,75), (332,326), (336,77), (662,77), (664,77), (811,77)


X(78)

Trilinears       1/(1 - sec A) : 1/(1 - sec B) : 1/(1 - sec C)
                        = cos A csc2(A/2) : cos B csc2(B/2) : cos C csc2(C/2)
                        = (b2 + c2 - a2)(b + c - a) : (c2 + a2 - b2)(c + a - b) : (a2 + b2 - c2)(a + b - c)

Barycentrics  a/(1 - sec A) : b/(1 - sec B) : c/(1 - sec C)

X(78) lies on these lines:
1,2   3,63   4,908   9,21   20,329   29,33   37,965   38,988   40,100   46,758   55,960   56,480   57,404   69,73   101,205   207,653   210,958   212,283   220,949   226,377   271,394   273,322   280,282   345,1040   392,1057   474,942   517,945   644,728   999,1059

X(78) = isogonal conjugate of X(34)
X(78) = isotomic conjugate of X(273)
X(78) = X(I)-Ceva conjugate of X(J) for these (I,J): (69,63), (312,9), (332,345)
X(78) = X(I)-cross conjugate of X(J) for these (I,J): (3,271), (72,8), (212,9), (219,63)
X(78) = crosspoint of X(69) and X(345)
X(78) = X(I)-beth conjugate of X(J) for these (I,J): (78,3), (643,40), (1043,1)


X(79)

Trilinears       1/(1 + 2 cos A) : 1/(1 + 2 cos B) : 1/(1 + 2 cos C)
                        = f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc/(b2 + c2 - a2 + bc)
                        = g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A/2)(sin 3B/2)(sin 3C/2)

Barycentrics  h(a,b,c) : h(b,c,a) : h(c,a,b), where h(a,b,c) = 1/(b2 + c2 - a2 + bc)

X(79) lies on these lines:
1,30   8,758   9,46   12,484   21,36   33,1063   34,1061   35,226   57,90   65,80   104,946   314,320   388,1000

X(79) = reflection of X(191) about X(442)
X(79) = isogonal conjugate of X(35)
X(79) = isotomic conjugate of X(319)
X(79) = cevapoint of X(481) and X(482)


X(80)  REFLECTION OF INCENTER ABOUT FEUERBACH POINT

Trilinears       1/(1 - 2 cos A) : 1/(1 - 2 cos B) : 1/(1 - 2 cos C)
                        = f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc/(b2 + c2 - a2 - bc)

Barycentrics  g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = 1/(b2 + c2 - a2 - bc)

X(80) lies on these lines:
1,5   2,214   7,150   8,149   9,528   10,21   30,484   33,1061   34,1063   36,104   40,90   46,84   65,79   313,314   497,1000   499,944   516,655   519,908   943,950

X(80) = midpoint between X(8) and X(149)
X(80) = reflection of X(I) about X(J) for these (I,J): (1,11), (100,10)
X(80) = isogonal conjugate of X(36)
X(80) = isotomic conjugate of X(320)
X(80) = inverse of X(1) in the Furhmann circle
X(80) = anticomplement of X(214)
X(80) = cevapoint of X(10) and X(519)
X(80) = X(I)-cross conjugate of X(J) for these (I,J): (44,2), (517,1)
X(80) = X(8)-beth conjugate of X(100)


X(81)  CEVAPOINT OF INCENTER AND SYMMEDIAN POINT

Trilinears       1/(b + c) : 1/(c + a) : 1/(a + b)
Barycentrics  a/(b + c) : b/(c + a) : c/(a + b)

X(81) lies on these lines:
1,21   2,6   7,27   8,1010   19,969   28,60   29,189   32,980   42,100   43,750   55,1002   56,959   57,77   65,961   88,662   99,739   105,110   145,1043   226,651   239,274   314,321   377,387   386,404   411,581   593,757   715,932   859,957   941,967   982,985   1019,1022   1051,1054   1098,1104

X(81) = isogonal conjugate of X(37)
X(81) = isotomic conjugate of X(321)
X(81) = X(I)-Ceva conjugate of X(J) for these (I,J): (7,229), (86,21), (286,28)
X(81) = cevapoint of X(I) and X(J) for these (I,J): (1,6), (57,222), (58,284)
X(81) = X(I)-cross conjugate of X(J) for these (I,J): (1,86), (3,272), (6,58), (57,27), (284,21)
X(81) = crosspoint of X(274) and X(286)
X(81) = X(I)-beth conjugate of X(J) for these (I,J): (333,333), (643,81), (645,81), (648,81), (662,81), (931,81)


X(82)

Trilinears       1/(b2 + c2) : 1/(c2 + a2) : 1/(a2 + b2)
                        = sin A csc(A + ω) : sin B csc(B + ω) : sin C csc(C + ω)

Barycentrics  a/(b2 + c2) : b/(c2 + a2) : c/(a2 + b2)

X(82) lies on these lines: 1,560   10,83   31,75   37,251   58,596   689,715   759,827

X(82) = isogonal conjugate of X(38) X(82) = cevapoint of X(1) and X(31)


X(83)  CEVAPOINT OF CENTROID AND SYMMEDIAN POINT

Trilinears       bc/(b2 + c2) : ca/(c2 + a2) : ab/(a2 + b2)
                        = csc(A + ω) : csc(B + ω) : csc(C + ω)

Barycentrics  1/(b2 + c2) : 1/(c2 + a2) : 1/(a2 + b2)

X(83) lies on these lines:
2,32   3,262   4,182   5,98   6,76   10,82   17,624   18,623   39,99   213,239   217,287   275,297   597,671   689,729

X(83) = isogonal conjugate of X(39)
X(83) = isotomic conjugate of X(141)
X(83) = cevapoint of X(2) and X(6)
X(83) = X(I)-cross conjugate of X(J) for these (I,J): (2,308), (6,251), (512,99)


X(84)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = 1/(cos B + cos C - cos A - 1)
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

Let A',B',C' be the excenters. The perpendiculars from B' to A'B and from C' to A'C meet in a point A". Points B" and C" are determined cyclically. The hexyl triangle, A"B"C", is perspective to ABC, and X(84) is the perspector.

X(84) lies on these lines: 1,221   3,9   4,57   7,946   8,20   21,285   33,603   36,90   46,80   58,990   171,989   256,988   294,580   309,314   581,941   944,1000

X(84) = isogonal conjugate of X(40)
X(84) = isotomic conjugate of X(322)
X(84) = X(I)-Ceva conjugate of X(J) for these (I,J): (189,282), (280,1)
X(84) = X(I)-cross conjugate of X(J) for these (I,J): (19,57), (56,1)
X(84) = X(280)-aleph conjugate of X(84)
X(84) = X(I)-beth conjugate of X(J) for these (I,J): (271,3), (280,280), (285,84)


X(85)  ISOTOMIC CONJUGATE OF X(9)

Trilinears       b2c2/(b + c - a) : c2a2/(c + a - b) : a2b2/(a + b - c)
                        = tan(A/2) cos2A : tan(B/2) cos2B : tan(C/2) cos2C

Barycentrics  bc/(b + c - a) : ca/(c + a - b) : ab/(a + b - c)

X(85) lies on these lines:
1,664   2,241   7,8   12,120   29,34   56,870   57,274   76,226   92,331   109,767   150,355   178,508   264,309

X(85) = isogonal conjugate of X(41)
X(85) = isotomic conjugate of X(9)
X(85) = X(274)-Ceva conjugate of X(348)
X(85) = cevapoint of X(I) and X(J) for these (I,J): (1,169), (2,7), (57,77), (92,342)
X(85) = X(I)-cross conjugate of X(J) for these (I,J): (2,75), (57,273), (92,309), (142,2), (226,7)

X(85) = X(I)-beth conjugate of X(J) for these (I,J):
(76,76), (85,279), (99,1), (274,85), (668,85), (789,85), (799,85), (811,85)


X(86)   CEVAPOINT OF INCENTER AND CENTROID

Trilinears       bc/(b + c) : ca/(c + a) : ab/(a + b)
Barycentrics  1/(b + c) : 1/(c + a) : 1/(a + b)

X(86) lies on these lines:
1,75   2,6   7,21   10,319   29,34   37,190   58,238   60,272   99,106   110,675   142,284   239,1100   269,1088   283,307   310,350   741,789   870,871

X(86) = isogonal conjugate of X(42)
X(86) = isotomic conjugate of X(10)
X(86) = X(274)-Ceva conjugate of X(333)
X(86) = cevapoint of X(I) and X(J) for these (I,J): (1,2), (7,77), (21,81)
X(86) = X(I)-cross conjugate of X(J) for these (I,J): (1,81), (2,274), (7,286), (21,333), (58,27), (513,190)
X(86) = X(I)-beth conjugate of X(J) for these (I,J): (86,1014), (99,86), (261,86), (314,314), (645,86), (811,86)


X(87)   X(2)-CROSS CONJUGATE OF X(1)

Trilinears       1/(ab + ac - bc) : 1/(bc + ba - ca) : 1/(ca + cb - ab)
Barycentrics  a/(ab + ac - bc) : b/(bc + ba - ca) : c/(ca + cb - ab)

X(87) lies on these lines: 1,192   6,43   9,292   10,979   34,242   56,238   58,978   106,932

X(87) = isogonal conjugate of X(43)
X(87) = cevapoint of X(2) and X(330)
X(87) = X(2)-cross conjugate of X(1)
X(87) = X(932)-beth conjugate of X(87)


X(88)

Trilinears       1/(b + c - 2a) : 1/(c + a - 2b) : 1/(a + b - 2c)
Barycentrics  a/(b + c - 2a) : b/(c + a - 2b) : c/(a + b - 2c)

X(88) lies on these lines: 1,100   2,45   6,89   28,162   44,679   57,651   81,662   105,901   274,799   278,653   279,658   291,660

X(88) = isogonal conjugate of X(44)
X(88) = cevapoint of X(I) and X(J) for these (I,J): (1,44), (6,36)
X(88) = X(I)-cross conjugate of X(J) for these (I,J): (44,1), (517,7)
X(88) = X(I)-aleph conjugate of X(J) for these (I,J): (88,1), (679,88), (903,63), (1022,1052)
X(88) = X(333)-beth conjugate of X(190)


X(89)

Trilinears       1/(2b + 2c - a) : 1/(2c + 2a - b) : 1/(2a + 2b - c)
Barycentrics  a/(2b + 2c - a) : b/(2c + 2a - b) : c/(2a + 2b - c)

X(89) lies on these lines: 1,902   2,44   6,88   649,1022

X(89) = isogonal conjugate of X(45)


X(90)  X(3)-CROSS CONJUGATE OF X(1)

Trilinears       1/(cos B + cos C - cos A) : 1/(cos C + cos A - cos B) : 1/(cos A + cos B - cos C)
Barycentrics  a/(cos B + cos C - cos A) : b/(cos C + cos A - cos B) : c/(cos A + cos B - cos C)

X(90) lies on these lines: 1,155   4,46   9,35   21,224   33,47   36,84   40,80   57,79

X(90) = isogonal conjugate of X(46)
X(90) = X(3)-cross conjugate of X(1)


X(91)

Trilinears       sec 2A : sec 2B : sec 2C
Barycentrics  sin A sec 2A : sin B sec 2B : sin C sec 2C

X(91) lies on these lines: 19,920   31,1087   37,498   47,92   63,921   65,68   225,847   255,1109   759,925

X(91) = isogonal conjugate of X(47)
X(91) = X(48)-cross conjugate of X(92)


X(92)  CEVAPOINT OF INCENTER AND CLAWSON POINT

Trilinears       csc 2A : csc 2B : csc 2C
Barycentrics  sec A : sec B : sec C

X(92) lies on these lines:
1,29   2,273   4,8   7,189   19,27   25,242   31,162   38,240   40,412   47,91   55,243   57,653   85,331   100,917   226,342   239,607   255,1087   257,297   264,306   304,561   406,1068   608,894

X(92) = isogonal conjugate of X(48)
X(92) = isotomic conjugate of X(63)
X(92) = X(I)-Ceva conjugate of X(J) for these (I,J): (85, 342), (264,318), (286,4), (331,273)
X(92) = cevapoint of X(I) and X(J) for these (I,J): (1,19), (4,281), (47,48), (196,278)
X(92) = X(I)-cross conjugate of X(J) for these (I,J): (1,75), (4,273), (19,158), (48,91), (226,2), (281,318)
X(92) = crosspoint of X(I) and X(J) for these (I,J): (85,309), (264,331)
X(92) = X(275)-aleph conjugate of X(47)
X(92) = X(I)-beth conjugate of X(J) for these (I,J): (92,278), (312,329), (648,57)


X(93)

Trilinears       sec 3A : sec 3B : sec 3C
Barycentrics  sin A sec 3A : sin B sec 3B : sin C sec 3C

X(93) lies on these lines: 4,562   49,94   186,252

X(93) = isogonal conjugate of X(49)
X(93) = X(50)-cross conjugate of X(94)


X(94)

Trilinears       csc 3A : csc 3B : csc 3C
Barycentrics  sin A csc 3A : sin B csc 3B : sin C csc 3C

X(94) lies on these lines: 2,300   4,143   23,98   49,93   96,925   275,324

X(94) = isogonal conjugate of X(50)
X(94) = isotomic conjugate of X(323)
X(94) = cevapoint of X(49) and X(50)
X(94) = X(I)-cross conjugate of X(J) for these (I,J): (30,264), (50,93), (265,328)
X(94) = X(300)-Hirst inverse of X(301)


X(95)  CEVAPOINT OF CENTROID AND CIRCUMCENTER

Trilinears       b2c2 sec(B - C) : c2a2 sec(C - A) : a2b2 sec(A - B)
Barycentrics  bc sec(B - C) : ca sec(C - A) : ab sec(A - B)

X(95) lies on these lines:
2,97   3,264   54,69   76,96   99,311   140,340   141,287   160,327   183,305   216,648   307,320

X(95) = isogonal conjugate of X(51)
X(95) = isotomic conjugate of X(5)
X(95) = anticomplement of X(233)
X(95) = X(276)-Ceva conjugate of X(275)
X(95) = cevapoint of X(I) and X(J) for these (I,J): (2,3), (6,160), (54,97)
X(95) = X(I)-cross conjugate of X(J) for these (I,J): (2,276), (3,97), (54,275), (140,2)


X(96)

Trilinears       sec 2A sec(B - C) : sec 2B sec(C - A) : sec 2C sec(A - B)
Barycentrics  a sec 2A sec(B - C) : b sec 2B sec(C - A) : c sec 2C sec(A - B)

X(96) lies on these lines: 2,54   4,231   24,847   76,95   94,925

X(96) = isogonal conjugate of X(52)
X(96) = cevapoint of X(3) and X(68)
X(96) = X(3)-cross conjugate of X(54)


X(97)

Trilinears       cot A sec(B - C) : cot B sec(C - A) : cot C sec(A - B)
Barycentrics  cos A sec(B - C) : cos B sec(C - A) : cos C sec(A - B)

X(97) lies on these lines: 2,95   3,54   110,418   216,288   276,401

X(97) = isogonal conjugate of X(53)
X(97) = isotomic conjugate of X(324)
X(97) = X(95)-Ceva conjugate of X(54)
X(97) = X(3)-cross conjugate of X(95)



leftri Centers 98- 112, rightri
74, and 476 lie on the circumcircle. Mappings Λ and Ψ for such points are defined here:
Λ(P,X) = isogonal conjugate of the point where line PX meets the line at infinity; let
Y = Λ(P,X); Q = isogonal conjugate of P; Y and Z = points where line YQ meets the circumcircle;
then Ψ(P,X) = Z.

underbar

X(98) = TARRY POINT

Trilinears       sec(A + ω) : sec(B + ω) : sec(C + ω)
                        = f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc/(b4 + c4 - a2b2 - a2c2)

Barycentrics  g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = 1/(b4 + c4 - a2b2 - a2c2)

The antipode of X(99), and a point of intersection of the circumcircle and the Kiepert hyperbola.
Also, X(98) = Ψ(X(101), X(10)).

J. W. Clawson, "Points on the circumcircle," American Mathematical Monthly 32 (1925) 169-174.

X(98) lies on these lines:
2,110   3,76   4,32   5,83   6,262   10,101   13,1080   14,383   20,148   22,925   23,94   25,107   30,671   100,228   109,171   186,935   275,427   376,543   381,598   385,511   468,685   523,842   620,631   804,878

X(98) = midpoint between X(20) and X(148)
X(98) = reflection of X(I) about X(J) for these (I,J): (4,115), (99,3), (147,114)
X(98) = isogonal conjugate of X(511)
X(98) = isotomic conjugate of X(325)
X(98) = complement of X(147)
X(98) = anticomplement of X(114)
X(98) = X(290)-Ceva conjugate of X(287)
X(98) = cevapoint of X(I) and X(J) for these (I,J): (2,385), (6,237)
X(98) = X(I)-cross conjugate of X(J) for these (I,J): (230,2), (237,6), (248,287), (446,511)
X(98) = X(2)-Hirst inverse of X(287)


X(99) = STEINER POINT

Trilinears       bc/(b2 - c2) : ca/(c2 - a2) : ab/(a2 - b2)
                        = b2c2 csc(B - C) : c2a2 csc(C - A) : a2b2 csc(A - B)

Barycentrics  1/(b2 - c2) : 1/(c2 - a2) : 1/(a2 - b2)

The antipode of X(98), and a point of intersection of the circumcircle and the Steiner ellipse.
Also, X(98) = Ψ(X(6), X(2)).

X(99) lies on these lines:
1,741   2,111   3,76   4,114   6,729   13,303   14,302   20,147   21,105   22,305   30,316   31,715   32,194   36,350   38,745   39,83   58,727   69,74   75,261   81,739   86,106   95,311   100,668   101,190   102,332   103,1043   104,314   108,811   109,643   110,690   112,648   141,755   163,825   187,385   249,525   264,378   286,915   298,531   299,530   310,675   476,850   512,805   523,691   524,843   666,919   669,886   670,804   692,785   695,711   813,1016   889,898

X(99) = midpoint between X(I) and X(J) for these (I,J): (20,147), (616,617)
X(99) = reflection of X(I) about X(J) for these (I,J): (4,114), (98,3), (148,115), (316,325), (385,187)
X(99) = isogonal conjugate of X(512)
X(99) = isotomic conjugate of X(523)
X(99) = complement of X(148)
X(99) = anticomplement of X(115)
X(99) = cevapoint of X(I) and X(J) for these (I,J): (2,523), (3,525), (39,512), (100,190)
X(99) = X(I)-cross conjugate of X(J) for these (I,J): (3,249), (22,250), (512,83), (523,2), (525,76)
X(99) = X(21)-beth conjugate of X(741)


X(100)  ANTICOMPLEMENT OF FEUERBACH POINT

Trilinears       1/(b - c) : 1/(c - a) : 1/(a - b)
                        = (a - b)(a - c) : (b - c)(b - a) : (c - a)(c - b)

Barycentrics  a/(b - c) : b/(c - a) : c/(a - b)

The antipode of X(104) on the circumcircle; X(100) = Ψ(X(6), X(1)).

X(100) lies on these lines:
1,88   2,11   3,8   4,119   6,739   7,1004   9,1005   10,21   20,153   22,197   31,43   32,713   36,519   37,111   40,78   42,81   46,224   56,145   59,521   63,103   72,74   75,675   76,767   92,917   98,228   99,668   101,644   107,823   108,653   109,651   110,643   112,162   144,480   190,659   198,346   213,729   238,899   281,1013   329,972   442,943   484,758   513,765   516,908   517,953   518,840   522,655   560,697   594,1030   645,931   649,660   650,919   658,664   667,898   693,927   731,869   733,893   753,984   756,846   789,874   976,986

X(100) = midpoint between X(20) and X(153)
X(100) = reflection of X(I) about X(J) for these (I,J): (1,214), (4,119), (80,10), (104,3), (149,11)
X(100) = isogonal conjugate of X(513)
X(100) = complement of X(149)
X(100) = anticomplement of X(11)
X(100) = X(99)-Ceva conjugate of X(190)
X(100) = cevapoint of X(I) and X(J) for these (I,J): (1,513), (3,521), (10,522), (142,514), (442,523)
X(100) = X(I)-cross conjugate of X(J) for these (I,J): (3,59), (513,1), (521,8), (522,21)
X(100) = X(1)-line conjugate of X(244)

X(100) = X(I)-aleph conjugate of X(J) for these (I,J):
(1,1052), (100,1), (190,63), (643,411), (666,673), (765,100), (1016,190)

X(100) = X(I)-beth conjugate of X(J) for these (I,J):
(8,80), (21,106), (100,109), (333,673), (643,100), (765,100)


X(101)

Trilinears       a/(b - c) : b/(c - a) : c/(a - b)
                        = a(a - b)(a - c) : b(b - c)(b - a) : c(c - a)(c - b)

Barycentrics  a2/(b - c) : b2/(c - a) : c2/(a - b)

The antipode of X(103) on the circumcircle; X(101) = Ψ(X(1), X(6)).

X(101) lies on these lines:
1,41   2,116   3,103   4,118   6,106   9,48   10,98   19,913   20,152   31,609   32,595   36,672   37,284   40,972   42,111   56,218   58,172   59,657   71,74   75,767   78,205   99,190   100,644   102,198   109,654   110,163   514,664   517,910   522,929   560,713   643,931   649,901   651,934   663,919   667,813   668,789   692,926   733,904   743,869   761,984   765,898

X(101) = midpoint between X(20) and X(152)
X(101) = reflection of X(I) about X(J) for these (I,J): (4,118), (103,3), (150,116)
X(101) = isogonal conjugate of X(514)
X(101) = complement of X(150)
X(101) = anticomplement of X(116)
X(101) = X(59)-Ceva conjugate of X(55)
X(101) = cevapoint of X(354) and X(513)
X(101) = X(I)-cross conjugate of X(J) for these (I,J): (55,59), (199,250)
X(101) = X(I)-aleph conjugate of X(J) for these (I,J): (100,165), (509,1052), (662,572), (664,169)
X(101) = X(I)-beth conjugate of X(J) for these (I,J): (21,105), (644,644)


X(102)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = 1/[sin B (sec A - sec B) + sin C (sec A - sec C)]
                        = g(a,b,c) : g(b,c,a) : g(c,a,b), where
                        g(a,b,c) = a/[2a5 + (b + c)a4 - 2(b2 + c2)a3 - (b + c)(b2 - c2)2]

Barycentrics  g(A,B,C) : g(B,C,A) : g(C,A,B), where
g(A,B,C) = (sin A)/[sin B (sec A - sec B) + sin C (sec A - sec C)]

The antipode of X(109) on the circumcircle; also, X(102) = Λ(X(1), X(4)).

X(102) lies on these lines:
1,108   2,117   3,109   4,124   19,282   29,107   40,78   73,947   77,934   99,332   101,198   103,928   110,283   112,284   226,1065   516,929

X(102) = midpoint between X(20) and X(153)
X(102) = reflection of X(I) about X(J) for these (I,J): (4,124), (109,3), (151,117)
X(102) = isogonal conjugate of X(515)
X(102) = complement of X(151)
X(102) = anticomplement of X(117)
X(102) = X(21)-beth conjugate of X(108)


X(103)

Trilinears       a/[(a - b) cot C + (a - c) cot B] : b/[(b - c) cot A + (b - a) cot C] : c/[(c - a) cot B + (c - b) cot A]
Barycentrics  f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2/[(a - b) cot C + (a - c) cot B]

The antipode of X(101) on the circumcircle; X(103) = Ψ(X(101), X(3)).

X(103) lies on these lines:
1,934   2,118   3,101   4,116   20,150   27,107   33,57   55,109   58,112   63,100   99,1043   102,928   295,813   376,544   515,929   516,927   572,825   672,919   910,971

X(103) = midpoint between X(20) and X(150)
X(103) = reflection of X(I) about X(J) for these (I,J): (4,116), (101,3), (152,118)
X(103) = isogonal conjugate of X(516)
X(103) = complement of X(152)
X(103) = anticomplement of X(118)
X(103) = X(21)-beth conjugate of X(934) for these (I,J):


X(104)

Trilinears       1/(-1 + cos B + cos C) : 1/(-1 + cos C + cos A) : 1/(-1 + cos C + cos B)
Barycentrics  a/(-1 + cos B + cos C) : b/(-1 + cos C + cos A) : c/(-1 + cos C + cos B)

The antipode of X(100) on the circumcircle; X(104) = Λ(X(1), X(3)) = Ψ(X(101), X(9)).

X(104) lies on these lines:
1,109   2,119   3,8   4,11   7,934   9,48   20,149   21,110   28,107   36,80   55,1000   79,946   99,314   105,885   112,1108   256,1064   294,919   355,404   376,528   513,953   517,901   631,958

X(104) = midpoint between X(20) and X(149)
X(104) = reflection of X(I) about X(J) for these (I,J): (4,11), (100,3), (153,119)
X(104) = isogonal conjugate of X(517)
X(104) = complement of X(153)
X(104) = anticomplement of X(517)
X(104) = cevapoint of X(I) and X(J) for these (I,J): (1,36), (44,55)
X(104) = X(21)-beth conjugate of X(109)


X(105)

Trilinears       1/[b2 + c2 - a(b + c)] : 1/[c2 + a2 - b(c + a)] : 1/[a2 + b2 - c(a + b)]
Barycentrics  a/[b2 + c2 - a(b + c)] : b/[c2 + a2 - b(c + a)] : c/[a2 + b2 - c(a + b)]

A center on the circumcircle; X(105) = Λ(X(1), X(6)) = Ψ(X(101), X(1)).

X(105 lies on these lines:
1,41   2,11   3,277   6,1002   21,99   25,108   28,112   31,57   56,279   81,110   88,901   104,885   106,1022   165,1054   238,291   330,932   513,840   644,1083   659,884   666,898   825,985   910,919   961,1104

X(105) = isogonal conjugate of X(518)
X(105) = anticomplement of X(120)
X(105) = cevapoint of X(1) and X(238)
X(105) = X(1)-Hirst inverse of X(294)
X(105) = X(I)-beth conjugate of X(J) for these (I,J): (21,101), (927,105)


X(106)

Trilinears       a/(2a - b - c) : b/(2b - c - a) : c/(2c - a - b)
Barycentrics  a2/(2a - b - c) : b2/(2b - c - a) : c2/(2c - a - b)

A center on the circumcircle; X(106) = Λ(X(1), X(2)) = Ψ(X(101), X(6)).

X(106) lies on these lines:
1,88   2,121   6,101   34,108   36,901   56,109   58,110   86,99   87,932   105,1022   238,898   269,934   292,813   614,998   663,840   789,870   833,977   919,1055

X(106) = isogonal conjugate of X(519)
X(106) = anticomplement of X(121)
X(106) = X(36)-cross conjugate of X(58)
X(106) = X(I)-beth conjugate of X(J) for these (I,J): (21,100), (901,106)


X(107)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = 1/[cos A (sin 2B - sin 2C)
                        = g(a,b,c) : g(b,c,a) : g(c,a,b) where g(a,b,c) = bc/[(b2 - c2)(b2 + c2 - a2)2]

Barycentrics  1/[(b2 - c2)(b2 + c2 - a2)2] : 1/[(c2 - a2)(c2 + a2 - b2)2] : 1/[(a2 - b2)(a2 + b2 - c2)2]

A center on the circumcircle; X(107) = Ψ(X(6), X(4)).

X(107) lies on these lines:
2,122   4,74   24,1093   25,98   27,103   28,104   29,102   51,275   100,823   109,162   110,648   111,393   158,759   186,477   250,687   450,511   468,842   741,1096

X(107) = reflection of X(4) about X(133)
X(107) = isogonal conjugate of X(520)
X(107) = anticomplement of X(122)
X(107) = cevapoint of X(4) and X(523)
X(107) = X(I)-cross conjugate of X(J) for these (I,J): (24,250), (108,162), (523,4)
X(107) = trilinear pole of line X(4)X(6)


X(108)

Trilinears       a/(sec B - sec C) : b/(sec C - sec A): c/(sec A - sec B)
                        = g(a,b,c) : g(b,c,a) : g(c,a,b) where g(a,b,c) = 1/[(b - c)(b + c - a)(b2 + c2 - a2)]

Barycentrics  a2/(sec B - sec C) : b2/(sec C - sec A): c2/(sec A - sec B)

A center on the circumcircle; X(108) = Ψ(X(3), X(1)) = Ψ(X(1), X(4)).

X(108) lies on these lines:
1,102   2,123   4,11   7,1013   12,451   24,915   25,105   28,225   33,57   34,106   40,207   55,196   65,74   99,811   100,653   109,1020   110,162   204,223   273,675   318,404   331,767   388,406   429,961   608,739   648,931

X(108) = isogonal conjugate of X(521)
X(108) = anticomplement of X(123)
X(108) = X(162)-Ceva conjugate of X(109)
X(108) = cevapoint of X(I) and X(J) for these (I,J): (56,513), (429,523)
X(108) = X(513)-cross conjugate of X(4)
X(108) = crosspoint of X(107) and X(162)
X(108) = X(I)-beth conjugate of X(J) for these (I,J): (21,102), (162,108)


X(109)

Trilinears       a/(cos B - cos C) : b/(cos C - cos A): c/(cos A - cos B)
                        = g(a,b,c) : g(b,c,a) : g(c,a,b) where g(a,b,c) = a/[(b - c)(b + c - a)]

Barycentrics  a2/(cos B - cos C) : b2/(cos C - cos A): c2/(cos A - cos B)

The antipode of X(102) on the circumcircle; X(109) = Λ(X(1), X(3)).

X(109) lies on these lines:
1,104   2,124   3,102   4,117   7,675   20,151   31,57   34,46   35,73   36,953   40,255   55,103   56,106   58,65   59,901   85,767   98,171   99,643   100,651   101,654   107,162   108,1020   112,163   165,212   191,201   278,917   284,296   478,573   579,608   604,739   649,919   658,927   662,931   840,902

X(109) = midpoint between X(20) and X(151)
X(109) = reflection of X(I) about X(J) for these (I,J): (4,117), (102,3)
X(109) = isogonal conjugate of X(522)
X(109) = anticomplement of X(124)
X(109) = X(I)-Ceva conjugate of X(J) for these (I,J): (59,56), (162,108)
X(109) = cevapoint of X(65) and X(513)
X(109) = X(I)-cross conjugate of X(J) for these (I,J): (56,59), (513,58)
X(109) = crosspoint of X(110) and X(162)
X(109) = X(I)-aleph conjugate of X(J) for these (I,J): (100,1079), (162,580), (651,223)
X(109) = X(I)-beth conjugate of X(J) for these (I,J): (21,104), (59,109), (100,100), (110,109), (765,109), (901,109)


X(110) = FOCUS OF KIEPERT PARABOLA

Trilinears       csc(B - C) : csc(C - A) : csc(A - B)
                        = a/(b2 - c2) : b/(c2 - a2) : c/(a2 - b2)

Barycentrics  a2/(b2 - c2) : b2/(c2 - a2) : c2/(a2 - b2)

The antipode of X(74) on the circumcircle, and the isogonal conjugate of the isotomic conjugate of X(99).
Also, X(110) = Ψ(X(6), X(3)) = Feuerbach point of the tangential triangle.

J. W. Clawson, "Points on the circumcircle," American Mathematical Monthly 32 (1925) 169-174.

Roland H. Eddy and R. Fritsch, "The conics of Ludwig Kiepert: a comprehensive lesson in the geometry of the triangle," Mathematics Magazine 67 (1994) 188-205.

X(110) lies on these lines:
1,60   2,98   3,74   4,113   5,49   6,111   11,215   20,146   21,104   22,154   23,323   24,155   27,917   28,915   30,477   31,593   32,729   39,755   58,106   65,229   67,141   69,206   81,105   86,675   97,418   99,690   100,643   101,163   102,283   107,648   108,162   143,195   187,352   190,835   249,512   250,520   251,694   274,767   324,436   351,526   353,574   373,575   376,541   476,523   525,935   560,715   595,849   668,839   669,805   670,689   681,823   685,850   789,799   859,953

X(110) = midpoint between X(I) and X(J) for these (I,J): (3,399), (20,146), (23,323)
X(110) = reflection of X(I) about X(J) for these (I,J): (4,113), (67,141), (74,3), (265,5)
X(110) = isogonal conjugate of X(523)
X(110) = isotomic conjugate of X(850)
X(110) = inverse of X(2) in the Brocard circle
X(110) = anticomplement of X(125)
X(110) = X(I)-Ceva conjugate of X(J) for these (I,J): (249,6), (250,3)
X(110) = cevapoint of X(I) and X(J) for these (I,J): (3,520), (5,523), (6,512), (141,525)

X(110) = X(I)-cross conjugate of X(J) for these (I,J):
(1,59), (3,250), (6,249), (109,162), (351,111), (512,6), (520,3), (523,54), (526,74)

X(110) = X(I)-Hirst inverse of X(J) for these (I,J): (1,245), (2,125), (3,246), (4,247)
X(110) = X(I)-beth conjugate of X(J) for these (I,J): (21,759), (643,643)

Let X = X(110) and let V be the vector-sum XA + XB + XC; then V = X(265)X(399).

Let W be the vector-sum XA' + XB' + XC', where A'B'C' is the pedal triangle of X;
then W = X(125)X(110) = X(265)X(113) = X(113,399).


X(111) = PARRY POINT

Trilinears       a/(2a2 - b2 - c2) : b/(2b2 - c2 - a2) : c/(2c2 - a2 - b2)
Barycentrics  a2/(2a2 - b2 - c2) : b2/(2b2 - c2 - a2) : c2/(2c2 - a2 - b2)

A point on the circumcircle; X(111) = Λ(X(2), X(6)).

X(111) lies on these lines:
2,99   6,110   23,187   25,112   37,100   42,101   107,393   182,353   230,476   251,827   308,689   352,511   385,892   468,935   512,843   647,842   694,805   931,941

X(111) = isogonal conjugate of X(524)
X(111) = inverse of X(353) in the Brocard circle
X(111) = anticomplement of X(126)
X(111) = cevapoint of X(6) and X(187)
X(111) = X(I)-cross conjugate of X(J) for these (I,J): (23,251), (187,6), (351,110)


X(112)

Trilinears       a/(sin 2B - sin 2C) : b/(sin 2C - sin 2A) : c/(sin 2A - sin 2B)
                        = f(a,b,c) : f(b,c,a) : f(c,a,b) where f(a,b,c) = a/[(b2 - c2)(b2 + c2 - a2)]

Barycentrics  a2/(sin 2B - sin 2C) : b2/(sin 2C - sin 2A) : c2/(sin 2A - sin 2B)

A point on the circumcircle; X(112) = Ψ(X(4), X(6)).

X(112) lies on these lines:
2,127   4,32   6,74   19,759   25,111   27,675   28,105   33,609   50,477   54,217   58,103   99,648   100,162   102,284   104,1108   109,163   186,187   230,403   250,691   251,427   286,767   376,577   393,571   523,935   789,811

X(112) = reflection of X(4) about X(132)
X(112) = isogonal conjugate of X(525)
X(112) = anticomplement of X(127)
X(112) = X(I)-Ceva conjugate of X(J) for these (I,J): (249,24), (250,25)
X(112) = cevapoint of X(I) and X(J) for these (I,J): (32,512), (427,523)
X(112) = X(I)-cross conjugate of X(J) for these (I,J): (25,250), (512,4), (523,251)



leftri Centers 113-139 rightri
lie on the nine-point circle.

underbar

X(113) = JERABEK ANTIPODE

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where
                        f(A,B,C) = [1 - cos A (sin 2B + sin 2C)][cos A - 2 cos B cos C]

Barycentrics  g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A)f(A,B,C)

The antipode on the nine-point circle of X(125); also, X(74) of the medial triangle, and X(104) of the orthic triangle.

X(113) lies on these lines: 2,74   3,122   4,110   5,125   6,13   11,942   52,135   114,690   123,960   127,141   137,546

X(113) = midpoint between X(I) and X(J) for these (I,J): (4,110), (74,146), (265,399)
X(113) = reflection of X(125) about X(5)
X(113) = X(4)-Ceva conjugate of X(30)
X(113) = crosspoint of X(4) and X(403)

Let X = X(113) and let V be the vector-sum XA + XB + XC; then V = X(113)X(146).


X(114) = KIEPERT ANTIPODE

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc[b sec(B + ω) + c sec(C + ω)]
Barycentrics  g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = b sec(B + ω) + c sec(C + ω)

The antipode on the nine-point circle of X(115); also, X(98) of the medial triangle, and X(103) of the orthic triangle.

X(114) lies on these lines: 2,98   3,127   4,99   5,39   25,135   52,211   113,690   132,684   136,427   325,511   381,543

X(114) = midpoint between X(I) and X(J) for these (I,J): (4,99), (98,147)
X(114) = reflection of X(115) about X(5)
X(114) = X(I)-Ceva conjugate of X(J) for these (I,J): (2,230), (4,511)
X(114) = crosspoint of X(2) and X(325)

Let X = X(114) and let V be the vector-sum XA + XB + XC; then V = X(114)X(147).


X(115) = CENTER OF KIEPERT HYPERBOLA

Trilinears       bc(b2 - c2)2 : ca(c2 - a2)2 : ab(a2 - b2)2
Barycentrics  (b2 - c2)2 : (c2 - a2)2 : (a2 - b2)2

On the nine-point circle; also, X(99) of the medial triangle, and X(101) of the orthic triangle.

Roland H. Eddy and R. Fritsch, "The conics of Ludwig Kiepert: a comprehensive lesson in the geometry of the triangle," Mathematics Magazine 67 (1994) 188-205.

X(115) lies on these lines:
2,99   4,32   5,39   6,13   11,1015   30,187   50,231   53,133   76,626   116,1086   120,442   125,245   127,338   128,233   129,389   131,216   232,403   316,385   325,538   395,530   396,531   593,1029   804,1084

X(115) = midpoint between X(I) and X(J) for these (I,J): (4,98), (13,14), (99,148), (316,385)
X(115) = reflection of X(I) about X(J) for these (I,J): (114,5), (187,230)
X(115) = isogonal conjugate of X(249)
X(115) = inverse of X(6) in the orthocentroidal circle
X(115) = X(I)-Ceva conjugate of X(J) for these (I,J): (2,523), (4,512), (338,125)
X(115) = crosspoint of X(I) and X(J) for these (I,J): (2,523), (68,525)
X(115) = X(2)-Hirst inverse of X(148)

Let X = X(115) and let V be the vector-sum XA + XB + XC; then V = X(115)X(148).


X(116)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b) where
                        f(a,b,c) = bc/[(b4 + c4 - a(b3 + c3) - bc(b2 + c2) + abc(b + c)]

Barycentrics  g(a,b,c) : g(b,c,a) : g(c,a,b) where
                        g(a,b,c) = (b2 + c2 + bc - ab - ac)(b - c)2

A point on the nine-point circle; also X(101) of the medial triangle.

X(116) lies on these lines: 2,101   4,103   5,118   10,120   115,1086   119,142   121,141   124,928

X(116) = midpoint between X(I) and X(J) for these (I,J): (4,103), (101,150)
X(116) = reflection of X(118) about X(5)
X(116) = X(4)-Ceva conjugate of X(514)

Let X = X(116) and let V be the vector-sum XA + XB + XC; then V = X(116)X(150).


X(117)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = g(b,c,a) + g(b,c,a), and
                        g(b,c,a) = b2c/[c(sec B - sec C) + a(sec B - sec A)]

Barycentrics  h(a,b,c) : h(b,c,a) : h(c,a,b) where h(a,b,c) = af(a,b,c)

A point on the nine-point circle; also X(102) of the medial triangle.

X(117) lies on these lines: 2,102   4,109   5,124   10,123   11,65   118,928   136,407

X(117) = midpoint between X(I) and X(J) for these (I,J): (4,109), (102,151)
X(117) = reflection of X(124) about X(5)
X(117) = X(4)-Ceva conjugate of X(515)

Let X = X(117) and let V be the vector-sum XA + XB + XC; then V = X(117)X(151).


X(118)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = g(b,c,a) + g(b,c,a), and
                        g(b,c,a) = b3c/[(b - c) cot A + (b - a) cot C]

Barycentrics  h(a,b,c) : h(b,c,a) : h(c,a,b) where h(a,b,c) = af(a,b,c)

A point on the nine-point circle; also X(103) of the medial triangle.

X(118) lies on these lines: 2,103   4,101   5,116   11,226   117,928   122,440   136,430   381,544   516,910

X(118) = midpoint between X(I) and X(J) for these (I,J): (4,101), (103,152)
X(118) = reflection of X(116) about X(5)
X(118) = X(4)-Ceva conjugate of X(516)

Let X = X(118) and let V be the vector-sum XA + XB + XC; then V = X(118)X(152).


X(119) = FEUERBACH ANTIPODE

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where
                        f(A,B,C) = (csc A)(-1 + cos B + cos C)[sin 2B + sin 2C + 2(-1 + cos A)(sin B + sin C)]

Barycentrics  g(A,B,C) : g(B,C,A) : g(C,A,B) where
                        g(A,B,C) = (-1 + cos B + cos C)[sin 2B + sin 2C + 2(-1 + cos A)(sin B + sin C)]

Antipode on the nine-point circle of X(11); also, X(104) of the medial triangle.

X(119) lies on these lines:
1,5   2,104   3,123   4,100   10,124   116,142   125,442   135,431   136,429   214,515   381,528   517,908

X(119) = midpoint between X(I) and X(J) for these (I,J): (4,100), (104,153)
X(119) = reflection of X(11) about X(5)
X(119) = X(4)-Ceva conjugate of X(517)

Let X = X(119) and let V be the vector-sum XA + XB + XC; then V = X(119)X(153).


X(120)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where
                        f(a,b,c) = bc[2abc - (b + c)(a2 + (b - c)2][b2 + c2 - ab -ac]

Barycentrics  g(a,b,c) : g(b,c,a) : g(c,a,b) where g(a,b,c) = [2abc - (b + c)(a2 + (b - c)2][b2 + c2 - ab -ac]

A point on the nine-point circle; also X(105) of the medial triangle.

X(120) lies on these lines: 2,11   10,116   12,85   115,442

X(120) = X(4)-Ceva conjugate of X(518)


X(121)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where
                        f(a,b,c) = bc(b + c - 2a)[b3 + c3 + a(b2 + c2) - 2bc(b + c)]

Barycentrics  g(a,b,c) : g(b,c,a) : g(c,a,b) where g(a,b,c) = (b + c - 2a)[b3 + c3 + a(b2 + c2) - 2bc(b + c)]

A point on the nine-point circle; also X(106) of the medial triangle.

X(121) lies on these lines: 2,106   10,11   116,141

X(121) = X(4)-Ceva conjugate of X(519)


X(122)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where
                        f(a,b,c) = (b2 - c2)2(cos A - cos B cos C) cot2A

Barycentrics  g(a,b,c) : g(b,c,a) : g(c,a,b) where g(a,b,c) = a(b2 - c2)2(cos A - cos B cos C) cot2A

A point on the nine-point circle; also X(107) of the medial triangle.

X(122) lies on these lines: 2,107   3,113   5,133   118,440   125,684   138,233

X(122) = reflection of X(133) about X(5)
X(122) = X(I)-Ceva conjugate of X(J) for these (I,J): (4,520), (253,525)
X(122) = crosspoint of X(253) and X(525)


X(123)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where
                        f(A,B,C) = (csc A)(sec B - sec C)[(sec A)(sin2B - sin2C) + sin C tan C - sin B tan B]

Barycentrics  g(A,B,C) : g(B,C,A) : g(C,A,B) where
                        g(A,B,C) = (sec B - sec C)[(sec A)(sin2B - sin2) + sin C tan C - sin B tan B]

A point on the nine-point circle; also X(108) of the medial triangle.

X(123) lies on these lines: 2,108   3,119   10,117   113,960

X(123) = X(4)-Ceva conjugate of X(521)


X(124)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where
                        f(a,b,c) = bc(b + c - a)(b - c)2[(b + c)(b2 + c2 - a2 - bc) + abc]

Barycentrics  g(a,b,c) : g(b,c,a) : g(c,a,b), where
                        g(a,b,c) = (b + c - a)(b - c)2 [(b + c)(b2 + c2 - a2 - bc) + abc]

A point on the nine-point circle; also X(109) of the medial triangle.

X(124) lies on these lines: 2,109   4,102   5,117   10,119   116,928

X(124) = midpoint between X(4) and X(102)
X(124) = reflection of X(117) about X(5)
X(124) = X(4)-Ceva conjugate of X(522)


X(125) = CENTER OF JERABEK HYPERBOLA

Trilinears       cos A sin2(B - C) : cos B sin2(C - A)] : cos C sin2(A - B)
                        = (sec A)(c cos C - b cos B)2 : (sec B)(a cos A - c cos C)2 : (sec C)(b cos B - a cos A)2
                        = bc(b2 + c2 - a2)(b2 - c2)2 : ca(c2 + a2 - b2)(c2 - a2)2 : ab(a2 + b2 - c2)(a2 - b2)2

Barycentrics  (sin 2A)[sin(B - C)]2 : (sin 2B)[sin(C - A)]2 : (sin 2C)[sin(A - B)]2

On the nine-point circle; also, X(110) of the medial triangle and X(100) of the orthic triangle, if ABC is acute.

Roland H. Eddy and R. Fritsch, "The conics of Ludwig Kiepert: a comprehensive lesson in the geometry of the triangle," Mathematics Magazine 67 (1994) 188-205.

X(125) lies on these lines:
2,98   3,131   4,74   5,113   6,67   51,132   68,1092   69,895   115,245   119,442   122,684   126,141   128,140   136,338   381,541   511,858

X(125) = midpoint between X(I) and X(J) for these (I,J): (3,265), (4,74), (6,67)
X(125) = reflection of X(113) about X(5)
X(125) = isogonal conjugate of X(250)
X(125) = inverse of X(184) in the Brocard circle
X(125) = complement of X(110)
X(125) = X(I)-Ceva conjugate of X(J) for these (I,J): (4,523), (66,512), (68,520), (69,525), (338,115)
X(125) = crosspoint of X(I) and X(J) for these (I,J): (4,523), (69,525), (338,339)
X(125) = X(2)-line conjugate of X(110)

Let X = X(125) and let V be the vector-sum XA + XB + XC; then V = X(399)X(113) = X(113)X(265).


X(126)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where
                        f(a,b,c) = bc(2a2 - b2 - c2)[b4 + c4 + a2(b2 + c2) - 4b2c2]

Barycentrics  g(a,b,c) : g(b,c,a) : g(c,a,b) where g(a,b,c) = (2a2 - b2 - c2)[b4 + c4 + a2(b2 + c2) - 4b2c2]

A point on the nine-point circle; also X(111) of the medial triangle.

X(126) lies on these lines: 2,99   125,141   625,858
X(126) = X(4)-Ceva conjugate of X(524)


X(127)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where
                        f(a,b,c) = bc(sin 2B - sin 2C)[(b2 - c2)sin 2A - b2sin 2B + c2sin 2C]

Barycentrics  g(a,b,c) : g(b,c,a) : g(c,a,b), where
                        g(a,b,c) = (sin 2B - sin 2C)[(b2 - c2)sin 2A - b2sin 2B + c2sin 2C]

A point on the nine-point circle; also X(112) of the medial triangle.

X(127) lies on these lines: 2,112   3,114   5,132   113,141   115,338   133,381   125,140

X(127) = reflection of X(132) about X(5)
X(127) = X(4)-Ceva conjugate of X(525)


X(128)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where
                        f(A,B,C) = (sec A)(cos 2B + cos 2C)(1 + 2 cos 2A)(cos 2A + 2 cos 2B cos 2C)

Barycentrics  g(A,B,C) : g(B,C,A) : g(C,A,B) where g(A,B,C) = (sin A) f(A,B,C)

A point on the nine-point circle; also X(74) of the orthic triangle.

X(128) lies on these lines: 5,137   52,134   53,139   115,233   125,140

X(128) = reflection of X(137) about X(5)
X(128) = X(2)-Ceva conjugate of X(231)


X(129)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where
                        f(A,B,C) = (sec A)(sin 2A)(sin 2B + sin 2C) s(A,B,C) t(A,B,C),
                        s(A,B,C) = sin4(2B) + sin4(2C) - sin2(2A) sin2(2B) - sin2(2A) sin2(2C),
                        t(A,B,C) = sin4(2A) + sin2(2A) u(A,B,C) + v(A,B,C),
                        u(A,B,C) = sin 2B sin 2C - sin2(2B) - sin2(2C),
                        v(A,B,C) = (sin 2B sin 2C)(sin 2B - sin 2C)2

Barycentrics  g(A,B,C) : g(B,C,A) : g(C,A,B) where g(A,B,C) = (sin A) f(A,B,C)

A point on the nine-point circle; also X(98) of the orthic triangle.

X(129) lies on these lines: 5,130   51,137   52,139   115,389

X(129) = reflection of X(130) about X(5)


X(130)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where
                        f(A,B,C) = (sin A)(sin 2B + sin 2C)[(sin 2B - sin 2C)2][sin2(2A) + sin 2B sin 2C]

Barycentrics  g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A) f(A,B,C)

A point on the nine-point circle; also X(99) of the orthic triangle.

X(130) lies on these lines: 5,129   51,138

X(130) = reflection of X(129) about X(5)


X(131)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where
                        f(A,B,C) = (sec A)[2T - S(sec 2B + sec 2C)](T - S sec 2A),
                        S = sin 2A + sin 2B + sin 2C, T = tan 2A + tan 2B + tan 2C

Barycentrics  g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A) f(A,B,C)

A point on the nine-point circle; also X(102) of the orthic triangle.

X(131) lies on these lines: 3,125   4,135   5,136   115,216

X(131) = reflection of X(136) about X(5)


X(132)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where
                        f(A,B,C) = (sec A) u(A,B,C) v(A,B,C),
                        u(A,B,C) = [sin2(2A) + (sin 2B - sin 2C)2 + (sin 2A)(sin 2A - sin 2B - sin 2C)],
                        v(A,B,C) = [sin2(2B) + sin2(2C) - (sin 2A sin 2B) - (sin 2A sin 2C)]

Barycentrics  g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A) f(A,B,C)

A point on the nine-point circle; also X(105) of the orthic triangle.

X(132) lies on these lines: 2,107   4,32   5,127   25,136   51,125   114,684   137,428   147,648

X(132) = midpoint between X(4) and X(112)
X(132) = reflection of X(127) about X(5)
X(132) = X(2)-Ceva conjugate of X(232)
X(132) = X(4)-line conjugate of X(248)


X(133)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where
                        f(A,B,C) = (sec A) u(A,B,C) v(A,B,C),
                        u(A,B,C) = (sin 2B - sin 2C)2 + sin 2A sin 2B - sin 2A sin 2C - 2 sin 2B sin 2C),
                        v(A,B,C) = 2 sin 2A - sin 2B - sin 2C)]

Barycentrics  g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A) f(A,B,C)

A point on the nine-point circle; also X(106) of the orthic triangle.

X(133) lies on these lines: 4,74   5,122   53,115   127,381   136,235

X(133) = midpoint between X(4) and X(107)
X(133) = reflection of X(122) about X(5)


X(134)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where
                        f(A,B,C) = (sec A) u(A,B,C) [v(B,C,A) - v(C,B,A)],
                        u(A,B,C) = (sin 2A)[sin2(2B) - sin2(2C)][sin2(2B) + sin2(2C) - sin2(2A)]2,
                        v(B,C,A) = sin 2C [sin2(2A) - sin2(2B)][sin2(2A) + sin2(2B) - sin2(2C)]2

Barycentrics  g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A) f(A,B,C)

A point on the nine-point circle; also X(107) of the orthic triangle.

X(134) lies on this line: 52,128


X(135)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where
                        f(A,B,C) = (sec A)[(sin 2B)/(sec 2C - sec 2A) + (sin 2C)/(sec 2A - sec 2B)]

Barycentrics  g(A,B,C) : g(B,C,A) : g(C,A,B), where
                        g(A,B,C) = (tan A)[(sin 2B)/(sec 2C - sec 2A) + (sin 2C)/(sec 2A - sec 2B)]

A point on the nine-point circle; also X(108) of the orthic triangle.

X(135) lies on these lines: 4,131   25,114   52,113   119,431


X(136)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where
                        f(A,B,C) = (sec A)[(sin 2B - sin 2C)2](sin 2B + sin 2C - sin 2A) u(A,B,C),
                        u(A,B,C) = [sin2(2B) + sin2(2C) - sin2(2A)]

Barycentrics  af(A,B,C) : bf(B,C,A) : cf(C,A,B)

A point on the nine-point circle; also X(109) of the orthic triangle.

X(136) lies on these lines:
2,925   4,110   5,131   25,132   68,254   114,427   117,407   118,430   119,429   125,338   127,868   133,235

X(136) = reflection of X(131) about X(5)
X(136) = complement of X(925)
X(136) = X(254)-Ceva conjugate of X(523)


X(137)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where
                        f(A,B,C) = (sec A)(sin 2B + sin 2C)[(sin 2B - sin 2C)2] u(A,B,C),
                        u(A,B,C) = [sin2(2A) - sin2(2B) - sin2(2C) - (sin 2B sin 2C)]

Barycentrics  af(A,B,C) : bf(B,C,A) : cf(C,A,B)

A point on the nine-point circle; also X(110) of the orthic triangle.

X(137) lies on these lines: 5,128   51,129   53,138   113,546   132,428

X(137) = reflection of X(128) about X(5) X(137) = complement of X(930)


X(138)

Trilinears       (v + w) sec A : (w + u) sec B : (u + v) sec C, where
                        u = u(A,B,C) = (sin 2A)/(2 sin22A - sin22B - sin22C), v = u(B,C,A), w = u(C,A,B)

Barycentrics  (v + w) tan A : (w + u) tan B : (u + v) tan C

A point on the nine-point circle; also X(111) of the orthic triangle.

X(138) lies on these lines: 51,130   53,137   122,233


X(139)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where
                        f(A,B,C) = (sec A)(sin 2B + sin 2C)[(sin 2B - sin 2C)2][sin2(2B) + sin2(2C) - sin2(2A)] u(A,B,C),
                        u(A,B,C) = (sin 2B)4 + (sin 2C)4 - (sin 2A)4 + (sin 2B sin 2C)[sin2(2B) + sin2(2C) - sin2(2A)]

Barycentrics  af(A,B,C) : bf(B,C,A) : cf(C,A,B)

A point on the nine-point circle; also X(112) of the orthic triangle.

X(139) lies on these lines: 52,129   53,128



leftri Centers 113- 170 rightri
113- 127, 140- 143: centers of the medial triangle
128- 139: centers of the orthic triangle
144- 153: centers of the anticomplementary triangle
154- 157, 159- 163: centers of the tangential triangle
164- 170: centers of the excentral triangle

underbar

X(140) = Midpoint of X(3) and X(5)

Trilinears       2 cos A + cos(B - C) : 2 cos B + cos(C - A) : 2 cos C + cos(A - B)
                     = 1/(cos A + 2 sin B sin C) : 1/(cos B + 2 sin C sin A) : 1/(cos C + 2 sin A sin B)
                     = f(a,b,c) : f(b,c,a) : f(c,a,b), where
                        f(a,b,c) = bc[b cos( C - A ) + c cos (B - A)]

Barycentrics  g(a,b,c) : g(b,c,a) : g(c,a,b) where g(a,b,c) = b cos( C - A ) + c cos (B - A)

A center on the Euler line, the crosspoint of the two Napoleon points, also, X(5) of the medial triangle.

X(140) lies on these lines:
2,3   10,214   11,35   12,36   15,18   16,17   39,230   54,252   55,496   56,495   61,395   62,396   95,340   125,128   141,182   143,511   195,323   298,628   299,627   302,633   303,634   343,569   371,615   372,590   524,575   576,597   601,748   602,750   618,630   619,629

X(140) = midpoint between X(I) and X(J) for these (I,J): (3,5), (141,182)
X(140) = complement of X(5)
X(140) = X(2)-Ceva conjugate of X(233)
X(140) = crosspoint of X(I) and X(J) for these (I,J): (2,95), (17,18)

Let X = X(140) and let V be the vector-sum XA + XB + XC; then V = X(140)X(3) = X(143,389) = X(5,140).


X(141)  COMPLEMENT OF SYMMEDIAN POINT

Trilinears       bc(b2 + c2) : ca(c2 + a2) : ab(a2 + b2)
                        f(A,B,C) = csc2A sin(A + ω) : csc2B sin(B + ω) : csc2C sin(C + ω)

Barycentrics  b2 + c2 : c2 + a2 : a2 + b2

X(6) of the medial triangle.

X(141) lies on these lines:
2,6   3,66   5,211   10,142   37,742   39,732   45,344   53,264   67,110   75,334   76,698   95,287   99,755   113,127   116,121   125,126   140,182   239,319   241,307   308,670   311,338   317,458   320,894   384,1031   441,577   486,591   498,611   499,613   523,882   542,549   575,629   997,1060

X(141) = midpoint between X(I) and X(J) for these (I,J): (6,69), (66,159), (67,110)
X(141) = reflection of X(182) about X(140)
X(141) = isogonal conjugate of X(251)
X(141) = isotomic conjugate of X(83)
X(141) = inverse of X(625) in the nine-point circle
X(141) = complement of X(6)
X(141) = X(I)-Ceva conjugate of X(J) for these (I,J): (2,39), (67,524), (110,525)
X(141) = X(39)-cross conjugate of X(427)
X(141) = crosspoint of X(2) and X(76)
X(141) = X(645)-beth conjugate of X(141)

Let X = X(141) and let V be the vector-sum XA + XB + XC; then V = X(141)X(69).

Let W be the vector-sum XA' + XB' + XC', where A'B'C' is the pedal triangle of X; then W = X(143)X(140).


X(142)  COMPLEMENT OF MITTENPUNKT

Trilinears       b + c - [(b - c)2]/a : c + a - [(c - a)2]/b : a + b - [(a - b)2]/c
Barycentrics  bc[ab + ac - (b - c)2] : ca[bc + ba - (c - a)2] : ab[ca + cb - (a - b)2]

X(9) of the medial triangle. Also, X(142) is the centroid of the set {X(1), X(4), X(7), X(40)}.

X(142) lies on these lines: 1,277   2,7   3,516   5,971   10,141   37,1086   86,284   116,119   214,528   269,948   377,950   474,954

X(142) = midpoint between X(7) and X(9)
X(142) = complement of X(9)
X(142) = X(100)-Ceva conjugate of X(514)
X(142) = crosspoint of X(2) and X(85)
X(142) = X(190)-beth conjugate of X(142)

Let X = X(142) and let V be the vector-sum XA + XB + XC; then V = X(142)X(7).


X(143)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where
                        f(A,B,C) = (sec A)([cos(2C - 2A) + cos(2A - 2B)]

Barycentrics  g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (tan A)([cos(2C - 2A) + cos(2A - 2B)]

X(5) of the orthic triangle.

X(143) lies on these lines: 4,94   5,51   6,26   25,156   30,389   110,195   140,511   324,565

X(143) = midpoint between X(5) and X(52)
X(143) = isogonal conjugate of X(252)


X(144)  ANTICOMPLEMENT OF X(7)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where
Barycentrics  tan B/2 + tan C/2 - tan A/2 : tan C/2 + tan A/2 - tan B/2 : tan A/2 + tan B/2 - tan C/2

X(7) of the anticomplementary triangle.

X(144) lies on these lines:

2,7   8,516   20,72   21,954   69,190   75,391   100,480   145,192   219,347   220,279   320,344

X(144) = reflection of X(I) about X(J) for these (I,J): (7,9), (145,390)
X(144) = anticomplement of X(7)
X(144) = X(8)-Ceva conjugate of X(2)
X(144) = X(I)-beth conjugate of X(J) for these (I,J): (190,144), (645,346)


X(145)  ANTICOMPLEMENT OF NAGEL POINT

Trilinears       bc(3a - b - c) : ca(3b - c - a) : ab(3c - a - b)
Barycentrics  3a - b - c : 3b - c -a : 3c - a - b

X(8) of the anticomplementary triangle.

X(145) lies on these lines: 1,2   4,149   6,346   20,517   21,956   37,391   56,100   72,452   81,1043   144,192   218,644   279,664   329,950   330,1002   377,1056   404,999   515,962

X(145) = reflection of X(I) about X(J) for these (I,J): (8,1), (144,390)
X(145) = anticomplement of X(8)
X(145) = X(7)-Ceva conjugate of X(2)
X(145) = X(643)-beth conjugate of X(56)


X(146)

Trilinears       bc(-avw + bwu + cuv) : ca(-bwu + cuv + avw) : ab(-cuv + avw + bwu), where
                        u = u(A,B,C) = cos A - 2 cos B cos C, v = u(B,C,A), w = u(C,A,B)

Barycentrics  -avw + bwu + cuv : -bwu + cuv + avw : -cuv + avw + bwu

X(74) of the anticomplementary triangle.

X(146) lies on these lines: 2,74   4,94   20,110   30,323   147,690   148,193

X(146) = reflection of X(I) about X(J) for these (I,J): (20,110), (74,113)


X(147)  TARRY POINT OF ANTICOMPLEMENTARY TRIANGLE

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where
                        f(a,b,c) = bc[a8 + (b2 + c2)a6 - (2b4 + 3b2c2 + 2c4)a4
                        + (b6 + b4c2 + b2c4 + c6)a2 - b8 + b6c2 + b2c6 - c8]

Barycentrics  g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = af(a,b,c)

X(98) of the anticomplementary triangle.

X(147) lies on these lines: 1,150   2,98   4,148   20,99   132,648   146,690   684,804

X(147) = reflection of X(I) about X(J) for these (I,J): (20,99), (98,114), (148,4)
X(147) = X(325)-Ceva conjugate of X(2)


X(148)  STEINER POINT OF ANTICOMPLEMENTARY TRIANGLE

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where
                        f(a,b,c) = bc[a4 - (b2 - c2)2 + b2c2 - a2b2 - a2c2]

Barycentrics  g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = a4 - (b2 - c2)2 + b2c2 - a2b2 - a2c2

X(99) of the anticomplementary triangle.

X(148) lies on these lines: 2,99   4,147   13,617   20,98   30,385   146,193   316,538

X(148) = reflection of X(I) about X(J) for these (I,J): (20,98), (99,115), (147,4)
X(148) = X(523)-Ceva conjugate of X(2)
X(148) = X(2)-Hirst inverse of X(115)


X(149)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where
                        f(a,b,c) = bc[b3 + c3 - a3 + (a2 - bc)(b + c) + a(bc - b2 - c2)]

Barycentrics  g(a,b,c) : g(b,c,a) : g(c,a,b), where
                        g(a,b,c) = b3 + c3 - a3 + (a2 - bc)(b + c) + a(bc - b2 - c2)

X(100) of the anticomplementary triangle.

X(149) lies on these lines: 2,11   4,145   8,80   20,104   151,962   377,1058   404,496

X(149) = reflection of X(I) about X(J) for these (I,J): (8,80), (20,104), (100,11), (153,4)


X(150)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where
                        f(a,b,c) = bc[b4 + c4 - a4 + a(bc2 +cb2 - b3 - c3) - bc(a2 + b2 + c2) + (b + c)a3]

Barycentrics  g(a,b,c) : g(b,c,a) : g(c,a,b), where
                        g(a,b,c) = b4 + c4 - a4 + a(bc2 +cb2 - b3 - c3) - bc(a2 + b2 + c2) + (b + c)a3

X(101) of the anticomplementary triangle.

X(150) lies on these lines: 1,147   2,101   4,152   7,80   20,103   69,668   85,355   295,334   348,944   664,952

X(150) = reflection of X(I) about X(J) for these (I,J): (20,103), (101,116), (152,4)


X(151)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where
                        f(a,b,c) = (by + cz - ax)/a, where x : y : z = X(102)

Barycentrics  g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = af(a,b,c)

X(102) of the anticomplementary triangle.

X(151) lies on these lines: 2,102   20,109   149,962   152,928

X(151) = reflection of X(I) about X(J) for these (I,J): (20,109), (102,117)


X(152)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where
                        f(a,b,c) = (by + cz - ax)/a, where x : y : z = X(103)

Barycentrics  g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = af(a,b,c)

X(103) of the anticomplementary triangle.

X(152) lies on these lines: 2,103   4,150   20,101   151,928

X(152) = reflection of X(I) about X(J) for these (I,J): (20,101), (103,118), (150,4)


X(153)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where
                        f(a,b,c) = (by + cz - ax)/a, where x : y : z = X(104)

Barycentrics  g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = af(a,b,c)

X(104) of the anticomplementary triangle.

X(153) lies on these lines: 2,104   4,145   7,80   11,388   20,100   515,908

X(153) = reflection of X(I) about X(J) for these (I,J): (20,100), (104,119), (149,4)


X(154)  X(3)-CEVA CONJUGATE OF X(6)

Trilinears       (cos A - cos B cos C)a2 : (cos B - cos C cos A)b2 : (cos C - cos A cos B)c2
                        = a(tan B + tan C - tan A) : b(tan C + tan A - tan B): c(tan A + tan B - tan C)

Barycentrics  g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin2 A)(tan B + tan C - tan A)

X(2) of the tangential triangle.

X(154) lies on these lines:

3,64   6,25   22,110   26,155   31,56   48,55   160,418   197,692   198,212   205,220   237,682

X(154) = isogonal conjugate of X(253)
X(154) = X(3)-Ceva conjugate of X(6)
X(154) = X(109)-beth conjugate of X(154)

Let X = X(154) and let V be the vector-sum XA + XB + XC; then V = X(64)X(20) = X(66)X(159).


X(155)  EIGENCENTER OF ORTHIC TRIANGLE

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (cos A)[cos2B + cos2C - cos2A]
Barycentrics  g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A)f(A,B,C)

X(4) of the tangential triangle.

X(155) lies on these lines:

1,90   3,49   4,254   5,6   20,323   24,110   25,52   26,154   30,1078   159,511   195,381   382,399   450,1075   648,1093   651,1068

X(155) = reflection of X(I) about X(J) for these (I,J): (26,156), (68,5)
X(155) = isogonal conjugate of X(254)
X(155) = eigencenter of cevian triangle of X(4)
X(155) = eigencenter of anticevian triangle of X(3)
X(155) = X(4)-Ceva conjugate of X(3)

Let W be the vector-sum XA' + XB' + XC', where A'B'C' is the pedal triangle of X(155); then W = X(68)X(4) = X(3)X(155).


X(156)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a[b2y/v + c2z/w - a2x/u],
                        u = u(A,B,C) = sin 2A, v = u(B,C,A), w = u(C,A,B);
                        x = x(A,B,C) = u2(v2 + w2) - (v2 - w2)2, y = x(B,C,A), z = x(C,A,B)

Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(5) of the tangential triangle.

X(156) lies on these lines: 3,74   4,49   5,184   25,143   26,154   54,381   546,578   550,1092

X(156) = midpoint between X(26) and X(155)


X(157)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a[b3cos B + c3cos C - a3cos A]
                        = g(a,b,c) : g(b,c,a) : g(c,a,b), where
                        g(a,b,c) = a[a6 - b6 - c6 - a4(b2 + c2) + b4(c2 + a2) + c4(a2 + b2)]

Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(6) of the tangential triangle.

X(157) lies on these lines: 3,66   6,248   22,183   25,53   161,418   206,216

X(157) = X(264)-Ceva conjugate of X(6)


X(158)

Trilinears       sec2A : sec2B : sec2C
Barycentrics  sec A tan A : sec B tan B : sec C tan C

X(158) lies on these lines:

1,29   3,243   4,65   10,318   37,281   46,412   47,162   75,240   107,759   225,1093   255,775   286,969   823,897   920,921

X(158) = isogonal conjugate of X(255) = isogonal conjugate of X(326)
X(158) = X(I)-cross conjugate of X(J) for these (I,J): (19,92), (225,4)
X(158) = X(I)-aleph conjugate of X(J) for these (I,J): (821,158), (1105,255)
X(158) = X(107)-beth conjugate of X(34)


X(159)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where
                        f(a,b,c) = a[(a2 + b2 + c2)sin 2A + (c2 - b2 - a2)sin 2B + (b2 - c2 - a2)sin 2C]

Barycentrics  g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = af(a,b,c)

X(9) of the tangential triangle.

X(159) lies on these lines: 3,66   6,25   22,69   23,193   155,511   197,200

X(159) = reflection of X(I) about X(J) for these (I,J): (6,206), (66,141)
X(159) = X(I)-Ceva conjugate of X(J) for these (I,J): (22,3), (69,6)

Let W be the vector-sum XA' + XB' + XC', where A'B'C' is the pedal triangle of X(159); then W = X(64)X(20) = X(66)X(159).


X(160)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where
                        f(a,b,c) = a[(a2 + b2)sin 2A + (c2 - a2)sin 2B +(b2 - c2)sin 2C

Barycentrics  g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = af(a,b,c)

X(37) of the tangential triangle.

X(160) lies on these lines: 3,66   6,237   22,325   95,327   154,418   206,57

X(160) = X(95)-Ceva conjugate of X(6)


X(161)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where
                        f(a,b,c) = a[(a2 + b2 + c2)sin2(2A) + (c2 - b2 - a2)sin2(2B) +(b2 - c2 - a2)sin2(2C)

Barycentrics  g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = af(a,b,c)

X(63) of the tangential triangle.

X(161) lies on these lines: 6,25   22,343   26,68   157,418

X(161) = X(68)-Ceva conjugate of X(6)


X(162)

Trilinears       1/(sin 2B - sin 2C) : 1/(sin 2C - sin 2A) : 1/(sin 2A - sin 2B)
                        = f(a,b,c) : f(b,c,a) : f(c,a,b) , where f(a,b,c) = 1/[(b2 - c2)(b2 + c2 - a2)]

Barycentrics  a/(sin 2B - sin 2C) : b/(sin 2C - sin 2A) : c/(sin 2A - sin 2B)

X(100) of the tangential triangle.

X(162) lies on these lines:
4,270   6,1013   19,897   27,673   28,88   29,58   31,92   47,158   63,204   100,112   107,109   108,110   190,643   238,415   240,896   242,422   255,1099   412,580   799,811

X(162) = isogonal conjugate of X(656)
X(162) = X(250)-Ceva conjugate of X(270)
X(162) = cevapoint of X(I) and X(J) for this (I,J): (108,109)
X(162) = X(I)-cross conjugate of X(J) for these (I,J): (108,107), (109,110)
X(162) = X(I)-aleph conjugate of X(J) for these (I,J): (28,1052), (107,920), (162,1), (648,63)
X(162) = trilinear pole of line X(1)X(19)


X(163)

Trilinears       (sin 2A)/(sin 2B - sin 2C) : (sin 2B)/(sin 2C - sin 2A) : (sin 2C)/(sin 2A - sin 2B)
                        = a2/(b2 - c2) : b2/(c2 - a2) : c2/(a2 - b2)

Barycentrics  a3/(b2 - c2) : b3/(c2 - a2) : c3/(a2 - b2)

X(101) of the tangential triangle.

X(163) lies on these lines: 1,293   19,563   31,923   32,849   48,1094   99,825   101,110   109,112   284,909   643,1018   692,906   798,1101   813,827

X(163) = X(I)-aleph conjugate of X(J) for these (I,J): (648,19), (662,610)


X(164)  INCENTER OF EXCENTRAL TRIANGLE

Trilinears       sin 2B + sin 2C - sin 2A : sin 2C + sin 2A - sin 2B : sin 2A + sin 2B - sin 2C
Barycentrics  a(sin 2B + sin 2C - sin 2A) : b(sin 2C + sin 2A - sin 2B) : c(sin 2A + sin 2B - sin 2C)

X(1) of the excentral triangle.

X(164) lies on these lines: 1,258   9,168   40,188   57,177   165,167   173,504   361,503   362,845

X(164) = isogonal conjugate of X(505)
X(164) = X(188)-Ceva conjugate of X(1)
X(164) = X(I)-aleph conjugate of X(J) for these (I,J): (1,361), (2,362), (9,844), (188,164), (366,173)


X(165) = CENTROID OF THE EXCENTRAL TRIANGLE

Trilinears       tan(B/2) + tan(C/2) - tan(A/2) : tan(C/2) + tan(A/2) - tan(B/2) : tan(2/A) + tan(B/2) - tan(C/2)
Barycentrics  a[tan(B/2) + tan(C/2) - tan(A/2)] : b[tan(C/2) + tan(A/2) - tan(B/2)] : c[tan(2/A) + tan(B/2) - tan(C/2)]

X(165) is the centroid of the triangle with vertices X(1), X(8), X(20), as well as the triangle with vertices X(4), X(20), X(40).

X(165) lies on these lines:
1,3   2,516   9,910   10,20   42,991   43,573   63,100   71,610   105,1054   109,212   164,167   166,168   210,971   255,1103   355,550   376,515   380,579   411,936   572,1051   580,601   612,990   614,902   631,946   750,968

X(165) = X(9)-Ceva conjugate of X(1)

X(165) = X(I)-aleph conjugate of X(J) for these (I,J):
(2,169), (9,165), (21,572), (100,101), (188,9), (259,43), (365,978), (366,57), (650,1053)

X(165) = X(I)-beth conjugate of X(J) for these (I,J): (100,165), (643,200)

Let X = X(165) and let V be the vector-sum XA + XB + XC; then V = X(1)X(20) = X(4)X(40) = X(382)X(355).

Let W be the vector-sum XA' + XB' + XC', where A'B'C' is the pedal triangle of X; then W = X(392)X(20).


X(166)  GERGONNE POINT OF EXCENTRAL TRIANGLE

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where
                        f(A,B,C) = (tan A/2)/(cos B/2 + cos C/2 - cos A/2)

Barycentrics  g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A)f(A,B,C)

X(7) of the excentral triangle.

X(166) lies on these lines: 165,168   167,188
X(166) = X(9)-aleph conjugate of X(167)


X(167)  NAGEL POINT OF EXCENTRAL TRIANGLE

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where
                        f(A,B,C) = s(B,C,A)t(B,C,A) + s(C,A,B)t(C,A,B) + s(A,B,C)t(A,B,C),
                        s(A,B,C) = sin(A/2), t(A,B,C) = cos B/2 + cos C/2 - cos A/2

Barycentrics  g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A)f(A,B,C)

X(8) of the excentral triangle.

X(167) lies on these lines: 1,174   164,165   166,188

X(167) = X(9)-aleph conjugate of X(166)


X(168)  MITTENPUNKT OF EXCENTRAL TRIANGLE

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where
                        f(A,B,C) = sin A - sin B - sin C + 2[cos A/2 + sin(B/2 - A/2) + sin(C/2 - A/2)]

Barycentrics  g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A)f(A,B,C)

X(9) of the excentral triangle.

X(168) lies on these lines: 1,173   9,164   165,166

X(168) = X(188)-aleph conjugate of X(363)


X(169)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where
                        f(A,B,C) = - (sin A )cos2(A/2) + (sin B)cos2(B/2) + (sin C)cos2(C/2)

Barycentrics  g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A)f(A,B,C)

X(32) of the excentral triangle.

X(169) lies on these lines: 1,41   4,9   6,942   46,672   57,277   63,379   65,218   220,517   572,610

X(169) = X(85)-Ceva conjugate of X(1)

X(169) = X(I)-aleph conjugate of X(J) for these (I,J):
(2,165), (85,169), (86,572), (174,43), (188,170), (508,1), (514,1053), (664,101)


X(170)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where
                        f(A,B,C) = - (tan A/2)sec2(A/2) + (tan B/2)sec2(B/2) + (tan C/2)sec2(C/2)

Barycentrics  g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A)f(A,B,C)

X(76) of the excentral triangle.

X(170) lies on these lines: 1,7   43,218

X(170) = X(220)-Ceva conjugate of X(1)
X(170) = X(I)-aleph conjugate of X(J) for these (I,J): (9,9), (55,43), (188,169), (220,170), (644,1018)
X(170) = X(664)-beth conjugate of X(170)


X(171)

Trilinears       a2 + bc : b2 + ca : c2 + ab
Barycentrics  a3 + abc : b3 + abc : c3 + abc

X(171) lies on these lines: 1,3   2,31   4,601   6,43   7,983   10,58   37,846   42,81   47,498   63,612   72,1046   84,989   98,109   181,511   222,611   292,893   319,757   385,894   388,603   474,978   602,631   756,896

X(171) = isogonal conjugate of X(256)
X(171) = X(292)-Ceva conjugate of X(238)
X(171) = X(I)-beth conjugate of X(J) for these (I,J): (100,171), (643,42)


X(172)

Trilinears       a3 + abc : b3 + abc : c3 + abc
Barycentrics  a4 + bca2 : b4 + cab2 : c3 + abc2

X(172) lies on these lines:
1,32   6,41   12,230   21,37   35,187   36,39   42,199   58,101   65,248   350,384   577,1038   694,904   699,932

X(172) = isogonal conjugate of X(257)
X(172) = X(101)-beth conjugate of X(172)


X(173) = CONGRUENT ISOSCELIZERS POINT

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = cos B/2 + cos C/2 - cos A/2
Barycentrics  g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A)f(A,B,C)

Let P(B)Q(C) be an isoscelizer: let P(B) on sideline AC and Q(C) on AB be equidistant from A, so that AP(B)Q(C) is an isosceles triangle. Line P(B)-to-Q(C), P(C)-to-Q(A), P(A)-to-Q(B) concur in X(173). (P. Yff, unpublished notes, 1989)

X(173) lies on these lines: 1,168   9,177   57,174   164,504   180,483   503,844

X(173) = isogonal conjugate of X(258)
X(173) = X(174)-Ceva conjugate of X(1)

X(173) = X(I)-aleph conjugate of X(J) for these (I,J):
(1,503), (2,504), (174,173), (188,845), (366,164), (507,1), (508,362), (509,361)


X(174) = YFF CENTER OF CONGRUENCE

Trilinears       sec A/2 : sec B/2 : sec C/2
                        f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = [bc/(b + c - a)]1/2

Barycentrics  sin A/2 : sin B/2 : sin C/2

In notes dated 1987, Yff raises a question concerning certain triangles lying within ABC: can three isoscelizers (as defined in connection with X(173), P(B)Q(C), P(C)Q(A), P(A)Q(B) be constructed so that the four triangles P(A)Q(A)A, P(B)Q(B)B, P(C)Q(C)C, ABC are congruent? After proving that the answer is yes, Yff moves the three isoscelizers in such a way that the three outer triangles, P(A)Q(A)A, P(B)Q(B)B, P(C)Q(C)C stay congruent and the inner triangle, ABC, shrinks to X(174).

X(174) lies on these lines: 1,167   2,236   7,234   57,173   175,483   188,266

X(174) = isogonal conjugate of X(259)
X(174) = X(508)-Ceva conjugate of X(188)
X(174) = cevapoint of X(I) and X(J) for these (I,J): (1,173), (259,266)
X(174) = X(I)-cross conjugate of X(J) for these (I,J): (177,7), (259,188)
X(174) = X(556)-beth conjugate of X(556)


X(175) = ISOPERIMETRIC POINT

Trilinears       -1 + sec A/2 cos B/2 cos C/2 : -1 + sec B/2 cos C/2 cos A/2 : -1 + sec C/2 cos A/2 cos B/2
Barycentrics  g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A)(-1 + sec A/2 cos B/2 cos C/2)

If a + b + c > 4R + r, where R and r denote the circumradius and inradius, respectively, then there exists a point X for which the perimeters of triangles XBC, XCA, XAB are equal. Veldkamp proved that X = X(175), and Yff, in unpublished notes, proved that X(175) is the center of the outer Soddy circle. See also the 1st and 2nd Eppstein points, X(481), X(482).  

Clark Kimberling and R. W. Wagner, Problem E 3020 and Solution, American Mathematical Monthly 93 (1986) 650-652 [proposed 1983].

G. R. Veldkamp, "The isoperimetric point and the point(s) of equal detour," American Mathematical Monthly 92 (1985) 546-558.

X(175) lies on these lines: 1,7   174,483   490,664

X(175) = X(8)-Ceva conjugate of X(176)
X(175) = X(664)-beth conjugate of X(175)


X(176) = EQUAL DETOUR POINT

Trilinears       1 + sec A/2 cos B/2 cos C/2 : 1 + sec B/2 cos C/2 cos A/2 : 1 + sec C/2 cos A/2 cos B/2
Barycentrics  g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A)(1 + sec A/2 cos B/2 cos C/2)

If X is a point not between A and B, we make a detour of magnitude |AX| + |XB| - |AB| if we walk from A to B via X; then a point has the equal detour property if the magnitues of the three detours, A to B via X, B to C via X, and C to A via X, are equal; X(176) is the only such point unless ABC has an angle greater than 2*arcsin(4/5), and then X(175) also has the equal detour property. Yff found that X(176) is also is the center of the inner Soddy circle. The following construction was found by Elkies: call two circles within ABC companion circles if they are the incircles of two triangles formed by dividing ABC into two smaller triangles by passing a line through one of the vertices and some point on the opposite side; chain of circles O(1), O(2), ... such that O(n),O(n+1) are companion incircles for every n consists of at most six distinct circles; there is a unique chain consisting of only three distinct circles; and for this chain, the three subdividing lines concur in X(176). Centers X(175) and X(176) are harmonic conjugates with respect to X(1) and X(7).

G. R. Veldkamp, "The isoperimetric point and the point(s) of equal detour," American Mathematical Monthly 92 (1985) 546-558.

Noam D. Elkies and Jiro Fukuta, Problem E 3236 and Solution, American Mathematical Monthly 97 (1990) 529-531 [proposed 1987].

X(176) lies on these lines: 1,7   489,664

X(176) = X(8)-Ceva conjugate of X(175)
X(176) = X(664)-beth conjugate of X(176)


X(177) = 1st MID-ARC POINT

Trilinears       (cos B/2 + cos C/2) sec A/2 : (cos C/2 + cos A/2) sec B/2 : (cos A/2 + cos B/2) sec C/2
Barycentrics  g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A)(cos B/2 + cos C/2) sec A/2

Let A',B',C' be the first points of intersection of the angle bisectors of ABC with its incircle. The tangents at A', B', C' form a triangle A"B"C", and the lines AA",BB",CC" concur in X(177). Also, X(177) = X(1) of the intouch triangle.

Clark Kimberling and G. R. Veldkamp, Problem 1160 and Solution, Crux Mathematicorum 13 (1987) 298-299 [proposed 1986].

X(177) lies on these lines: 1,167   7,555   8,556   9,173   57,164

X(177) = isogonal conjugate of X(260)
X(177) = X(7)-Ceva conjugate of X(234)
X(177) = crosspoint of X(7) and X(174)


X(178) = 2nd MID-ARC POINT

Trilinears       (cos B/2 + cos C/2) csc A : (cos C/2 + cos A/2) csc B : (cos A/2 + cos B/2) csc C
Barycentrics  cos B/2 + cos C/2 : cos C/2 + cos A/2 : cos A/2 + cos B/2

Let A',B',C' be the first points of intersection of the angle bisectors of ABC with its incircle. Let A",B",C" be the midpoints of segments BC,CA,AB, respectively. The lines A'A",B'B",C'C" concur in X(178).

Clark Kimberling, Problem 804, Nieuw Archikef voor Wiskunde 6 (1988) 170.

X(178) lies on these lines: 2,188   8,236   85,508

X(178) = complement of X(188)
X(178) = crosspoint of X(2) and X(508)


X(179) = 1st AJIMA-MALFATTI POINT

Trilinears       sec4(A/4) : sec4(B/4) : sec4(C/4)
Barycentrics  sin A sec4(A/4) : sin B sec4(B/4) : sin C sec4(C/4)

The famous Malfatti Problem is to construct three circles O(A), O(B), O(C) inside ABC such that each is externally tangent to the other two, O(A) is tangent to lines AB and AC, O(B) is tangent to BC and BA, and O(C) is tangent to CA and CB. Let A' = O(B)^ O(C), B' = O(C)^O(A), C' = O(A)^O(B). The lines AA',BB',CC' concur in X(179). Trilinears are found in Yff's unpublished notes. See also the Yff-Malfatti Point, X(400), having trilinears csc4(A/4) : csc4(B/4) : csc4(C/4), and the references for historical notes.

H. Fukagawa and D. Pedoe, Japanese Temple Geometry Problems (San Gaku), The Charles Babbage Research Centre, Winnipeg, Canada, 1989.

Michael Goldberg, "On the original Malfatti problem," Mathematics Magazine, 40 (1967) 241-247.

Clark Kimberling and I. G. MacDonald, Problem E 3251 and Solution, American Mathematical Monthly 97 (1990) 612-613.


X(180) = 2nd AJIMA-MALFATTI POINT

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = 1/t(B,C,A) + 1/t(C,B,A) - 1/t(C,A,B),
                        t(A,B,C) = 1 + 2(sec A/4 cos B/4 cos C/4)2

Barycentrics  g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A)f(A,B,C)

Let A",B",C" be the excenters of ABC, and let A',B',C' be as in the construction of X(179). The lines A'A",B'B",B'B" concur in X(180). Trilinears are found in Yff's unpublished notes. See X(179).

X(180) lies on this line: 173,483


X(181) = APOLLONIUS POINT

Trilinears       a(b + c)2/(b + c - a) : b(c + a)2/(c + a - b) : c(a + b)2/(a + b - c)
                        = a2cos2(B/2 - C/2) : b2cos2(C/2 - A/2) : c2cos2(A/2 - B/2)

Barycentrics  a3cos2(B/2 - C/2) : b3cos2(C/2 - A/2) : c3cos2(A/2 - B/2)

Let O(A),O(B),O(C) be the excircles. Apollonius's Problem includes the construction of the circle O tangent to the three excircles and encompassing them. Let A' = O^O(A), B'=O^O(B), C'=O^O(C). The lines AA',BB',CC' concur in X(181). Yff derived trilinears in 1992.

Clark Kimberling, Shiko Iwata, and Hidetosi Fukagawa, Problem 1091 and Solution, Crux Mathematicorum 13 (1987) 128-129; 217-218. [proposed 1985].

X(181) lies on these lines:
1,970   6,197   8,959   10,12   31,51   42,228   43,57   44,375   55,573   56,386   171,511   373,748

X(181) = isogonal conjugate of X(261)
X(181) = X(I)-beth conjugate of X(J) for these (I,J): (42,181), (660,181), (756,756)


X(182) = MIDPOINT OF BROCARD DIAMETER

Trilinears       cos(A - ω) : cos(B - ω) : cos(C - ω)
Barycentrics  sin A cos(A - ω) : sin B cos(B - ω) : sin C cos(C - ω)

Midpoint of the Brocard diameter (the segment X(3)-to-X(6)); also the center of the 1st Lemoine circle, and the center of the Brocard circle.

X(182) lies on these lines:
1,983   2,98   3,6   4,83   5,206   22,51   54,69   55,613   56,611   111,353   140,141   524,549   692,1001   952,996

X(182) = midpoint between X(3) and X(6)
X(182) = reflection of X(141) about X(140)
X(182) = isogonal conjugate of X(262)
X(182) = isotomic conjugate of X(327)

Let W be the vector-sum XA' + XB' + XC', where A'B'C' is the pedal triangle of X(182); then W = X(5)X(3) = X(4)X(5).


X(183)

Trilinears       b2c2cos(A - ω) : c2a2cos(B - ω) : a2b2cos(C - ω)
Barycentrics  csc A cos(A - ω) : csc B cos(B - ω) : csc C cos(C - ω)

X(183) lies on these lines:
2,6   3,76   5,315   22,157   25,264   55,350   95,305   187,1003   274,474   316,381   317,427   383,621   538,574   622,1080   668,956

X(183) = isogonal conjugate of X(263)
X(183) = isotomic conjugate of X(262)
X(183) = X(645)-beth conjugate of X(183)


X(184) = INVERSE OF X(125) IN THE BROCARD CIRCLE

Trilinears       a2cos A : b2cos B : c2cos C
Barycentrics  a3cos A : b3cos B : c3cos C

X(184) lies on these lines:
2,98   3,49   4,54   5,156   6,25   22,511   23,576   24,389   26,52   22,511   31,604   32,211   48,212   55,215   157,570   160,571   199,573   205,213   251,263   351,686   381,567   397,463   398,462   418,577   572,1011   647,878

X(184) = isogonal conjugate of X(264)
X(184) = inverse of X(125) in the Brocard circle
X(184) = X(I)-Ceva conjugate of X(J) for these (I,J): (6,32), (54,6), (74,50)
X(184) = X(217)-cross conjugate of X(6)
X(184) = crosspoint of X(3) and X(6)
X(184) = X(32)-Hirst inverse of X(237)
X(184) = X(I)-beth conjugate of X(J) for these (I,J): (212,212), (692,184)

Let W be the vector-sum XA' + XB' + XC', where A'B'C' is the pedal triangle of X(184); then W = X(343)X(22) = X(427)X(184).


X(185) = NAGEL POINT OF THE ORTHIC TRIANGLE

Trilinears       (cos A)[1 - cos A cos(B - C)] : (cos B)[1 - cos B cos(C - A)] : (cos C)[1 - cos C cos(A - B)]
Barycentrics  (sin 2A)[1 - cos A cos(B - C)] : (sin 2B)[1 - cos B cos(C - A)] : (sin 2C)[1 - cos C cos(A - B)]

X(185) lies on these lines:
1,296   3,49   4,51   5,113   6,64   20,193   25,1078   30,52   39,217   54,74   72,916   287,384   378,578   382,568   411,970   648,1105

X(185) = reflection of X(4) about X(389)
X(185) = isogonal conjugate of X(1105)
X(185) = X(I)-Ceva conjugate of X(J) for these (I,J): (3,417), (4,235)
X(185) = crosspoint of X(3) and X(4)


X(186) = INVERSE OF X(4) IN CIRCUMCIRCLE

Trilinears       4 cos A - sec A : 4 cos B - sec B : 4 cos C - sec C
                        = sin 3A csc 2A : sin 3B csc 2B : sin 3C csc 2C

Barycentrics  (sin A)(4 cos A - sec A) : (sin B)(4 cos B - sec B) : (sin C)(4 cos C - sec C)

X(186) lies on these lines: 2,3   54,389   93,252   98,935   107,477   112,187   249,250

X(186) = reflection of X(I) about X(J) for these (I,J): (4,403), (403,468)
X(186) = isogonal conjugate of X(265)
X(186) = isotomic conjugate of X(328)
X(186) = inverse of X(4) in the circumcircle
X(186) = X(340)-Ceva conjugate of X(323)
X(186) = X(50)-cross conjugate of X(323)
X(186) = crosspoint of X(54) and X(74)

Let X = X(186) and let V be the vector-sum XA + XB + XC; then V = X(4)X(23).


X(187) = INVERSE OF X(6) IN CIRCUMCIRCLE (SCHOUTE CENTER)

Trilinears       a(2a2 - b2 - c2) : b(2b2 - c2 - a2) : c(2c2 - a2 - b2)
Barycentrics  a2(2a2 - b2 - c2) : b2(2b2 - c2 - a2) : c2(2c2 - a2 - b2)

X(187) lies on these lines:
2,316   3,6   23,111   30,115   35,172   36,1015   74,248   99,385   110,352   112,186   183,1003   237,351   249,323   325,620   395,531   396,530   729,805

X(187) = midpoint between X(I) and X(J) for these (I,J): (15,16), (99,385)
X(187) = reflection of X(115) about X(230)
X(187) = isogonal conjugate of X(671)
X(187) = inverse of X(6) in the circumcircle
X(187) = inverse of X(574) inthe Brocard circle
X(187) = complement of X(316)
X(187) = anticomplement of X(625)
X(187) = X(111)-Ceva conjugate of X(6)
X(187) = crosspoint of X(I) and X(J) for these (I,J): (2,67), (6,111), (468,524)
X(187) = X(55)-beth conjugate of X(187)


X(188) = 2nd MID-ARC POINT OF ANTICOMPLEMENTARY TRIANGLE

Trilinears       csc A/2 : csc B/2 : csc C/2
                        = [a/(b + c - a)]1/2 : [b/(c + a - b)]1/2 : [c/(a + b - c)]1/2

Barycentrics  sin A csc A/2 : sin B csc B/2 : sin C csc C/2

X(188) lies on these lines: 1,361   2,178   9,173   40,164   166,167   174,266

X(188) = isogonal conjugate of X(266)
X(188) = isotomic conjugate of X(508)
X(188) = anticomplement of X(178)
X(188) = X(I)-Ceva conjugate of X(J) for these (I,J): (2,236), (508,174)
X(188) = cevapoint of X(1) and X(164)
X(188) = X(259)-cross conjugate of X(174)
X(188) = X(188)-beth conjugate of X(266)


X(189) = CYCLOCEVIAN CONJUGATE OF X(8)

Trilinears       (cos B + cos C - cos A - 1)/a : (cos C + cos A - cos B - 1)/b : (cos A + cos B - cos C - 1)/c
Barycentrics  1/(cos B + cos C - cos A - 1) : 1/(cos C + cos A - cos B - 1) : 1/(cos A + cos B - cos C - 1)

X(189) lies on these lines: 2,77   7,92   8,20   29,81   69,309   222,281

X(189) = isogonal conjugate of X(198)
X(189) = isotomic conjugate of X(329)
X(189) = cyclocevian conjugate of X(8)
X(189) = anticomplement of X(223)
X(189) = X(309)-Ceva conjugate of X(280)
X(189) = cevapoint of X(84) and X(282)
X(189) = X(I)-cross conjugate of X(J) for these (I,J): (4,7), (57,2), (282,280)


X(190) = YFF PARABOLIC POINT

Trilinears       bc/(b - c) : ca/(c - a) : ab/(a - b)
Barycentrics  1/(b - c) : 1/(c - a) : 1/(a - b

In unpublished notes, Yff has studied the parabola tangent to sidelines BC, CA, AB and having focus X(101). If A',B',C' are the respective points of tangency, then the lines AA', BB', CC' concur in X(190).

X(190) lies on these lines:
1,537   2,45   6,192   7,344   8,528   9,75   10,671   37,86   40,341   44,239   63,312   69,144   71,290   72,1043   99,101   100,659   110,835   162,643   191,1089   238,726   320,527   321,333   329,345   350,672   513,660   514,1016   522,666   644,651   646,668   649,889   658,1020   670,799   789,813   872,1045

X(190) = reflection of X(I) about X(J) for these (I,J): (239,44), (335,37)
X(190) = isogonal conjugate of X(649)
X(190) = isotomic conjugate of X(514)
X(190) = anticomplement of X(1086)
X(190) = X(99)-Ceva conjugate of X(100)
X(190) = cevapoint of X(I) and X(J) for these (I,J): (2,514), (9,522), (37,513), (440,525)
X(190) = X(I)-cross conjugate of X(J) for these (I,J): (513,86), (514,2), (522,75)
X(190) = X(I)-aleph conjugate of X(J) for these (I,J): (2,1052), (190,1), (645,411), (668,63), (1016,100)
X(190) = X(I)-beth conjugate of X(J) for these (I,J): (9,292), (190,651), (333,88), (645,190), (646,646), (1016,190)
X(190) = pole of the line X(1)X(2)



leftri Centers 191- 236 rightri
are Ceva conjugates. The P-Ceva conjugate of Q is the perspector
of the cevian triangle of P and the anticevian triangle of Q.

underbar

X(191) = X(10)-CEVA CONJUGATE OF X(1)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b + c - a)(bc + ca + ab) + b3 + c3 - a3
Barycentrics  g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = af(a,b,c).

X(191) lies on these lines:
1,21   9,46   10,267   30,40   35,72   36,960   109,201   190,1089   329,498

X(191) = reflection of X(I) about X(J) for these (I,J): (1,21), (79,442)
X(191) = isotomic conjugate of X(267)

X(191) = X(10)-Ceva conjugate of X(1)
X(191) = crosspoint of X(I) and X(J) for these (I,J): (10,502)
X(191) = X(I)-aleph conjugate of X(J) for these (I,J): (2,2), (8,20), (10,191), (37,1045), (188,3), (366,6)
X(191) = X(643)-beth conjugate of X(191)


X(192) = X(1)-CEVA CONJUGATE OF X(2) (EQUAL PARALLELIANS POINT)

Trilinears       bc(ca + ab - bc) : ca(ab + bc - ca) : ab(bc + ca - ab)
Barycentrics  ca + ab - bc : ab + bc - ca : bc + ca - ab

Segments through X(192) parallel to the sidelines with endpoints on the sidelines have equal length. For references as early as 1881, see Hyacinthos message 2929 (Paul Yiu, May 29, 2001). See also

Sabrina Bier, "Equilateral Triangles Intercepted by Oriented Parallelians," Forum Geometricorum 1 (2001) 25-32.

X(192) lies on these lines:
1,87   2,37   6,190   7,335   8,256   9,239   55,385   69,742   144,145   315,746   869,1045

X(192) = reflection of X(75) about X(37)
X(192) = isotomic conjugate of X(330)
X(192) = anticomplement of X(75)
X(192) = X(1)-Ceva conjugate of X(2)
X(192) = crosspoint of X(1) and X(43)
X(192) = X(9)-Hirst inverse of X(239)
X(192) = X(646)-beth conjugate of X(192)


X(193) = X(4)-CEVA CONJUGATE OF X(2)

Trilinears       (csc A)(cos B + cos C - cos A) : (csc B)(cos C + cos A - cos B) : (csc C)(cos A + cos B - cos C)
Barycentrics  cos B + cos C - cos A : cos C + cos A - cos B : cos A + cos B - cos C

X(193) lies on these lines:
2,6   7,239   8,894   20,185   23,159   44,344   66,895   144,145   146,148   253,287   317,393   330,959   371,488   372,487   608,651

X(193) = reflection of X(69) about X(6)
X(193) = anticomplement of X(69)
X(193) = X(I)-Ceva conjugate of X(J) for these (I,J): (4,2), (459,439)
X(193) = crosspoint of X(4) and X(459)
X(193) = X(2)-Hirst inverse of X(230)
X(193) = X(I)-beth conjugate of X(J) for these (I,J): (645,193), (662,608)

Let W be the vector-sum XA' + XB' + XC', where A'B'C' is the pedal triangle of X(193); then W = X(3)X(52) = X(20)X(185).


X(194) = X(6)-CEVA CONJUGATE OF X(2)

Trilinears       bc[a2b2 + a2c2 - b2c2] : ca[b2c2 + b2a2 - c2a2] : ab[c2a2 + c2b2 - a2b2]
Barycentrics  a2b2 + a2c2 - b2c2 : b2c2 + b2a2 - c2a2 : c2a2 + c2b2 - a2b2

X(194) lies on these lines:
1,87   2,39   3,385   4,147   6,384   8,730   20,185   32,99   63,239   69,695   75,1107   257,986   315,736

X(194) = reflection of X(76) about X(39)
X(194) = anticomplement of X(76)
X(194) = eigencenter of cevian triangle of X(6)
X(194) = eigencenter of anticevian triangle of X(2)

X(194) = X(6)-Ceva conjugate of X(2)
X(194) = X(3)-Hirst inverse of X(385)


X(195) = X(5)-CEVA CONJUGATE OF X(3)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (cos A)(v + w - u),
                        u = u(A,B,C) = cos A cos(B - A) cos(C - A), v = u(B,C,A), w = u(C,A,B)

Barycentrics  af(A,B,C) : bf(B,C,A) : cf(C,A,B)

X(195) lies on these lines:
3,54   4,399   6,17   49,52   110,143   140,323   155,381   382,1078

Let W be the vector-sum XA' + XB' + XC', where A'B'C' is the pedal triangle of X(195); then W = X(3)X(54) = X(54)X(195).

X(195) = reflection of X(3) about X(54)
X(195) = X(5)-Ceva conjugate of X(3)


X(196) = X(7)-CEVA CONJUGATE OF X(4)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (cos B + cos C - cos A - 1) sec A tan A/2
Barycentrics  g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (cos B + cos C - cos A - 1) tan A tan A/2

X(196) lies on these lines:
1,207   2,653   4,65   7,92   19,57   34,937   40,208   55,108   226,281   329,342

X(196) = isogonal conjugate of X(268)
X(196) = X(I)-Ceva conjugate of X(J) for these (I,J): (7,4), (92,278)
X(196) = cevapoint of X(19) and X(207)
X(196) = X(221)-cross conjugate of X(347)
X(196) = X(I)-beth conjugate of X(J) for these (I,J): (648,2) (653,196)


X(197) = X(8)-CEVA CONJUGATE OF X(6)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = a[-a2tan A/2 + b2tan B/2 + c2tan C/2]
Barycentrics  af(A,B,C) : bf(B,C,A) : cf(C,A,B)

X(197) lies on these lines:
3,10   6,181   19,25   22,100   42,48   56,227   159,200

X(197) = X(8)-Ceva conjugate of X(6)


X(198) = X(9)-CEVA CONJUGATE OF X(6)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = a(cos B + cos C - cos A - 1)
Barycentrics  af(A,B,C) : bf(B,C,A) : cf(C,A,B)

X(198) lies on these lines:
3,9   6,41   19,25   45,1030   64,71   100,346   101,102   154,212   208,227   218,579   284,859   478,577   958,966

X(198) = isogonal conjugate of X(189)
X(198) = X(I)-Ceva conjugate of X(J) for these (I,J): (3,55), (9,6), (223,221)
X(198) = crosspoint of X(40) and X(223)
X(198) = X(I)-beth conjugate of X(J) for these (I,J): (9,19), (101,198)


X(199) = X(10)-CEVA CONJUGATE OF X(6)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a[b4 + c4 - a4 + (b2 + c2 - a2)(bc + ca + ab )]
Barycentrics  af(A,B,C) : bf(B,C,A) : cf(C,A,B)

X(199) lies on these lines: 2,3   42,172   51,572   55,1030   184,573

X(199) = X(10)-Ceva conjugate of X(6)
X(199) = crosspoint of X(101) and X(250)


X(200) = X(8)-CEVA CONJUGATE OF X(9)

Trilinears       cot2(A/2) : cot(B/2) : cot(C/2)
                        = (b + c - a)2 : (c + a - b) 2 : (a + b - c)2

Barycentrics  a(b + c - a)2 : b(c + a - b) 2 : c(a + b - c)2

X(200) lies on these lines:
1,2   3,963   9,55   33,281   40,64   46,1004   57,518   63,100   69,269   159,197   219,282   220,728   255,271   318,1089   319,326   329,516   341,1043   756,968

X(200) = isogonal conjugate of X(269) X(200) = isotomic conjugate of X(1088)
X(200) = X(8)-Ceva conjugate of X(9)
X(200) = cevapoint of X(220) and X(480)
X(200) = X(220)-cross conjugate of X(9)
X(200) = crosspoint of X(8) and X(346)
X(200) = X(I)-beth conjugate of X(J) for these (I,J): (100,223), (200,55), (643,165)


Top of Part 1
Part 2
Front Cover