PART 1
Long ago, someone drew a triangle and three segments across it, each starting at a vertex and stopping at the midpoint of the opposite side. The segments met in a point. The person was impressed and repeated the experiment on a different shape of triangle. Again the segments met in a point. The person drew yet a third triangle, very carefully, with the same result. He told his friends. To their surprise and delight, the coincidence worked for them, too. Word spread, and the magic of the three segments was regarded as the work of a higher power.
Centuries passed, and someone proved that the three medians do indeed concur in a point, now called the centroid. The ancients found and proved other points, too, now called the incenter, circumcenter and orthocenter. More centuries passed, more special points were discovered, and a definition of triangle center emerged. Like the definition of continuous function, this definition is satisfied by infinitely many objects, of which only finitely many will ever be published. The Encyclopedia of Triangle Centers (ETC) extends a list of 400 triangle centers published in the book Triangle Centers and Central Triangles.
NOTATION AND COORDINATES
The reference triangle is ABC, with sidelengths a,b,c. Each triangle center P has homogeneous trilinear coordinates, or simply trilinears, of the form x : y : z. This means there is a nonzero function h of (a,b,c) such that
x = hx', y = hy', z = hz', where x', y', z' are the directed distances from P to sidelines BC, CA, AB. Likewise, u : v : w are barycentrics if there is a function k of (a,b,c) such that
u = ku', v = kv', w = kw', where u', v', w' are the signed areas of triangles PBC, PCA, PAB. Both coordinate systems are widely used; if trilinears for a point are x : y : z, then barycentrics are ax : by : cz.
Possibly your browser does not recognize Greek letters; for example, pi appears on your browser as π, omega as ω, Psi as Ψ, Lambda as Λ, not equals as ≠, and intersect as ∩.
HOW TO USE ETC
You won't have to scroll down very far to find well known centers. Other named centers can be found using your computer's searcher - for example, search for "Nagel" to find "Nagel point" as X(8).
To determine if a possibly new center is already listed, click SEARCH at the top of this page. If you're unsure of a term, click GLOSSARY. For visual constructions of selected centers, click SKETCHES.
X(1) = INCENTER
Trilinears 1 : 1 : 1
Barycentrics a : b : cThe point of concurrence of the interior angle bisectors of ABC; the point inside ABC whose distances from sidelines BC, CA, AB are equal. This equal distance, r, is the radius of the incircle, and is given by
r = 2*area(ABC)/(a + b + c). Three more points are also equidistant from the sidelines; they are given by these names and trilinears:
A-excenter = -1 : 1 : 1, B-excenter = 1 : -1 : 1, C-excenter = 1 : 1 : -1. The radii of the excircles are
2*area(ABC)/(-a + b + c), 2*area(ABC)/(a - b + c), 2*area(ABC)/(a + b - c). Writing the A-exradius as r(a,b,c), the others are r(b,c,a) and r(c,a,b). If these exradii are abbreviated as ra, rb, rc, then 1/r = 1/ra + 1/rb + 1/rc. Moreover,
area(ABC) = sqrt(r*ra*rb*rc) and ra + rb + rc = r + 4R, where R denotes the radius of the circumcircle.
The incenter is the identity of the group of triangle centers under "trilinear multiplication" defined by
(x : y : z)*(u : v : w) = xu : yv : zw. A construction for * is easily obtained from the construction for "barycentric multiplication" mentioned in connection with X(2), just below.
The incenter and the other classical centers are discussed in these highly recommended books:
Nathan Altshiller Court, College Geometry, Barnes & Noble, 1952;
Roger A. Johnson, Advanced Euclidean Geometry, Dover, 1960.
X(1) lies on these lines:
2,8 3,35 4,33 5,11 6,9 7,20 19,28 21,31 24,1061 25,1036 29,92 30,79 32,172 39,291 41,101 49,215 60,110 61,203 62,202 71,579 75,86 76,350 82,560 84,221 87,192 88,100 90,155 99,741 102,108 104,109 142,277 147,150 163,293 164,258 167,174 168,173 181,970 182,983 185,296 188,361 190,537 196,207 201,212 224,377 229,267 256,511 257,385 281,282 289,363 312,1089 320,752 321,964 329,452 335,384 336,811 341,1050 364,365 376,553 378,1063 393,836 512,875 513,764 514,663 528,1086 561,718 564,1048 572,604 573,941 607,949 631,1000 647,1021 659,891 662,897 672,1002 689,719 727,932 731,789 748,756 761,825 765,1052 908,998 1037,1041 1053,1110X(1) = midpoint between X(I) and X(J) for these (I,J): (7,390), (8,145)
X(1) = reflection of X(I) about X(J) for these (I,J): (8,10), (40,3), (46,56), (80,11), (100,214), (191,21), (267,229), (355,5), (484,36)
X(1) = isogonal conjugate of X(1)
X(1) = isotomic conjugate of X(75)
X(1) = inverse of X(36) in the circumcircle
X(1) = inverse of X(80) in the Fuhrmann circle
X(1) = complement of X(8)
X(1) = anticomplement of X(10)
X(1) = eigencenter of cevian triangle of X(I) for I = 1, 88, 162
X(1) = eigencenter of anticevian triangle of X(I) for I = 1, 44, 513X(1) = X(I)-Ceva conjugate of X(J) for these (I,J):
(2,9), (4,46), (6,43), (7,57), (8,40), (9,165), (10,191), (21,3), (29,4), (75,63), (77,223), (80,484), (81,6), (82,31), (85,169), (86,2), (88,44), (92,19), (100,513), (104,36), (105,238), (174,173), (188,164), (220,170), (259,503), (266,361), (280,84), (366,364), (508,362)X(1) = cevapoint of X(I) and X(J) for these (I,J):
(2,192), (6,55), (11,523), (15,202), (16,203), (19,204), (31,48), (34,207), (37,42), (50,215), (56,221), (65,73), (244,513)X(1) = X(I)-cross conjugate of X(J) for these (I,J):
(2,87), (3,90), (6,57), (31,19), (33,282), (37,2), (38,75), (42,6), (44,88), (48,63), (55,9), (56,84), (58,267), (65,4), (73,3), (192,43), (221,40), (244,513), (259,258), (266,505), (354,7), (367,366), (500,35), (513,100), (517,80), (518,291)X(1) = crosspoint of X(I) and X(J) for these (I,J):
(2,7), (8,280), (21,29), (59,110), (75,92), (81,86)X(1) = X(I)-Hirst inverse of X(J) for these (I,J):
(2,239), (4,243), (6,238), (9,518), (19,240), (57,241), (105,294), (291,292).X(1) = X(6)-line conjugate of X(44)
X(1) = X(I)-aleph conjugate of X(J) for these (I,J):
(1,1), (2,63), (4,920), (21,411), (29,412), (88,88), (100,100), (162,162), (174,57), (188,40), (190,190), (266,978), (365,43), (366,9), (507,173), (508,169), (513,1052), (651, 651), (653,653), (655,655), (658,658), (660,660), (662,662), (673,673), (771,771), (799,799), (823,823), (897,897)X(1) = X(I)-beth conjugate of X(J) for these (I,J):
(1,56), (2,948), (8,8), (9,45), (21,1), (29,34), (55,869), (99,85), (100,1), (110,603), (162,208), (643,1), (644,1), (663,875), (664,1), (1043,78)Let X = X(1) and let V be the vector-sum XA + XB + XC; then V = X(8)X(1) = X(1)X(145).
Let W be the vector-sum XA' + XB' + XC', where A'B'C' is the pedal triangle of X;
then W = X(65)X(1) = X(8)X(72).
X(2) = CENTROID
Trilinears 1/a : 1/b : 1/c
= bc : ca : ab
= csc A : csc B : csc CBarycentrics 1 : 1 : 1
The point of concurrence of the medians of ABC, situated 1/3 of the distance from each vertex to the midpoint of the opposite side. More generally, if L is any line in the plane of ABC, then the distance from X(2) to L is the average of the distances from A, B, C to L. An idealized triangular sheet balances atop a pin head located at X(2) and also balances atop any knife-edge that passes through X(2). The triangles BXC, CXA, AXB have equal areas if and only if X = X(2).
X(2) is the centroid of the set of 3 vertices, the centroid of the triangle including its interior, but not the centroid of the triangle without its interior; that centroid is X(10).
X(2) is the identity of the group of triangle centers under "barycentric multiplication" defined by
(x : y : z)*(u : v : w) = xu : yv : zw. A simple construction for * (and for square roots of points) is known:
Paul Yiu, "The uses of homogeneous barycentric coordinates in plane euclidean geometry," International Journal of Mathematical Education in Science and Technology, forthcoming.
A preprint can be downloaded from Paul Yiu's website.
X(2) lies on these lines:
1,8 3,4 6,69 7,9 11,55 12,56 13,16 14,15 17,62 18,61 19,534 31,171 32,83 33,1040 34,1038 36,535 37,75 38,244 39,76 40,946 44,89 45,88 51,262 54,68 58,540 65,959 66,206 74,113 77,189 80,214 85,241 92,273 94,300 95,97 98,110 99,111 101,116 102,117 103,118 104,119 106,121 107,122 108,123 109,124 112,127 136,925 137,930 165,516 174,236 178,188 187,316 196,653 210,354 216,232 222,651 253,1073 254,847 261,593 271,1034 254,847 261,593 271,1034 272,284 280,318 283,580 290,327 292,334 294,949 308,702 311,570 314,941 319,1100 322,1108 330,1107 351,804 355,944 366,367 371,486 372,485 392,517 476,842 495,956 496,1058 514,1022 561,716 578,1092 647,850 650,693 668,1015 670,1084 689,733 743,789 799,873X(2) = midpoint between X(I) and X(J) for these (I,J): (3,381), (4,376), (210,354)
X(2) = reflection of X(I) about X(J) for these (I,J): (4,381), (20,376), (376,3), (381,5)
X(2) = isogonal conjugate of X(6)
X(2) = isotomic conjugate of X(2)
X(2) = cyclocevian conjugate of X(4)
X(2) = inverse of X(23) in the circumcircle
X(2) = inverse of X(858) in the nine-point circle
X(2) = inverse of X(110) in the Brocard circle
X(2) = complement of X(2)
X(2) = anticomplement of X(2)X(2) = X(I)-Ceva conjugate of X(J) for these (I,J):
(1,192), (4,193), (6,194), (7,145), (8,144), (69,20), (75,8), (76,69), (83,6), (85,7), (86,1), (87,330), (95,3), (98,385), (99,523), (190,514), (264,4), (274,75), (276, 264), (287,401), (290,511), (308,76), (312,329), (325,147), (333,63), (348,347), (491,487), (492,488), (523,148)X(2) = cevapoint of X(I) and X(J) for these (I,J):
(1,9), (3,6), (5,216), (10,37), (32,206), (39,141), (44,214), (57,223), (114,230), (115,523), (128,231), (132,232), (140,233), (188,236)X(2) = X(I)-cross conjugate of X(J) for these (I,J):
(1,7), (3,69), (4,253), (5,264), (6,4), (9,8), (10,75), (32,66), (37,1), (39,6), (44,80), (57,189), (75,330), (114,325), (140,95), (141,76), (142,85), (178,508), (187,67), (206,315), (214,320), (216,3), (223,329), (226,92), (230,98), (233,5), (281,280), (395,14), (396,13), (440,306), (511,290), (514,190), (523,99)X(2) = crosspoint of X(I) and X(J) for these (I,J):
(1,87), (75,85), (76,264), (83,308), (86,274), (95,276)X(2) = X(I)-Hirst inverse of X(J) for these (I,J):
(1,239), (3,401), (4,297), (6,385), (21,448), (27,447), (69,325), (75,350), (98,287), (115,148), (193,230), (291,335), (298,299), (449,452)X(2) = X(3)-line conjugate of X(237) = X(316)-line conjugate of X(187)
X(2) = X(I)-aleph conjugate of X(J) for these (I,J):
(1,1045), (2,191), (86,2), (174,1046), (333,20), (366,846)X(2) = X(I)-beth conjugate of X(J) for these (I,J):
(2,57), (21,995) (190,2), (312,312), (333,2), (643,55), (645,2), (646,2), (648,196), (662,222)X(2) is the unique point X (as a function of a,b,c) for which the vector-sum XA + XB + XC is the zero vector.
Let W be the vector-sum XA' + XB' + XC', where A'B'C' is the pedal triangle of X; then W = X(51)X(2).
X(3) = CIRCUMCENTER
Trilinears cos A : cos B : cos C
= a(b2 + c2 - a2) : b(c2 + a2 - b2) : c(a2 + b2 - c2)Barycentrics sin 2A : sin 2B : sin 2C
The point of concurrence of the perpendicular bisectors of the sides of ABC. The lengths of segments AX, BX, CX are equal if and only if X = X(3). This common distance is the radius of the circumcircle, which passes through vertices A,B,C. Called the circumradius, it is given by
R = a/(2 sin A) = abc/(4*area(ABC)). X(3) lies on these lines:
1,35 2,4 6,15 7,943 8,100 9,84 10,197 11,499 12,498 13,17 14,18 31,601 37,975 38,976 41,218 42,967 48,71 49,155 54,97 63,72 64,154 66,141 67,542 68,343 69,332 73,212 74,110 76,98 83,262 95,264 101,103 102,109 105,277 113,122 114,127 119,123 125,131 142,516 158,243 169,910 194,385 200,963 223,1035 225,1074 238,978 252,930 256,987 269,939 296,820 298,617 299,616 302,621 303,622 315,325 352,353 388,495 390,1058 395,398 396,397 476,477 485,590 486,615 489,492 490,491 496,497 525,878 595,995 618,635 619,636 623,629 624,630 639,641 640,642 662,1098 667,1083 691,842 847,925 901,953 934,972 960,997 1037,1066 1093,1105X(3) = midpoint between X(I) and X(J) for these (I,J):
(1,40), (2,376), (4,20), (22,378), (74,110), (98,99), (100,104), (101,103), (102,109), (476,477)X(3) = reflection of X(I) about X(J) for these (I,J):
(4,5), (5,140), (6,182), (52,389), (195,54), (265,125), (355,10), (381,2), (382,4), (399,110)X(3) = isogonal conjugate of X(4)
X(3) = isotomic conjugate of X(264)
X(3) = inverse of X(5) in the orthocentric circle
X(3) = complement of X(4)
X(3) = anticomplement of X(5)
X(3) = eigencenter of the medial triangle
X(3) = eigencenter of the tangential triangleX(3) = X(I)-Ceva conjugate of X(J) for these (I,J):
(2,6), (4,155), (5,195), (21,1), (22,159), (30,399), (63,219), (69,394), (77,222), (95,2), (96,68), (99,525), (100,521), (110,520), (250, 110), (283,255)X(3) = cevapoint of X(I) and X(J) for these (I,J):
(6,154), (48,212), (55,198), (71,228), (185,417), (216,418)X(3) = X(I)-cross conjugate of X(J) for these (I,J):
(48,222), (55,268), (71,63), (73,1), (184,6), (185,4), (212,219), (216,2), (228,48), (520,110)X(3) = crosspoint of X(I) and X(J) for these (I,J):
(1,90), (2,69), (4,254), (21,283), (54,96), (59,100), (63,77), (78,271), (81,272), (95,97), (99,249), (110,250), (485,486)X(3) = X(I)-Hirst inverse of X(J) for these (I,J): (2, 401), (4,450), (6,511), (21,416), (194, 385)
X(3) = X(2)-line conjugate of X(468)
X(3) = X(I)-aleph conjugate of X(J) for these (I,J): (1,1046), (21,3), (188,191), (259,1045)
X(3) = X(I)-beth conjugate of X(J) for these (I,J):
(3,603), (8,355), (21,56), (78,78), (100,3), (110,221), (271,84), (283,3), (333,379), (643,8)Let X = X(3) and let V be the vector-sum XA + XB + XC; then V = X(4)X(3) = X(382)X(4) = X(3)X(20) = X(355)X(40) = X(265)X(74) = X(52)X(185) = X(381)X(376) = X(146)X(399).
Let W be the vector-sum XA' + XB' + XC', where A'B'C' is the pedal triangle of X;
then W = X(4)X(3) = X(382)X(4) = X(3)X(20) = X(355)X(40) = X(265)X(74) = X(52)X(185) = X(381)X(376) = X(146)X(399). These are the same vectors as in the preceding list; i.e., XA + XB + XC = XA' + XB' + XC'. It is easy to prove that the unique solution X of this equation is X(3).
X(4) = ORTHOCENTER
Trilinears sec A : sec B : sec C
Barycentrics tan A : tan B : tan CThe point of concurrence of the altitudes of ABC. The orthocenter and the vertices A,B,C comprise an orthocentric system, defined as a set of four points, one of which is the orthocenter of the triangle of the other three (so that each is the orthocenter of the other three). The incenter and excenters also form an orthocentric system.
Suppose P is not on a sideline of ABC. Let A'B'C' be the cevian triangle of P. Let D,E,F be the circles having diameters AA', BB',CC'. The radical center of D,E,F is X(4). (Floor van Lamoen, Hyacinthos@onelist, Jan. 24, 2000.)
Ross Honsberger, Episodes in Nineteenth and Twentieth Century Euclidean Geometry, Mathematical Association of America, 1995. Chapter 2: The Orthocenter.
X(4) lies on these lines:
1,33 2,3 6,53 7,273 8,72 9,10 11,56 12,55 13,61 14,62 15,17 16,18 32,98 35,498 36,499 39,232 46,90 49,156 51,185 52,68 54,184 57,84 65,158 67,338 69,76 74,107 78,908 83,182 93,562 94,143 96,231 99,114 100,119 101,118 102,124 103,116 109,117 110,113 128,930 131,135 137,933 145,149 147,148 150,152 155,254 162,270 171,601 195,399 218,294 238,602 240,256 276,327 371,485 372,486 390,495 487,489 488,490 496,999 512,879 542,576 575,598 616,627 617,628 801,1092 842,935 1036,1065 1037,1067 1038,1076 1039,1096 1040,1074X(4) = midpoint between X(I) and X(J) for these (I,J):
(3,382), (147,148), (149,153), (150,152)X(4) = reflection of X(I) about X(J) for these (I,J):
(2,381), (3,5), (8,355), (20,3), (24,235), (40,10), (74,125), (98,115), (99,114), (100,119), (101,118), (102,124), (103,116), (104,11), (107,133), (109,117), (110,113), (112,132), (185,389), (186,403), (376,2), (378,427)X(4) = isogonal conjugate of X(3)
X(4) = isotomic conjugate of X(69)
X(4) = cyclocevian conjugate of X(2)
X(4) = inverse of X(186) in the circumcircle
X(4) = inverse of X(403) in the nine-point circle
X(4) = complement of X(20)
X(4) = anticomplement of X(3)
X(4) = eigencenter of cevian triangle of X(i) for i = 1, 88, 162
X(4) = eigencenter of anticevian triangle of X(i) for i = 1, 44, 513X(4) = X(I)-Ceva conjugate of X(J) for these (I,J):
(7,196), (27,19), (29,1), (92,281), (107,523), (264,2), (273,278), (275,6), (286,92), (393, 459)X(4) = cevapoint of X(I) and X(J) for these (I,J):
(1,46), (2,193), (3,155), (5,52), (6,25), (11,513), (19,33), (30,113), (34,208), (37,209), (39,211), (51,53), (65,225), (114,511), (115,512), (116,514), (117,515), (118,516), (119,517), (120,518), (121,519), (122,520), (123,521), (124,522), (125,523), (126,524), (127,525), (185,235), (371,372), (487,488)X(4) = X(I)-cross conjugate of X(J) for these (I,J):
(3,254), (6,2), (19,278), (25,393), (33,281), (51,6), (52,24), (65,1), (113,403), (125,523), (185,3), (193,459), (225,158), (389,54), (397,17), (398,18), (407,225), (427,264), (512,112), (513,108), (523,107)X(4) = crosspoint of X(I) and X(J) for these (I,J): (2,253), (7,189), (27,286), (92,273)
X(4) = X(I)-Hirst inverse of X(J) for these (I,J):
(1,243), (2,297), (3,350), (19,242), (21,425), (24,421), (25,419), (27,423), (28,422), (29,415), (420,427), (424,451), (459,460), (470,471)X(4) = X(I)-aleph conjugate of X(J) for these (I,J): (1,1047), (29,4)
X(4) = X(I)-beth conjugate of X(J) for these (I,J):
(4,34), (8,40), (29,4), (162,56), (318,318), (811,331)Let X = X(4) and let V be the vector-sum XA + XB + XC; then V = X(20)X(4) = X(3)X(382).
Let W be the vector-sum XA' + XB' + XC', where A'B'C' is the pedal triangle of X;
then W = X(185)X(4) = X(52)X(382).
X(5) = NINE-POINT CENTER
Trilinears cos(B - C) : cos(C - A) : cos(A - B)
= f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = cos A + 2 cos B cos C
= g(a,b,c) : g(b,c,a): g(c,a,b), where g(a,b,c) = bc[a2(b2 + c2) - (b2 - c2)2]Barycentrics a cos(B - C) : b cos(C - A) : c cos(A - B)
= h(a,b,c) : h(b,c,a) : h(c,a,b), where h(a,b,c) = a2(b2 + c2) - (b2 - c2)2The center of the nine-point circle. Euler showed in that this circle passes through the midpoints of the sides of ABC and the feet of the altitudes of ABC, hence six of the nine points. The other three are the midpoints of segments A-to-X(4), B-to-X(4), C-to-X(4). The radius of the nine-point circle is one-half the circumradius.
Dan Pedoe, Circles: A Mathematical View, Mathematical Association of America, 1995.
X(5) lies on these lines:
1,11 2,3 6,68 10,517 13,18 14,17 32,230 33,1062 34,1060 39,114 49,54 51,52 53,216 55,498 56,499 72,908 76,262 83,98 113,125 116,118 117,124 122,133 127,132 128,137 129,130 131,136 141,211 142,971 156,184 182,206 183,315 226,912 264,1093 298,634 299,633 302,622 303,621 371,590 372,615 388,999 491,637 492,638 524,576 542,575 601,750 602,748 618,629 619,630 1090,1091X(5) = midpoint between X(I) and X(J) for these (I,J):
(1,355), (2,381), (3,4), (11,119), (20,382), (68,155), (110,265), (113,125), (114,115), (116,118), (117,124), (122,133), (127,132), (128,137), (129,130), (131,136)X(5) = reflection of X(I) about X(J) for these (I,J): (3,140), (52,143)
X(5) = isogonal conjugate of X(54)
X(5) = isotomic conjugate of X(95)
X(5) = inverse of X(3) in the orthocentroidal circle
X(5) = complement of X(3)
X(5) = anticomplement of X(140)
X(5) = eigencenter of anticevian triangle of X(523)X(5) = X(I)-Ceva conjugate of X(J) for these (I,J):
(2,216), (4,52), (110,523), (264, 324), (265,30), (311,343), (324,53)X(5) = cevapoint of X(I) and X(J) for these (I,J): (3,195), (51,216)
X(5) = X(I)-cross conjugate of X(J) for these (I,J): (51,53), (216,343), (233,2)
X(5) = crosspoint of X(I) and X(J) for these (I,J): (2,264), (311,324)
X(5) = X(1)-aleph conjugate of X(1048)Let X = X(5) and let V be the vector-sum XA + XB + XC; then V = X(5)X(4) = X(3)X(5).
X(6) = SYMMEDIAN POINT (LEMOINE POINT, GREBE POINT)
Trilinears a : b : c
= sin A : sin B : sin CBarycentrics a2 : b2 : c2
The point of concurrence of the symmedians (reflections of medians about corresponding angle bisectors); the point (x, y, z), given here in actual trilinear distances, that minimizes x2 + y2 + z2.
Let A'B'C' be the pedal triangle of an arbitrary point X, and let S(X) be the vector sum XA' + XB' + XC'. Then
S(X) = (0 vector) if and only if X = X(6). The "if" implication is equivalent to the well known fact that X(6) is the centroid of its pedal triangle, and the converse was proved by Barry Wolk on Hyacinthos@onelist.com, Dec. 23, 1999.Ross Honsberger, Episodes in Nineteenth and Twentieth Century Euclidean Geometry, Mathematical Association of America, 1995. Chapter 7: The Symmedian Point.
X(6) lies on these lines:
1,9 2,69 3,15 4,53 5,68 7,294 8,594 13,14 17,18 19,34 21,941 22,251 23,353 24,54 25,51 26,143 31,42 33,204 36,609 40,380 41,48 43,87 57,222 64,185 66,427 67,125 74,112 75,239 76,83 77,241 88,89 98,262 99,729 100,739 101,106 105,1002 110,111 145,346 157,248 160,237 169,942 181,197 190,192 194,384 210,612 264,287 291,985 292,869 297,317 314,981 354,374 513,1024 517,998 519,996 523,879 561,720 598,671 603,1035 662,757 688,882 689,703 691,843 694,1084 717,789 750,899 753,825 755,827 840,919 846,1051 959,961 971,990 986,1046X(6) = midpoint between X(69) and X(193)
X(6) = reflection of X(I) about X(J) for these (I,J): (3,182), (67,125), (69,141), (159,206)
X(6) = isogonal conjugate of X(2)
X(6) = isotomic conjugate of X(76)
X(6) = cyclocevian conjugate of X(1031)
X(6) = inverse of X(187) in the circumcircle
X(6) = inverse of X(115) in the orthocentroidal circle
X(6) = complement of X(69)
X(6) = anticomplement of X(141)X(6) = X(I)-Ceva conjugate of X(J) for these (I,J):
(1,55), (2,3), (3,154), (4,25), (8,197), (9,198), (10,199), (54,184), (57, 56), (58,31), (68,161), (69,159), (76,22), (81,1), (83,2), (88,36), (95,160), (98,237), (110,512), (111,187), (222,221), (249,110), (251,32), (264,157), (275,4), (284,48), (288,54), (323,399)X(6) = cevapoint of X(I) and X(J) for these (I,J): (1,43), (2,194), (31,41), (32,184), (42,213), (51,217)
X(6) = X(I)-cross conjugate of X(J) for these (I,J):
(25,64), (31,56), (32,25), (39,2), (41,55), (42,1), (51,4), (184,3), (187,111), (213,31), (217,184), (237,98), (512,110)X(6) = crosspoint of X(I) and X(J) for these (I,J):
(1,57), (2,4), (9,282), (54,275), (58,81), (83, 251), (110,249), (266,289)X(6) = X(I)-Hirst inverse of X(J) for these (I,J): (1,238), (2,385), (3,511), (15,16), (25,232)
X(6) = X(I)-line conjugate of X(J) for these (I,J): (1,518), (2,524), (3,511)
X(6) = X(I)-aleph conjugate of X(J) for these (I,J): (1,846), (81,6), (365,1045), (366,191), (509,1046)X(6) = X(I)-beth conjugate of X(J) for these (I,J):
(6,604), (9,9), (21,1001), (101,6), (284,6), (294,6), (644,6), (645,6), (651,6), (652,7), (666,6)Let X = X(6) and let V be the vector-sum XA + XB + XC; then V = X(6)X(193) = X(69)X(6).
X(7) = GERGONNE POINT
Trilinears bc/(b + c - a) : ca/(c + a - b) : ab/(a + b - c)
= sec2(A/2) : sec2(B/2) : sec2(C/2)Barycentrics 1/(b + c - a) : 1/(c + a - b) : 1/(a + b - c)
Let A', B', C' denote the points in which the incircle meets the sides BC, CA, AB, respectively. The lines A'A', BB', CC' concur in X(7).
X(7) lies on these lines:
1,20 2,9 3,943 4,273 6,294 8,65 11,658 21,56 27,81 37,241 33,1041 34,1039 58,272 72,443 80,150 92,189 100,1004 104,934 108,1013 109,675 171,983 174,234 177,555 190,344 192,335 193,239 218,277 225,969 253,280 256,982 274,959 281,653 286,331 310,314 354,479 513,885 517,1000 528,664 554,1082 594,599 840,927 987,1106X(7) = reflection of X(I) about X(J) for these (I,J): (9,142), (144,9), (390,1)
X(7) = isogonal conjugate of X(55)
X(7) = isotomic conjugate of X(8)
X(7) = cyclocevian conjugate of X(7)
X(7) = complement of X(144)
X(7) = anticomplement of X(9)
X(7) = X(I)-Ceva conjugate of X(J) for these (I,J): (75,347), (85,2), (86,77), (286,273), (331,278)X(7) = cevapoint of X(I) and X(J) for these (I,J):
(1,57), (2,145), (4,196), (11,514), (55,218), (56,222), (63,224), (65,226), (81,229), (177,234)X(7) = X(I)-cross conjugate of X(J) for these (I,J):
(1,2), (4,189), (11,514), (55,277), (56,278), (57,279), (65,57), (177,174), (222,348), (226,85), (354,1), (497,8), (517,88)X(7) = crosspoint of X(I) and X(J) for these (I,J): (75,309), (86,286)
X(7) = X(I)-beth conjugate of X(J) for these (I,J):
(7,269), (21,991), (75,75), (86,7), (99,7), (190,7), (290,7), (314,69), (645,344), (648,7), (662,6), (664,7), (666,7), (668,7), (670,7), (671,7), (811,264), (886,7), (889,7), (892,7), (903,7)
X(8) = NAGEL POINT
Trilinears (b + c - a)/a : (c + a - b)/b : (a + b - c)/c
= csc2(A/2) : csc2(B/2) : csc2(C/2)Barycentrics b + c - a : c + a - b : a + b - c
Let A'B'C' be the points in which the A'-excircle meets BC, the B-excircle meets CA, and the C-excircle meets AB, respectively. The lines A'A', BB', CC' concur in X(8). Another construction of A' is to start at A and trace around ABC half its perimeter, and similarly for B' and C'. Also, X(8) is the incenter of the anticomplementary triangle.
X(8) lies on these lines:
1,2 3,100 4,72 6,594 7,65 9,346 20,40 21,55 29,219 31,987 33,1039 34,1041 35,993 37,941 38,986 56,404 58,996 76,668 79,758 80,149 81,1010 144,516 177,556 178,236 181,959 190,528 192,256 193,894 194,730 210,312 213,981 220,294 221,651 224,914 238,983 253,307 274,1002 291,330 315,760 344,480 348,664 392,1000 405,943 406,1061 442,495 443,942 474,999 475,1063 599,1086 643,1098 860,1068 908,946 1016,1083X(8) = reflection of X(I) about X(J) for these (I,J): (1,10), (4,355), (20,40), (145,1), (149,80), (390,9)
X(8) = isogonal conjugate of X(56)
X(8) = isotomic conjugate of X(7)
X(8) = cyclocevian conjugate of X(189)
X(8) = complement of X(145)
X(8) = anticomplement of X(1)
X(8) = X(I)-Ceva conjugate of X(J) for these (I,J): (69,329), (72,2), (312,346), (314,312), (333,9)X(8) = X(I)-cross conjugate of X(J) for these (I,J):
(1,280), (9,2), (10,318), (11,522), (55,281), (72,78), (200,346), (210,9), (219,345), (497,7), (521,100)X(8) = cevapoint of X(I) and X(J) for these (I,J):
(1,40), (2,144), (6,197), (9,200), (10,72), (11,522), (55,219), (175,176)X(8) = crosspoint of X(I) and X(J) for these (I,J): (75,312), (314,333)
X(8) = X(1)-alpeh conjugate of X(1050)
X(8) = X(I)-beth conjugate of X(J) for these (I,J): (8,1), (341,341), (643,3), (668,8), (1043,8)
X(9) = MITTENPUNKT
Trilinears b + c - a : c + a - b : a + b - c
= cot(A/2) : cot(B/2) : cot(C/2)Barycentrics a(b + c - a) : b(c + a - b) : c(a + b - c)
The symmedian point of the excentral triangle.
X(9) lies on these lines:
1,6 2,7 3,84 4,10 8,346 21,41 31,612 32,987 33,212 34,201 35,90 38,614 39,978 42,941 43,256 46,79 48,101 55,200 58,975 100,1005 164,168 165,910 173,177 192,239 223,1073 228,1011 241,269 261,645 312,314 342,653 348,738 364,366 374,517 478,1038 498,920 522,657 607,1039 608,1041 750,896X(9) = midpoint between X(I) and X(J) for these (I,J): (7,144), (8,390)
X(9) = reflection of X(7) about X(142)
X(9) = isogonal conjugate of X(57)
X(9) = isotomic conjugate of X(85)
X(9) = complement of X(7)
X(9) = anticomplement of X(142)
X(9) = X(I)-Ceva conjugate of X(J) for these (I,J):
(2,1), (8,200), (21,55), (63,40), (190,522), (312,78), (318,33), (333,8)X(9) = cevapoint of X(I) and X(J) for these (I,J): (1,165), (6,198), (31,205), (37,71), (41,212), (55,220)
X(9) = X(I)-cross conjugate of X(J) for these (I,J):
(6,282), (37,281), (41,33), (55,1), (71,219), (210,8), (212,78), (220,200)X(9) = crosspoint of X(I) and X(J) for these (I,J): (2,8), (21,333), (63,271), (312,318)
X(9) = X(I)-Hirst inverse of X(J) for these (I,J): (1, 518), (192,239)X(9) = X(I)-aleph conjugate of X(J) for these (I,J):
(1,43), (2,9), (9,170), (188,165), (190,1018), (366,1), (507,361), (508,57), (509,978)X(9) = X(I)-beth conjugate of X(J) for these (I,J):
(9,6), (190,6), (346,346), (644,9), (645,75)
X(10) = SPIEKER CENTER
Trilinears bc(b + c) : ca(c + a) : ab(a + b)
Barycentrics b + c : c + a : a + b
The Spieker circle is the incircle of the medial triangle; its center, X(10), is the centroid of the perimeter of ABC.
X(10) lies on these lines:
1,2 3,197 4,9 5,517 11,121 12,65 20,165 21,35 31,964 33,406 34,475 36,404 37,594 38,596 39,730 44,752 46,63 55,405 56,474 57,388 58,171 69,969 75,76 82,83 86,319 87,979 98,101 116,120 117,123 119,124 140,214 141,142 158,318 190,671 191,267 201,225 219,965 274,291 321,756 480,954 514,764 537,1086 626,760 631,944 775,801 894,1046 908,994X(10) = midpoint between X(I) and X(J) for these (I,J): (1,8), (3,355), (4,40), (65,72), (80,100)
X(10) = isogonal conjugate of X(58)
X(10) = isotomic conjugate of X(86)
X(10) = complement of X(1)X(10) = X(I)-Ceva conjugate of X(J) for these (I,J):
(2,37), (8,72), (75,321), (80,519), (100,522), (313,306)X(10) = cevapoint of X(I) and X(J) for these (I,J):
(1,191), (6,199), (12,201), (37,210), (42,71), (65,227)X(10) = X(I)-cross conjugate of X(J) for these (I,J): (37,226), (71,306), (191,502), (201,72)
X(10) = crosspoint of X(I) and X(J) for these (I,J): (2,75), (8,318)
X(10) = X(I)-beth conjugate of X(J) for these (I,J): (8,10), (10,65), (100,73), (318,225), (643,35), (668,349)
X(11) = FEUERBACH POINT
Trilinears 1 - cos(B - C) : 1 - cos(C - A) : 1 - cos(A - B)
= f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = sin2(B/2 - C/2)
= g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = bc(b + c - a)(b - c)2Barycentrics a(1 - cos(B - C)) : b(1 - cos(C - A)) : c(1 - cos(A - B))
= h(a,b,c) : h(b,c,a) : h(c,a,b), where h(A,B,C) = (b + c - a)(b - c)2The point of tangency of the nine-point circle and the incircle. The nine-point circle is the circumcenter of the medial triangle, as well as the orthic triangle. Feuerbach's famous theorem states that the nine-point circle is tangent to the incircle and the three excircles.
X(11) lies on these lines:
1,5 2,55 3,499 4,56 7,658 10,121 13,202 14,203 30,36 33,427 34,235 35,140 65,117 68,1069 110,215 113,942 115,1015 118,226 153,388 212,748 214,442 244,867 325,350 381,999 429,1104 518,908 523,1090X(11) = midpoint between X(I) and X(J) for these (I,J): (1,80), (4,104), (100,149)
X(11) = reflection of X(119) about X(5)
X(11) = isogonal conjugate of X(59)
X(11) = X(I)-Ceva conjugate of X(J) for these (I,J): (1,523), (4,513), (7,514), (8,522)
X(11) = crosspoint of X(I) and X(J) for these (I,J): (7,514), (8,522)
X(11) = X(I)-beth conjugate of X(J) for these (I,J): (11,244), (522,11), (693,11)Let X = X(11) and let V be the vector-sum XA + XB + XC; then V = X(100)X(11) = X(11)X(149).
X(12) = HARMONIC CONJUGATE OF X(11) WRT X(1) AND X(5)
Trilinears 1 + cos(B - C) : 1 + cos(C - A) : 1 + cos(A - B)
= f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = cos2(B/2 - C/2)
= g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = bc(b + c)2/(b + c - a)Barycentrics a(1 + cos(B - C)) : b(1 + cos(C - A)) : c(1 + cos(A - B))
= h(a,b,c) : h(b,c,a) : h(c,a,b), where h(a,b,c) = (b + c)2/(b + c - a)Let A'B'C' be the touch points of the nine-point circle with the A-, B-, C- excircles, respectively. The lines AA', BB', CC' concur in X(12).
X(12) lies on these lines:
1,5 2,56 3,498 4,55 10,65 17,203 18,202 30,35 33,235 34,427 36,140 37,225 54,215 79,484 85,120 108,451 172,230 201,756 228,407 313,349 499,999 603,750 908,960 1091,1109X(12) = isogonal conjugate of X(60)
X(12) = isotomic conjugate of X(261)
X(12) = X(10)-Ceva conjugate of X(201)
X(12) = X(I)-beth conjugate of X(J) for these (I,J): (10,12), (1089,1089)
X(13) = 1st ISOGONIC CENTER (FERMAT POINT, TORRICELLI POINT)
Trilinears csc(A + π/3) : csc(B + π/3) : csc(C + π/3)
= sec(A - π/6) : sec(B - π/6) : sec(C - π/6)Barycentrics f(a,b,c) : f(b,c,a) : f(c,a,b), where
f(a,b,c) = a4 - 2(b2 - c2)2 + a2(b2 + c2 + 4*SQR(3)*Area(ABC))Construct the equilateral triangle BA'C having base BC and vertex A' on the negative side of BC; similarly construct equilateral triangles CB'A and AC'B based on the other two sides. The lines AA',BB',CC' concur in X(13). If each of the angles A, B, C is < 2*π/3, then X(13) is the only center X for which the angles BXC, CXA, AXB are equal, and X(13) minimizes the sum |AX| + |BX| + |CX|. The antipedal triangle of X(13) is equilateral.
X(13) lies on these lines:
2,16 3,17 4,61 5,18 6,14 11,202 15,30 76,299 98,1080 99,303 148,617 226,1082 262,383 275,472 298,532 531,671 533,621 634,635X(13) = reflection of X(I) about X(J) for these (I,J): (14,115), (15,396)
X(13) = isogonal conjugate of X(15)
X(13) = isotomic conjugate of X(298)
X(13) = inverse of X(14) in the orthocentroidal circle
X(13) = complement of X(616)
X(13) = anticomplement of X(618)
X(13) = cevapoint of X(15) and X(62)
X(13) = X(I)-cross conjugate of X(J) for these (I,J): (15,18), (30,14), (396,2)
X(14) = 2nd ISOGONIC CENTER
Trilinears csc(A - π/3) : csc(B - π/3) : csc(C - π/3)
= sec(A + π/6) : sec(B + π/6) : sec(C + π/6)Barycentrics f(a,b,c) : f(b,c,a) : f(c,a,b), where
f(a,b,c) = a4 - 2(b2 - c2)2 + a2(b2 + c2 - 4*SQR(3)*Area(ABC))Construct the equilateral triangle BA'C having base BC and vertex A' on the positive side of BC; similarly construct equilateral triangles CB'A and AC'B based on the other two sides. The lines AA',BB',CC' concur in X(14). The antipedal triangle of X(14) is equilateral.
X(14) lies on these lines:
2,15 3,18 4,62 5,17 6,13 11,203 16,30 76,298 98,383 99,302 148,616 226,554 262,1080 275,473 299,533 397,546 530,671 532,622 633,636X(14) = reflection of X(I) about X(J) for these (I,J): (13,115), (16,395)
X(14) = isogonal conjugate of X(16)
X(14) = isotomic conjugate of X(299)
X(14) = inverse of X(13) in the orthocentroidal circle
X(14) = complement of X(617)
X(14) = anticomplement of X(619)
X(14) = cevapoint of X(16) and X(61)
X(14) = X(I)-cross conjugate of X(J) for these (I,J): (16,17), (30,13), (395,2)
X(15) = 1st ISODYNAMIC POINT
Trilinears sin(A + π/3) : sin(B + π/3) : sin(C + π/3)
= cos(A - π/6) : cos(B - π/6) : cos(C - π/6)Barycentrics a sin(A + π/3) : b sin(B + π/3) : c sin(C + π/3)
Let U and V be the points on sideline BC met by the interior and exterior bisectors of angle A. The circle having diameter UV is the A-Apollonian circle. The B- and C- Apollonian circles are similarly constructed. Each circle passes through one vertex and both isodynamic points. The pedal triangle of X(15) is equilateral.
X(15) lies on these lines:
2,14 3,6 4,17 13,30 18,140 36,202 55,203 298,533 303,316 395,549 397,550 532,616 628,636X(15) = reflection of X(I) about X(J) for these (I,J): (13,396), (16,187)
X(15) = isogonal conjugate of X(13)
X(15) = isotomic conjugate of X(300)
X(15) = inverse of X(16) in the circumcircle
X(15) = inverse of X(16) in Brocard circle
X(15) = complement of X(621)
X(15) = anticomplement of X(623)
X(15) = X(I)-Ceva conjugate of X(J) for these (I,J): (1,202), (13,62), (74,16)
X(15) = crosspoint of X(I) and X(J) for these (I,J): (13,18), (298,470)
X(15) = X(6)-Hirst inverse of X(16)
X(16) = 2nd ISODYNAMIC POINT
Trilinears sin(A - π/3) : sin(B - π/3) : sin(C - π/3)
= cos(A + π/6) : cos(B + π/6) : cos(C + π/6)Barycentrics a sin(A - π/3) : b sin(B - π/3) : c sin(C - π/3)
Let U and V be the points on sideline BC met by the interior and exterior bisectors of angle A. The circle having diameter UV is the A-Apollonian circle. The B- and C- Apollonian circles are similarly constructed. Each circle passes through a vertex and both isodynamic points. The pedal triangle of X(16) is equilateral.
X(16) lies on these lines:
2,13 3,6 4,18 14,30 17,140 36,203 55,202 299,532 302,316 396,549 398,550 533,617 627,635X(16) = reflection of X(I) about X(J) for these (I,J): (14,395), (15,187)
X(16) = isogonal conjugate of X(14)
X(16) = isotomic conjugate of X(301)
X(16) = inverse of X(15) in the circumcircle
X(16) = inverse of X(15) in the Brocard
X(16) = complement of X(622)
X(16) = anticomplement of X(624)
X(16) = X(I)-Ceva conjugate of X(J) for these (I,J): (1,203), (14,61), (74,15)
X(16) = crosspoint of X(I) and X(J) for these (I,J): (14,17), (299,471)
X(16) = X(6)-Hirst inverse of X(15)
X(17) = 1st NAPOLEON POINT
Trilinears csc(A + π/6) : csc(B + π/6) : csc(C + π/6)
= sec(A - π/3) : sec(B - π/3) : sec(C - π/3)Barycentrics a csc(A + π/6) : b csc(B + π/6) : c csc(C + π/6)
Let X,Y,Z be the centers of the equilateral triangles in the construction of X(13). The lines AX, BY, CZ concur in X(17).
John Rigby, "Napoleon revisited," Journal of Geometry, 33 (1988) 126-146.
X(17) lies on these lines:
2,62 3,13 4,15 5,14 6,18 12,203 16,140 76,303 83,624 202,499 275,471 299,635 623,633X(17) = isogonal conjugate of X(61)
X(17) = isotomic conjugate of X(302)
X(17) = complement of X(627)
X(17) = anticomplement of X(629)
X(17) = X(I)-cross conjugate of X(J) for these (I,J): (16,14), (140,18), (397,4)
X(18) = 2nd NAPOLEON POINT
Trilinears csc(A - π/6) : csc(B - π/6) : csc(C - π/6)
= sec(A + π/3) : sec(B + π/3) : sec(C + π/3)Barycentrics a csc(A - π/6) : b csc(B - π/6) : c csc(C - π/6)
Let X,Y,Z be the centers of the equilateral triangles in the construction of X(14). The lines AX, BY, CZ concur in X(18).
X(18) lies on these lines:
2,61 3,14 4,16 5,13 6,17 12,202 15,140 76,302 83,623 203,499 275,470 298,636 624,634X(18) = isogonal conjugate of X(62)
X(18) = isotomic conjugate of X(303)
X(18) = complement of X(628)
X(18) = anticomplement of X(630)
X(18) = X(I)-cross conjugate of X(J) for these (I,J): (15,13), (140,17), (398,4)
X(19) = CLAWSON POINT
Trilinears tan A : tan B : tan C
= f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = sin 2B + sin 2C - sin 2A
= g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = 1/(b2 + c2 - a2)Barycentrics a tan A : b tan B : c tan C
The homothetic center of the orthic and extangents triangles. Further information is available from
Paul Yiu's Website.X(19) lies on these lines:
1,28 2,534 4,9 6,34 25,33 27,63 31,204 46,579 47,921 56,207 57,196 81,969 91,920 101,913 102,282 112,759 162,897 163,563 208,225 219,517 232,444 273,653 294,1041 604,609 960,965X(19) = isogonal conjugate of X(63)
X(19) = isotomic conjugate of X(304)X(19) = X(I)-Ceva conjugate of X(J) for these (I,J):
(1,204), (4,33), (27,4), (28,25), (57,208), (92,1), (196,207), (278,34)X(19) = X(I)-cross conjugate of X(J) for these (I,J): (25,34), (31,1)
X(19) = crosspoint of X(I) and X(J) for these (I,J): (4,278), (27,28), (57,84), (92,158)
X(19) = X(I)-Hirst inverse of X(J) for these (I,J): (1,240), (4,242)
X(19) = X(I)-aleph conjugate of X(J) for these (I,J): (2,610), (92,19), (508,223), (648,163)
X(19) = X(I)-beth conjugate of X(J) for these (I,J): (9,198), (19,608), (112,604), (281,281), (648,273), (653,19)
Centers 20- 30,
2- 5, 140, 186, 199, 235, 237, 297, 376- 379, 381- 384,
401- 475, 546- 550, 631, 632 lie on the Euler line.
X(20) = DE LONGCHAMPS POINT
Trilinears cos A - cos B cos C : cos B - cos C cos A : cos C - cos A cos BBarycentrics tan B + tan C - tan A : tan C + tan A - tan B: tan A + tan B - tan C
= f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = [-3a4 + 2a2(b2 + c2) + (b2 - c2)2]
The reflection of X(4) about X(3); also, the orthocenter of the anticomplementary triangle.
X(20) lies on these lines:
1,7 2,3 8,40 10,165 33,1038 34,1040 55,388 56,497 57,938 58,387 64,69 68,74 72,144 78,329 98,148 99,147 100,153 101,152 103,150 104,149 109,151 110,146 145,517 155,323 185,193 391,573 393,577 394,1032 487,638 488,637 616,633 617,635 621,627 622,628 999,1058X(20) = reflection of X(I) about X(J) for these (I,J): (2,376), (4,3), (8,40), (146,110), (147,99), (148,98), (149,104), (150,103), (151,109), (152,101), (153,100), (382,5)
X(20) = isogonal conjugate of X(64)
X(20) = isotomic conjugate of X(253)
X(20) = cyclocevian conjugate of X(1032)
X(20) = anticomplement of X(4)
X(20) = X(I)-Ceva conjugate of X(J) for these (I,J): (69,2), (489,487), (490,488)
X(20) = X(I)-aleph conjugate of X(J) for these (I,J): (8,191), (9,1045), (188,1046), (333,2), (1043,20)
X(20) = X(I)-beth conjugate of X(J) for these (I,J): (664,20), (1043,280)
X(21) = SCHIFFLER POINT
Trilinears 1/(cos B + cos C) : 1/(cos C + cos A) : 1/(cos A + cos B)
= f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b + c - a)/(b + c)Barycentrics a/(cos B + cos C) : b/(cos C + cos A) : c/(cos A + cos B)
Write I for the incenter; the Euler lines of the four triangles IBC, ICA, IAB, and ABC concur in X(21).
X(21) lies on these lines:
1,31 2,3 6,941 7,56 8,55 9,41 10,35 32,981 36,79 37,172 51,970 60,960 72,943 75,272 84,285 90,224 99,105 104,110 144,954 145,956 238,256 261,314 268,280 332,1036 612,989 614,988 741,932 748,978 884,885 915,925 976,983 1038,1041 1039,1040 1060,1063 1061,1062X(21) = midpoint between X(1) and X(191)
X(21) = isogonal conjugate of X(65)
X(21) = anticomplement of X(422)
X(21) = X(I)-Ceva conjugate of X(J) for these (I,J): (86,81), (261,333)
X(21) = cevapoint of X(I) and X(J) for these (I,J): (1,3), (9,55)X(21) = X(I)-cross conjugate of X(J) for these (I,J):
(1,29), (3,283), (9,333), (55,284), (58,285), (284,81), (522,100)X(21) = crosspoint of X(86) and X(333)
X(21) = X(I)-Hirst inverse of X(J) for these (I,J): (2,448), (3,416), (4,425)
X(21) = X(I)-beth conjugate of X(J) for these (I,J): (21,58), (99,21), (643,21), (1043,1043), (1098,21)Let X = X(21) and let V be the vector-sum XA + XB + XC; then V = X(79)X(1).
X(22) = EXETER POINT
Trilinears a(b4 + c4 - a4) : b(c4 + a4 - a4) : c(a4 + b4 - c4)
Barycentrics a2(b4 + c4 - a4) : b2(c4 + a4 - a4) : c2(a4 + b4 - c4)
The perspector of the circummedial triangle and the tangential triangle; also X(22) = X(55)-of-the-tangential triangle if ABC is acute.
X(22) lies on these lines:
2,3 6,251 35,612 36,614 51,182 56,977 69,159 98,925 99,305 100,197 110,154 157,183 160,325 161,343 184,511 232,577X(22) = reflection of X(378) about X(3)
X(22) = isogonal conjugate of X(66)
X(22) = inverse of X(858) in the circumcircle
X(22) = anticomplement of X(427)
X(22) = X(76)-Ceva conjugate of X(6)
X(22) = cevapoint of X(3) and X(159)
X(22) = crosspoint of X(99) and X(250)
X(22) = X(I)-beth conjugate of X(J) for these (I,J): (643,345), (833,22)
X(23) = FAR-OUT POINT
Trilinears f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a[b4 + c4 - a4 - b2c2]
Barycentrics af(a,b,c) : bf(b,c,a) : cf(c,a,b)The inverse of the centroid in the circumcircle.
X(23) lies on these lines:
2,3 6,353 51,575 94,98 110,323 111,187 159,193 184,576 232,250 385,523X(23) = reflection of X(323) about X(110)
X(23) = isogonal conjugate of X(67)
X(23) = inverse of X(2) in the circumcircle
X(23) = anticomplement of X(427)
X(23) = crosspoint of X(111) and X(251)
X(24) = PERSPECTOR OF ABC AND ORTHIC-OF-ORTHIC TRIANGLE
Trilinears sec A cos 2A : sec B cos 2B : sec C cos 2C
= sec A - 2 cos A : sec B - 2 cos B : sec C - 2 cos CBarycentrics tan A cos 2A : tan B cos 2B : tan C cos 2C
= tan A - sin 2A : tan A - sin 2B : tan C - sin 2C
Constructed as indicated by the name; also X(24) = X(56)-of-the-tangential triangle if ABC is acute.
X(24) lies on these lines:
2,3 6,54 32,232 33,35 34,36 49,568 51,578 64,74 96,847 107,1093 108,915 110,155 184,389 254,393 511,1092X(24) = reflection of X(4) about X(235)
X(24) = isogonal conjugate of X(68)
X(24) = inverse of X(403) in the circumcircle
X(24) = X(249)-Ceva conjugate of X(112)
X(24) = X(52)-cross conjugate of X(4)
X(24) = crosspoint of X(107) and X(250)
X(24) = X(4)-Hirst inverse of X(421)
X(25) = HOMOTHETIC CENTER OF ORTHIC AND TANGENTIAL TRIANGLES
Trilinears sin A tan A : sin B tan B : sin C tan C = cos A - sec A : cos B - sec B cos C - sec C
= f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a/(b2 + c2 - a2)Barycentrics sin 2A - 2 tan A : sin 2B - 2 tan B : sin 2C - 2 tan C
= g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = a2/(b2 + c2 - a2)
Constructed as indicated by the name; also X(25) is the pole of the orthic axis (the line having trilinear coefficients cos A : cos B : cos C) with respect to the circumcircle. Also, X(25) is X(57)-of-the-tangential triangle.
X(25) lies on these lines:
1,1036 2,3 6,51 19,33 31,608 34,56 41,42 52,155 53,157 58,967 92,242 98,107 105,108 111,112 114,135 132,136 143,156 183,264 185,1078 262,275 317,325 371,493 372,494 393,1033 394,511 669,878 692,913X(25) = isogonal conjugate of X(69)
X(25) = isotomic conjugate of X(305)
X(25) = inverse of X(468) in the circumcircle
X(25) = inverse of X(427) in the orthocentroidal circle
X(25) = X(I)-Ceva conjugate of X(J) for these (I,J): (4,6), (28,19), (250,112)
X(25) = X(32)-cross conjugate of X(6)
X(25) = crosspoint of X(I) and X(J) for these (I,J): (4,393), (6,64), (19,34), (112,250)
X(25) = X(I)-Hirst inverse of X(J) for these (I,J): (4,419), (6,232)
X(25) = X(I)-beth conjugate of X(J) for these (I,J): (33,33), (108,25), (162,278)
X(26) = CIRCUMCENTER OF THE TANGENTIAL TRIANGLE
Trilinears f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a[b2cos 2B + c2cos 2C - a2cos 2A]
Barycentrics g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = a2(b2cos 2B + c2cos 2C - a2cos 2A)
Theorems involving X(26), published in 1889 by A. Gob, are discussed in
Roger A. Johnson, Advanced Euclidean Geometry, Dover, 1960, 259-260.X(26) lies on these lines: 2,3 6,143 52,184 68,161 154,155 206,511
X(26) = reflection of X(155) about X(156)
X(26) = isogonal conjugate of X(70)
X(27) CEVAPOINT OF ORTHOCENTER AND CLAWSON CENTER
Trilinears (sec A)/(b + c) : (sec B)/(c + a) : (sec C)/(a + b)
Barycentrics (tan A)/(b + c) : (tan B)/(c + a) : (tan C)/(a + b)
X(27) lies on these lines:
2,3 7,81 19,63 57,273 58,270 103,107 110,917 226,284 295,335 306,1043 393,967 648,903 662,913X(27) = isogonal conjugate of X(71)
X(27) = isotomic conjugate of X(306)
X(27) = inverse of X(469) in the orthocentroidal circle
X(27) = anticomplement of X(440)
X(27) = X(286)-Ceva conjugate of X(29)
X(27) = cevapoint of X(I) and X(J) for these (I,J): (4,19), (57,278)
X(27) = X(I)-cross conjugate of X(J) for these (I,J): (4,286), (19,28), (57,81), (58,86)
X(27) = X(I)-Hirst inverse of X(J) for these (I,J): (2,447), (4,423)
X(27) = X(I)-beth conjugate of X(J) for these (I,J): (648,27), (923,27)
X(28)
Trilinears (tan A)/(b + c) : (tan B)/(c + a) : (tan C)/(a + b)
Barycentrics (sin A tan A)/(b + c) : (sin B tan B)/(c + a) : (sin C tan C)/(a + b)
X(28) lies on these lines:
1,19 2,3 33,975 34,57 56,278 60,81 88,162 104,107 105,112 108,225 110,915 228,943 242,261 272,273 279,1014 281,958 607,1002 608,959X(28) = isogonal conjugate of X(72)
X(28) = X(I)-Ceva conjugate of X(J) for these (I,J): (270,58), (286,81)
X(28) = cevapoint of X(I) and X(J) for these (I,J): (19,25), (34,56)
X(28) = X(I)-cross conjugate of X(J) for these (I,J): (19,27), (58,58)
X(28) = X(4)-Hirst inverse of X(422)
X(28) = X(I)-beth conjugate of X(J) for these (I,J): (29,29), (107,28), (162,28), (270,28)
X(29) CEVAPOINT OF INCENTER AND ORTHOCENTER
Trilinears (sec A)/(cos B + cos C) : (sec B)/(cos C + cos A) : (sec C)/(cos A + cos B)
Barycentrics (tan A)/(cos B + cos C) : (tan B)/(cos C + cos A) : (tan C)/(cos A + cos B)
X(29) lies on these lines:
1,92 2,3 8,219 33,78 34,77 58,162 65,296 81,189 102,107 226,951 242,257 270,283 284,950 314,1039 388,1037 497,1036 515,947 1056,1059 1057,1058X(29) = isogonal conjugate of X(73)
X(29) = isotomic conjugate of X(307)
X(29) = X(286)-Ceva conjugate of X(27)
X(29) = cevapoint of X(I) and X(J) for these (I,J): (1,4), (33,281)
X(29) = X(I)-cross conjugate of X(J) for these (I,J): (1,21), (284,333), (497,314)
X(29) = X(4)-Hirst inverse of X(415)
X(29) = X(I)-beth conjugate of X(J) for these (I,J): (29,28), (811,29)
X(30) = EULER INFINITY POINT
Trilinears cos A - 2 cos B cos C : cos B - 2 cos C cos A : cos C - 2 cos A cos B
= f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc[2a4 - (b2 - c2)2 - a2(b2 + c2)]Barycentrics g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = 2a4 - (b2 - c2)2 - a2(b2 + c2)
The point of intersection of the Euler line and the line at infinity. Thus, each of the 22 lines listed below is parallel to the Euler line.
X(30) lies on these lines:
1,79 2,3 11,36 12,35 13,15 14,16 33,1060 34,1062 40,191 52,185 53,577 55,495 56,496 61,397 62,398 64,68 74,265 80,484 98,671 99,316 110,477 115,187 143,389 146,323 148,385 155,1078 182,597 262,598 298,616 299,617 390,1056 489,638 490,637 497,999 511,512 551,946 553,942 618,623 619,624 620,625 944,962X(30) = isogonal conjugate of X(74)
X(30) = X(I)-Ceva conjugate of X(J) for these (I,J): (4,113), (265,5), (476,523)
X(30) = cevapoint of X(3) and X(399)
X(30) = crosspoint of X(I) and X(J) for these (I,J): (13,14), (94,264)
X(31) = 2nd POWER POINT
Trilinears a2 : b2 : c2
Barycentrics a3 : b3 : c3
X(31) lies on these lines:
1,21 2,171 3,601 6,42 8,987 9,612 10,964 19,204 25,608 32,41 35,386 36,995 40,580 43,100 44,210 48,560 51,181 56,154 57,105 65,1104 72,976 75,82 76,734 91,1087 92,162 101,609 110,593 163,923 184,604 etc.X(31) = isogonal conjugate of X(75)
X(31) = isotomic conjugate of X(561)
X(31) = X(I)-Ceva conjugate of X(J) for these (I,J): (1,48), (6,41), (9,205), (58,6), (82,1)
X(31) = X(213)-cross conjugate of X(6)
X(31) = crosspoint of X(I) and X(J) for these (I,J): (1,19), (6,56)
X(31) = X(I)-aleph conjugate of X(J) for these (I,J): (82,31), (83,75)
X(31) = X(I)-beth conjugate of X(J) for these (I,J): (21,993), (55,55), (109,31), (110,57), (643,31), (692,31)
X(32) = 3rd POWER POINT
Trilinears a3 : b3 : c3
= sin(A - ω) : sin(B - ω) : sin(C - ω)Barycentrics a4 : b4 : c4
X(32) lies on these lines:
1,172 2,83 3,6 4,98 5,230 9,987 21,981 24,232 31,41 56,1015 75,746 76,384 81,980 99,194 100,713 101,595 110,729 163,849 184,211 218,906 512,878 538,1003 561,724 590,640 604,1106 615,639 731,825 733,827 910,1104 993,1107X(32) = midpoint between X(371) and X(372)
X(32) = isogonal conjugate of X(76)
X(32) = inverse of X(39) in the Brocard circle
X(32) = complement of X(315)
X(32) = anticomplement of X(626)
X(32) = X(I)-Ceva conjugate of X(J) for these (I,J): (2,206), (6,184), (112,512), (251,6)
X(32) = crosspoint of X(I) and X(J) for these (I,J): (2,66), (6,25)
X(32) = X(184)-Hirst inverse of X(237)
X(32) = X(I)-beth conjugate of X(J) for these (I,J): (41,41), (163,56), (919,32)
X(33) = PERSPECTOR OF THE ORTHIC AND INTANGENTS TRIANGLES
Trilinears 1 + sec A : 1 + sec B : 1 + sec C = tan A cot(A/2) : tan B cot(B/2) : tan C cot(C/2)
= f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b + c - a)/(b2 + c2 - a2)
= g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = sec A cos2(A/2)Barycentrics sin A + tan A : sin B + tan B : sin C + tan C
= h(A,B,C) : h(B,C,A) : h(C,A,B), where h(A,B,C) = tan A cos2(A/2)
X(33) lies on these lines:
1,4 2,1040 5,1062 6,204 7,1041 8,1039 9,212 10,406 11,427 12,235 19,25 20,1038 24,35 28,975 29,78 30,1060 36,378 40,201 42,393 47,90 56,963 57,103 63,1013 64,65 79,1063 80,1061 84,603 112,609 200,281 210,220 222,971 264,350X(33) = isogonal conjugate of X(77)
X(33) = X(I)-Ceva conjugate of X(J) for these (I,J): (4,19), (29,281), (318,9)
X(33) = X(I)-cross conjugate of X(J) for these (I,J): (41,9), (42,55)
X(33) = crosspoint of X(I) and X(J) for these (I,J): (1,282), (4,281)
X(33) = X(33)-beth conjugate of X(25)
X(34)
Trilinears 1 - sec A : 1 - sec B : 1 - sec C
= tan A tan(A/2) : tan B tan(B/2) : tan C tan(C/2)
= f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 1/[(b + c - a)(b2 + c2 - a2)]
= g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = sec A sin2(A/2)Barycentrics sin A - tan A : sin B - tan B : sin C - tan C
= h(A,B,C) : h(B,C,A) : h(C,A,B), where h(A,B,C) = tan A sin2(A/2)
The center of perspective of the orthic triangle and the reflection about the incenter of the intangents triangle.
X(34) lies on these lines:
1,4 2,1038 5,1060 6,19 7,1039 8,1041 9,201 10,475 11,235 12,427 20,1040 24,36 25,56 28,57 29,77 30,1062 35,378 40,212 46,47 55,227 79,1061 80,1063 87,242 106,108 196,937 207,1042 222,942 244,1106 331,870 347,452 860,997X(34) = isogonal conjugate of X(78)
X(34) = X(I)-Ceva conjugate of X(J) for these (I,J): (1,207), (4,208), (28,56), (273,57), (278,19)
X(34) = X(25)-cross conjugate of X(19)X(34) = X(I)-beth conjugate of X(J) for these (I,J):
(1,221), (4,4), (28,34), (29,1), (107,158), (108,34), (110,47), (162,34), (811,34)
X(35)
Trilinears 1 + 2 cos A : 1 + 2 cos B : 1 + 2 cos C
= f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b2 + c2 - a2 + bc)Barycentrics sin A + sin 2A : sin B + sin 2B: sin C + sin 2C
= g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = a2(b2 + c2 - a2 + bc)X(35) lies on these lines:
1,3 4,498 8,993 9,90 10,21 11,140 12,30 22,612 24,33 31,386 34,378 37,267 42,58 43,1011 47,212 71,284 72,191 73,74 79,226 172,187 etc.X(35) = isogonal conjugate of X(79)
X(35) = inverse of X(484) in the circumcircle
X(35) = X(500)-cross conjugate of X(1)
X(35) = X(943)-aleph conjugate of X(35)
X(35) = X(I)-beth conjugate of X(J) for these (I,J): (100,35), (643,10)
X(36) = INVERSE OF THE INCENTER IN THE CIRCUMCIRCLE
Trilinears 1 - 2 cos A : 1 - 2 cos B : 1 - 2 cos C
= f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b2 + c2 - a2 - bc)
= g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = sec A cos2(A/2)Barycentrics sin A - sin 2A : sin B - sin 2B: sin C - sin 2C
= g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = a2(b2 + c2 - a2 - bc)
X(36) lies on these lines:
1,3 2,535 4,499 6,609 10,404 11,30 12,140 15,202 16,203 21,79 22,614 24,34 31,995 33,378 39,172 47,602 48,579 54,73 58,60 59,1110 63,997 80,104 84,90 99,350 100,519 101,672 106,901 109,953 187,1015 191,960 214,758 226,1006 238,513 255,1106 376,497 388,498 474,958 495,549 496,550 573,604 1030,1100X(36) = midpoint between X(1) and X(484)
X(36) = isogonal conjugate of X(80)
X(36) = inverse of X(1) in the circumcircle
X(36) = inverse of X(942) in the incircle>BR> X(36) = X(I)-Ceva conjugate of X(J) for these (I,J): (88,6), (104,1)
X(36) = crosspoint of X(58) and X(106)
X(36) = X(104)-aleph conjugate of X(36)
X(36) = X(I)-beth conjugate of X(J) for these (I,J): (21,36), (100,36), (643,519)
X(37) = CROSSPOINT OF INCENTER AND CENTROID
Trilinears b + c : c + a : a + b
Barycentrics a(b + c) : b(c + a) : c(a + b)X(37) lies on these lines:
1,6 2,75 3,975 7,241 8,941 10,594 12,225 19,25 21,172 35,267 38,354 39,596 12,225 41,584 48,205 63,940 65,71 73,836 78,965 82,251 86,190 91,498 100,111 101,284 141,742 142,1086 145,391 158,281 171,846 226,440 256,694 347,948 513,876 517,573 537,551 579,942 626,746 665,900 971,991X(37) = midpoint between X(I) and X(J) for these (I,J): (75,192), (190,335)
X(37) = isogonal conjugate of X(81)
X(37) = isotomic conjugate of X(274)
X(37) = complement of X(75)X(37) = X(I)-Ceva conjugate of X(J) for these (I,J):
(1,42), (2,10), (4,209), (9,71), (10,210), (190,513), (226,65), (321,72), (335,518)X(37) = cevapoint of X(213) and X(228)
X(37) = X(I)-cross conjugate of X(J) for these (I,J): (42,65), (228,72)
X(37) = crosspoint of X(I) and X(J) for these (I,J): (1,2), (9,281), (10,226)
X(37) = X(1)-line conjugate of X(238)
X(37) = X(1)-aleph conjugate of X(1051)
X(37) = X(I)-beth conjugate of X(J) for these (I,J): (9,37), (644,37), (645,894), (646,37), (1018,37)Let X = X(37) and let V be the vector-sum XA + XB + XC; then V = X(75)X(37) = X(37)X(192).
X(38)
Trilinears b2 + c2 : c2 + a2 : a2 + b2
=csc A sin(A + ω) : csc B sin(B + ω) : csc C sin(C + ω)Barycentrics a(b2 + c2) : b(c2 + a2) : c(a2 + b2)
= sin(A + ω) : sin(B + ω) : sin(C + ω)X(38) lies on these lines:
1,21 2,244 3,976 8,986 9,614 10,596 37,354 42,518 56,201 57,612 75,310 78,988 92,240 99,745 210,899 321,726 869,980 912,1064 1038,1106X(38) = isogonal conjugate of X(82)
X(38) = crosspoint of X(1) and X(75)
X(38) = X(643)-beth conjugate of X(38)
X(39) = BROCARD MIDPOINT
Trilinears a(b2 + c2) : b(c2 + a2) : c(a2 + b2)
= sin(A + ω) : sin(B + ω) : sin(C + ω)Barycentrics a2(b2 + c2) : b2(c2 + a2) : c2(a2 + b2)
The midpoint between the 1st and 2nd Brocard points, given by trilinears c/b : a/c : b/a and b/c : c/a : a/b .
X(39) lies on these lines:
1,291 2,76 3,6 4,232 5,114 9,978 10,730 36,172 37,596 51,237 54,248 83,99 110,755 140,230 141,732 185,217 213,672 325,626 395,618 493,494 512,881 588,589 590,642 597,1084 615,641Ross Honsberger, Episodes in Nineteenth and Twentieth Century Euclidean Geometry, Mathematical Association of America, 1995. Chapter 10: The Brocard Points.
X(39) = midpoint between X(76) and X(194)
X(39) = isogonal conjugate of X(83)
X(39) = isotomic conjugate of X(308)
X(39) = inverse of X(32) in the Brocard circle
X(39) = complement of X(76)
X(39) = eigencenter of anticevian triangle of X(512)
X(39) = X(I)-Ceva conjugate of X(J) for these (I,J): (2,141), (4,211), (99,512)
X(39) = crosspoint of X(I) and X(J) for these (I,J): (2,6), (141,427)Let X = X(39) and let V be the vector-sum XA + XB + XC; then V = X(76)X(39) = X(39)X(194).
X(40) = REFLECTION OF THE INCENTER IN CIRCUMCENTER
Trilinears cos B + cos C - cos A - 1 : cos C + cos A - cos B - 1 : cos A + cos B - cos C - 1
= f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b/(c + a - b) + c/(a + b - c) - a/(b + c - a)
= g(A,B,C) : g(B,C,A) : g(C,A,B), where
g(A,B,C) = sin2(B/2) + sin2(C/2) - sin2(A/2)Barycentrics af(a,b,c) : bf(b,c,a) : cf(c,a,b)
The point of concurrence of the perpendiculars from the excenters to the respective sides; also, the circumcenter of the excentral triangle.
X(40) lies on these lines:
1,3 2,926 4,9 6,380 8,20 30,191 31,580 33,201 34,212 42,581 43,970 58,601 64,72 77,947 78,100 80,90 92,412 101,972 108,207 109,255 164,188 190,341 196,208 219,610 220,910 221,223 256,989 376,519 386,1064 387,579 390,938 392,474 511,1045 550,952 595,602 728,1018 936,960 958,1012 978,1050X(40) = midpoint between X(8) and X(20)
X(40) = reflection of X(I) about X(J) for these (I,J): (1,3), (4,10)
X(40) = isogonal conjugate of X(84)
X(40) = isotomic conjugate of X(309)
X(40) = complement of X(962)
X(40) = anticomplement of X(946)
X(40) = X(I)-Ceva conjugate of X(J) for these (I,J): (8,1), (63,9), (347,223)
X(40) = X(I)-cross conjugate of X(J) for these (I,J): (198,223), (221,1)
X(40) = crosspoint of X(I) and X(J) for these (I,J): (329,347)
X(40) = X(I)-aleph conjugate of X(J) for these (I,J): (1,978), (2,57), (8,40), (188,1), (556,63)
X(40) = X(I)-beth conjugate of X(J) for these (I,J): (8,4), (40,221), (40,40), (643,78), (644,728)
X(41)
Trilinears a2(b + c - a) : b2(c + a - b) : c2(a + b - c)
= a2cot(A/2) : b2cot(B/2) : c2cot(C/2)Barycentrics a3(b + c - a) : b3(c + a - b) : c3(a + b - c)
X(41) lies on these lines: 1,101 3,218 6,48 9,21 25,42 31,32 37,584 55,220 58,609 65,910 219,1036 226,379 560,872 601,906 603,911 663,884
X(41) = isogonal conjugate of X(85)
X(41) = X(I)-Ceva conjugate of X(J) for these (I,J): (6,31), (9,212), (284,55)
X(41) = crosspoint of X(I) and X(J) for these (I,J): (6,55), (9,33)
X(41) = X(I)-beth conjugate of X(J) for these (I,J): (41,32), (101,41), (220,220)
X(42) CROSSPOINT OF INCENTER AND SYMMEDIAN POINT
Trilinears a(b + c) : b(c + a) : c(a + b)
= (1 + cos A)(cos B + cos C) : (1 + cos B)(cos C + cos A) : (1 + cos C)(cos A + cos B)
Barycentrics a2(b + c) : b2(c + a) : c2(a + b)
X(42) lies on these lines:
1,2 3,967 6,31 9,941 25,41 33,393 35,58 37,210 38,518 40,581 48,197 57,1001 65,73 81,100 101,111 165,991 172,199 181,228 244,354 308,313 321,740 517,1064 560,584 649,788 694,893 748,1001 750,940 894,1045 942,1066X(42) = isogonal conjugate of X(86)
X(42) = isotomic conjugate of X(310)
X(42) = X(I)-Ceva conjugate of X(J) for these (I,J): (1,37), (6,213), (10,71), (55,228)
X(42) = crosspoint of X(I) and X(J) for these (I,J): (1,6), (33,55), (37,65)
X(42) = X(1)-line conjugate of X(239)
X(42) = X(I)-beth conjugate of X(J) for these (I,J): (21,551), (55,42), (100,226), (210,210), (643,171)
X(43) X(6)-CEVA CONJUGATE OF X(1)
Trilinears ab + ac - bc : bc + ba - ca : ca + cb - ab
= csc B + csc C - csc A : csc C + csc A - csc B : csc A + csc B - cscBarycentrics a(ab + ac - bc) : b(bc + ba - ca) : c(ca + cb - ab)
X(43) lies on these lines:
1,2 6,87 9,256 31,100 35,1011 40,970 46,851 55,238 57,181 58,979 72,986 75,872 81,750 165,573 170,218 210,984 312,740 518,982X(43) = isogonal conjugate of X(87)
X(43) = X(6)-Ceva conjugate of X(1)
X(43) = X(192)-cross conjugate of X(1)
X(43) = X(55)-Hirst inverse of X(238)X(43) = X(I)-aleph conjugate of X(J) for these (I,J):
(1,9), (6,43), (55,170), (100,1018), (174,169), (259,165), (365,1), (366,63), (507,362), (509,57)X(43) = X(660)-beth conjugate of X(43)
X(44) X(6)-LINE CONJUGATE OF X(1)
Trilinears b + c - 2a : c + a - 2b : a + b - 2c
Barycentrics a(b + c - 2a) : b(c + a - 2b) : c(a + b - 2c)
X(44) lies on these lines: 1,6 2,89 10,752 31,210 51,209 65,374 88,679 181,375 190,239 193,344 214,1017 241,651 292,660 354,748 513,649 527,1086 583,992 678,902
X(44) = midpoint between X(190) and X(239)
X(44) = isogonal conjugate of X(88)
X(44) = complement of X(320)
X(44) = X(I)-Ceva conjugate of X(J) for these (I,J): (2,214), (88,1), (104,55)
X(44) = crosspoint of X(I) and X(J) for these (I,J): (1,88), (2,80)
X(44) = X(6)-line conjugate of X(1)
X(44) = X(88)-cross conjugate of X(44)
X(44) = X(I)-beth conjugate of X(J) for these (I,J): (9,44), (644,44), (645,239), (44,44)
X(45)
Trilinears 2b + 2c - a : 2c + 2a - b : 2a + 2b - c
Barycentrics a(2b + 2c - a) : b(2c + 2a - b) : c(2a + 2b - c)
X(45) lies on these lines: 1,6 2,88 53,281 55,678 141,344 198,1030 210,968 346,594
X(45) = isogonal conjugate of X(89)
X(45) = X(I)-beth conjugate of X(J) for these (I,J): (9,1), (644,45)
X(46) X(4)-CEVA CONJUGATE OF X(1)
Trilinears cos B + cos C - cos A : cos C + cos A - cos B : cos A + cos B - cos C
Barycentrics a(cos B + cos C - cos A) : b(cos C + cos A - cos B) : c(cos A + cos B - cos C)
X(46) lies on these lines:
1,3 4,90 9,79 10,63 19,579 34,47 43,851 58,998 78,758 80,84 100,224 158,412 169,672 200,1004 218,910 222,227 225,254 226,498 269,1103 404,997 474,960 499,946 595,614 750,975 978,1054X(46) = reflection of X(1) about X(56)
X(46) = isogonal conjugate of X(90)
X(46) = X(4)-Ceva conjugate of X(1)X(46) = X(I)-aleph conjugate of X(J) for these (I,J): (4,46), (174,223), (188,1079), (366,610), (653, 1020) X(46) = X(100)-beth conjugate of X(46)
X(47)
Trilinears cos 2A : cos 2B : cos 2C = f(a,b,c) : f(b,c,a) : f(c,a,b), where
f(a,b,c) = a2[a4 + b4 + c4 - 2a2b2 - 2a2c2]Barycentrics a cos 2A : b cos 2B : c cos 2C
X(47) lies on these lines:
1,21 19,921 33,90 34,46 35,212 36,602 91,92 158,162 171,498 238,499X(47) = isogonal conjugate of X(91)
X(47) = eigencenter of cevian triangle of X(92)
X(47) = eigencenter of anticevian triangle of X(48)
X(47) = X(92)-Ceva conjugate of X(48)
X(47) = X(275)-aleph conjugate of X(92)
X(47) = X(I)-beth conjugate of X(J) for these (I,J): (110,34), (643,47)
X(48)
Trilinears sin 2A : sin 2B : sin 2C
= f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = tan B + tan C
= g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = a2(b2 + c2 - a2)Barycentrics a sin 2A : b sin 2B : c sin 2C
X(48) lies on these lines:
1,19 3,71 6,41 9,101 31,560 36,579 37,205 42,197 55,154 63,326 75,336 163,1094 184,212 220,963 255,563 281,944 282,947 354,584 577,603 692,911 949,1037 958,965X(48) = isogonal conjugate of X(92)
X(48) = X(I)-Ceva conjugate of X(J) for these (I,J): (1,31), (3,212), (63,255), (92,47), (284, 6)
X(48) = X(228)-cross conjugate of X(3)
X(48) = crosspoint of X(I) and X(J) for these (I,J): (1,63), (3,222), (91,92), (219,268)
X(48) = X(1)-line conjugate of X(240)
X(48) = X(I)-beth conjugate of X(J) for these (I,J): (101,48), (219,219), (284,604), (906,48)
X(49) = CENTER OF SINE-TRIPLE-ANGLE CIRCLE
Trilinears cos 3A : cos 3B : cos 3C
Barycentrics sin A cos 3A : sin B cos 3B : sin C cos 3C
V. Thebault, "Sine-triple-angle-circle," Mathesis 65 (1956) 282-284.
X(49) lies on these lines: 1,215 3,155 4,156 5,54 24,568 52,195 93,94 381,578
X(49) = isogonal conjugate of X(93)
X(49) = eigencenter of cevian triangle of X(94)
X(49) = eigencenter of anticevian triangle of X(50)
X(49) = X(94)-Ceva conjugate of X(50)
X(50)
Trilinears sin 3A : sin 3B : sin 3C
Barycentrics sin A sin 3A : sin B sin 3B : sin C sin 3C
X(50) lies on these lines: 3,6 67,248 112,477 115,231 230,858 338,401 647,654
X(50) = isogonal conjugate of X(94)
X(50) = inverse of X(566) in the Brocard circle
X(50) = X(I)-Ceva conjugate of X(J) for these (I,J): (1,215), (74,184), (94,49)
X(50) = crosspoint of X(I) and X(J) for these (I,J): (93,94), (186,323)
X(51) = CENTROID OF THE ORTHIC TRIANGLE
Trilinears a2cos(B - C) : b2cos(C - A) : c2cos(A - B)
= f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a[a2(b2 + c2) - (b2 - c2)2]Barycentrics a3cos(B - C) : b3cos(C - A) : c3cos(A - B)
X(51) lies on these lines:
2,262 4,185 5,52 6,25 21,970 22,182 23,575 24,578 26,569 31,181 39,237 44,209 54,288 107,275 125,132 129,137 130,138 199,572 210,374 216,418 381,568 397,462 398,463 573,1011X(51) = reflection of X(210) about X(375)
X(51) = isogonal conjugate of X(95)
X(51) = X(I)-Ceva conjugate of X(J) for these (I,J): (4,53), (5,216), (6,217)
X(51) = X(217)-cross conjugate of X(216)
X(51) = crosspoint of X(I) and X(J) for these (I,J): (4,6), (5,53)Let X = X(51) and let V be the vector-sum XA + XB + XC; then V = X(3)X(52) = X(20)X(185)
Let W be the vector-sum XA' + XB' + XC', where A'B'C' is the pedal triangle of X; then W = X(428)X(51).
X(52) = ORTHOCENTER OF THE ORTHIC TRIANGLE
Trilinears cos 2A cos(B - C) : cos 2B cos(C - A) : cos 2C cos(A - B)
= f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = sec A (sec 2B + sec 2C)Barycentrics tan A (sec 2B + sec 2C ) : tan B (sec 2C + sec 2A) : tan C (sec 2A + sec 2B)
X(52) lies on these lines:
3,6 4,68 5,51 25,155 26,184 30,185 49,195 113,135 114,211 128,134 129,139X(52) = reflection of X(I) about X(J) for these (I,J): (3,389), (5,143)
X(52) = isogonal conjugate of X(96)
X(52) = inverse of X(569) in the Brocard circle
X(52) = X(I)-Ceva conjugate of X(J) for these (I,J): (4,5), (317,467), (324,216)
X(52) = crosspoint of X(4) and X(24)
X(53) = SYMMEDIAN POINT OF THE ORTHIC TRIANGLE
Trilinears tan A cos(B - C) : tan B cos(C - A) : tan C cos(A - B)
Barycentrics a tan A cos(B - C) : b tan B cos(C - A) : c tan C cos(A - B)
X(53) lies on these lines:
4,6 5,216 25,157 30,577 45,281 115,133 128,139 137,138 141,264 232,427 273,1086 275,288 311,324 317,524 318,594 395,472 396,473X(53) = isogonal conjugate of X(97)
X(53) = X(I)-Ceva conjugate of X(J) for these (I,J): (4,51), (324,5)
X(53) = X(51)-cross conjugate of X(5)
X(54) = KOSNITA POINT
Trilinears sec(B - C) : sec(C - A) : sec(A - B)
Barycentrics tan(B - C) : tan(C - A) : tan(A - B)
John Rigby, "Brief notes on some forgotten geometrical theorems," Mathematics and Informatics Quarterly 7 (1997) 156-158.
X(54) lies on these lines:
2,68 3,97 4,184 5,49 6,24 12,215 36,73 39,248 51,288 64,378 69,95 71,572 72,1006 74,185 112,217 140,252 156,381 186,389 276,290 575,895 826,879X(54) = midpoint between X(3) and X(195)
X(54) = isogonal conjugate of X(5)
X(54) = isotomic conjugate of X(311)
X(54) = X(I)-Ceva conjugate of X(J) for these (I,J): (95,97), (288,6)
X(54) = cevapoint of X(6) and X(184)
X(54) = X(I)-cross conjugate of X(J) for these (I,J): (3,96), (6,275), (186,74), (389,4), (523,110)
X(54) = crosspoint of X(95) and X(275)
X(55) = INTERNAL CENTER OF SIMILITUDE OF CIRCUMCIRCLE AND INCIRCLE
Trilinears a(b + c - a) : b(c + a - b) : c(a + b - c)
= 1 + cos A : 1 + cos B : 1 + cos C
= cos2(A/2) : cos2(B/2) : cos2(B/2)
= tan(B/2) + tan(C/2) : tan(C/2) + tan(A/2) : tan(A/2) + tan(B/2)Barycentrics a2(b + c - a) : b2(c + a - b) : c2(a + b - c)
The center of homothety of three triangles: tangential, intangents, and extangents.
X(55) lies on these lines:
1,3 2,11 4,12 5,498 6,31 8,21 9,200 10,405 15,203 16,202 19,25 20,388 30,495 34,227 41,220 43,238 45,678 48,154 63,518 64,73 77,1037 78,960 81,1002 92,243 103,109 104,1000 108,196 140,496 181,573 182,613 183,350 184,215 192,385 199,1030 201,774 204,1033 219,284 226,516 255,601 256,983 329,1005 376,1056 386,595 392,997 411,962 511,611 515,1012 519,956 574,1015 603,963 631,1058 650,884 654,926 748,899 840,901 846,984 869,893 1026,1083 1070,1076 1072,1074X(55) = isogonal conjugate of X(7)
X(55) = X(I)-Ceva conjugate of X(J) for these (I,J):
(1,6), (3,198), (7,218), (8,219), (9,220), (21,9), (59,101), (104,44), (260,259), (284,41)X(55) = cevapoint of X(42) and X(228) for these (I,J)
X(55) = X(I)-cross conjugate of X(J) for these (I,J): (41,6), (42,33), (228,212)
X(55) = crosspoint of X(I) and X(J) for these (I,J): (1,9), (3,268), (7,277), (8,281), (21,284), (59,101)
X(55) = X(43)-Hirst inverse of X(238)
X(55) = X(1)-line conjugate of X(241)
X(55) = X(I)-beth conjugate of X(J) for these (I,J): (21,999), (55,31), (100,55), (200,200), (643,2), (1021,1024)
X(56) = EXTERNAL CENTER OF SIMILITUDE OF CIRCUMCIRCLE AND INCIRCLE
Trilinears a/(b + c - a) : b/(c + a - b) : c/(a + b - c)
= 1 - cos A : 1 - cos B : 1 - cos C
= sin2(A/2) : sin2(B/2) : sin2(C/2)Barycentrics a2/(b + c - a) : b2/(c + a - b) : c2/(a + b - c)
The perspector of the tangential triangle and the reflection of the intangents triangle about X(1).
X(56) lies on these lines:
1,3 2,12 4,11 5,499 6,41 7,21 8,404 10,474 19,207 20,497 22,977 25,34 28,278 30,496 31,154 32,1015 33,963 38,201 58,222 61,202 62,203 63,960 72,997 77,1036 78,480 81,959 85,870 87,238 100,145 101,218 105,279 106,109 140,495 181,386 182,611 197,227 212,939 219,579 220,672 223,937 226,405 255,602 266,289 269,738 330,385 376,1058 411,938 511,613 551,553 607,911 631,1056 667,764 946,1012 978,979 1025,1083 1070,1074 1072,1076X(56) = midpoint between X(1) and X(46)
X(56) = isogonal conjugate of X(8)
X(56) = X(I)-Ceva conjugate of X(J) for these (I,J): (1,221), (7,222), (28,34), (57,6), (59,109), (108,513)
X(56) = X(31)-cross conjugate of X(6)
X(56) = crosspoint of X(I) and X(J) for these (I,J): (1,84), (7,278), (28,58), (57,269), (59,109)
X(56) = X(266)-aleph conjugate of X(1050)X(57) = X(I)-beth conjugate of X(J) for these (I,J):
(1,1), (21,3), (56,1106), (58,56), and (P,57) for all P on the circumcircle
X(57) ISOGONAL CONJUGATE OF X(9)
Trilinears 1/(b + c - a) : 1/(c + a - b) : 1/(a + b - c)
= tan(A/2) : tan(B/2) : tan(C/2)Barycentrics a/(b + c - a) : b/(c + a - b) : c/(a + b - c)
X(57) lies on these lines:
1,3 2,7 4,84 6,222 10,388 19,196 20,938 27,273 28,34 31,105 33,103 38,612 42,1002 43,181 72,474 73,386 77,81 78,404 79,90 85,274 88,651 92,653 164,177 169,277 173,174 200,518 201,975 234,362 239,330 255,580 279,479 345,728 497,516 499,920 649,1024 658,673 748,896 758,997 955,991 957,995 959,1042 961,1106 978,1046 1020,1086X(57) = isogonal conjugate of X(9)
X(57) = isotomic conjugate of X(312)
X(57) = complement of X(329)X(57) = X(I)-Ceva conjugate of X(J) for these (I,J):
(2,223), (7,1), (27,278), (81,222), (85,77), (273,34), (279,269)X(57) = cevapoint of X(I) and X(J) for these (I,J): (6,56), (19,208)
X(57) = X(I)-cross conjugate of X(J) for these (I,J): (6,1), (19,84), (56,269), (65,7)
X(57) = crosspoint of X(I) and X(J) for these (I,J): (2,189), (7,279), (27,81), (85,273)
X(57) = X(1)-Hirst inverse of X(241)X(57) = X(I)-aleph conjugate of X(J) for these (I,J):
(2,40), (7,57), (57,978), (174,1), (366,165), (507,503), (508,9), (509,43)X(57) = X(I)-beth conjugate of X(J) for these (I,J):
(2,2), (81,57), (88,57), (100,57), (110,31), (162,57), (190,57), (333,63), (648,92), (651,57), (653,57), (655,57), (658,57), (660,57), (662,57), (673,57), (771,57), (799,57), (823,57), (897, 57)
X(58) ISOGONAL CONJUGATE OF X(10)
Trilinears a/(b + c) : b/(c + a) : c/(a + b)
Barycentrics a2/(b + c) : b2/(c + a) : c2/(a + b)X(58) lies on these lines:
1,21 2,540 3,6 7,272 8,996 9,975 10,171 20,387 25,967 27,270 28,34 29,162 35,42 36,60 40,601 41,609 43,979 46,998 56,222 65,109 82,596 84,990 86,238 87,978 99,727 101,172 103,112 106,110 229,244 269,1014 274,870 314,987 405,940 519,1043 942,1104 977,982 1019,1027X(58) = isogonal conjugate of X(10)
X(58) = isotomic conjugate of X(313)
X(58) = inverse of X(386) in the Brocard circle
X(58) = X(I)-Ceva conjugate of X(J) for these (I,J): (81,284), (267,501), (270,28)
X(58) = cevapoint of X(6) and X(31)
X(58) = X(I)-cross conjugate of X(J) for these (I,J): (6,81), (36,106), (56,28), (513,109)
X(58) = crosspoint of X(I) and X(J) for these (I,J): (1,267), (21,285), (27,86), (60,270)
X(58) = X(I)-beth conjugate of X(J) for these (I,J): (21,21), (60,58), (110,58), (162,58), (643,58), (1098,283)
X(59) ISOGONAL CONJUGATE OF X(11)
Trilinears 1/[1 - cos(B - C)] : 1/[1 - cos(C - A) : 1/[1 - cos(A - B)]
Barycentrics a/[1 - cos(B - C)] : b/[1 - cos(C - A) : c/[1 - cos(A - B)]X(59) lies on these lines: 36,1110 60,1101 100,521 101,657 109,901 513,651 518,765 523,655
X(59) = isogonal conjugate of X(11)
X(59) = cevapoint of X(I) and X(J) for these (I,J): (55,101), (56,109)
X(59) = X(I)-cross conjugate of X(J) for these (I,J): (1,110), (3,100), (55,101), (56,109)
X(59) = X(765)-beth conjugate of X(765)
X(60)
Trilinears 1/[1 + cos(B - C)] : 1/[1 + cos(C - A) : 1/[1 + cos(A - B)]
Barycentrics a/[1 + cos(B - C)] : b/[1 + cos(C - A) : c/[1 + cos(A - B)]X(60) lies on these lines: 1,110 21,960 28,81 36,58 59,1101 86,272 283,284 404,662 757,1014
X(60) = isogonal conjugate of X(12)
X(60) = X(58)-cross conjugate of X(270)
X(60) = X(I)-beth conjugate of X(J) for these (I,J): (60,849), (1098,1098)
X(61)
Trilinears sin(A + π/6) : sin(B + π/6) : sin(C + π/6)
= cos(A - π/3) : cos(B - π/3) : cos(C - π/3)Barycentrics sin A sin(A + π/6) : sin B sin(B + π/6) : sin C sin(C + π/6)
X(61) lies on these lines:
1,203 2,18 3,6 4,13 5,14 30,397 56,202 140,395 299,636 302,629 618,627X(61) = isogonal conjugate of X(17)
X(61) = inverse of X(62) in the Brocard circle
X(61) = complement of X(633)
X(61) = anticomplement of X(635)
X(61) = eigencenter of cevian triangle of X(14)
X(61) = eigencenter of anticevian triangle of X(16)
X(61) = X(14)-Ceva conjugate of X(16)
X(61) = crosspoint of X(302) and X(473)Let W be the vector-sum XA' + XB' + XC', where A'B'C' is the pedal triangle of X = X(61); then W = X(397)X(61).
X(62)
Trilinears sin(A - π/6) : sin(B - π/6) : sin(C - π/6)
= cos(A + π/3) : cos(B + π/3) : cos(C + π/3)Barycentrics sin A sin(A - π/6) : sin B sin(B - π/6) : sin C sin(C - π/6)
X(62) lies on these lines:
1,202 2,17 3,6 4,14 5,13 30,398 56,203 140,396 298,635 303,630 619,628X(62) = isogonal conjugate of X(18)
X(62) = inverse of X(61) in the Brocard circle
X(62) = complement of X(634)
X(62) = anticomplement of X(636)
X(62) = eigencenter of cevian triangle of X(13)
X(62) = eigencenter of anticevian triangle of X(15)
X(62) = X(13)-Ceva conjugate of X(15)
X(62) = crosspoint of X(303) and X(472)Let W be the vector-sum XA' + XB' + XC', where A'B'C' is the pedal triangle of X = X(62); then W = X(398)X(62).
X(63)
Trilinears cot A : cot B : cot C
= b2 + c2 - a2 : c2 + a2 - b2 : c2 + b2 - c2Barycentrics cos A : cos B : cos C
X(63) lies on these lines:
1,21 2,7 3,72 8,20 10,46 19,27 33,1013 36,997 37,940 48,326 55,518 56,960 65,958 69,71 77,219 91,921 100,103 162,204 169,379 171,612 190,312 194,239 201,603 210,1004 212,1040 213,980 220,241 223,651 238,614 240,1096 244,748 304,1102 318,412 354,1001 392,999 404,936 405,942 452,938 484,535 517,956 544,1018 561,799 654,918 750,756X(63) = isogonal conjugate of X(19)
X(63) = isotomic conjugate of X(92)
X(63) = anticomplement of X(226)
X(63) = X(I)-Ceva conjugate of X(J) for these (I,J): (7,224), (69,78), (75,1), (304,326), (333,2), (348,77)
X(63) = cevapoint of X(I) and X(J) for these (I,J): (3,219), (9,40), (48,255), (71,72)
X(63) = X(I)-cross conjugate of X(J) for these (I,J): (3,77), (9,271), (48,1), (71,3), (72,69), (219,78), (255,326)
X(63) = crosspoint of X(I) and X(J) for these (I,J): (69,348), (75,304)X(63) = X(I)-aleph conjugate of X(J) for these (I,J):
(2,1), (75,63), (92,920), (99,662), (174,978), (190,100), (333,411), (366,43), (514,1052), (556,40), (648,162), (664,651), (668,190), (670,799), (671,897), (903,88)X(63) = X(I)-beth conjugate of X(J) for these (I,J):
(63,222), (190,63), (333,57), (345,345), (643,63), (645,312), (662,223)
X(64)
Trilinears 1/(cos A - cos B cos C) : 1/(cos B - cos C cos A) : 1/(cos C - cos A cos B)
Barycentrics a/(cos A - cos B cos C) : b/(cos B - cos C cos A) : c/(cos C - cos A cos B)X(64) lies on these lines:
3,154 6,185 20,69 24,74 30,68 33,65 40,72 54,378 55,73 71,198 265,382X(64) = isogonal conjugate of X(20)
X(64) = X(25)-cross conjugate of X(6)
X(64) = X(1)-beth conjugate of X(207)
X(65) = ORTHOCENTER OF THE INTOUCH TRIANGLE
Trilinears cos B + cos C : cos C + cos A : cos A + cos B
= (b + c)/(b + c - a) : (c + a)/(c + a - b) : (a + b)/(a + b - c)
= sin(A/2) cos(B/2 - C/2) : sin(B/2) cos(C/2 - A/2) : sin(C/2) cos(A/2 - B/2)Barycentrics a(b + c)/(b + c - a) : b(c + a)/(c + a - b) : c(a + b)/(a + b - c)
The perspector of ABC and the Yff central triangle.
X(65) lies on these lines:
1,3 2,959 4,158 6,19 7,8 10,12 11,117 29,296 31,1104 33,64 37,71 41,910 42,73 44,374 58,109 63,958 68,91 74,108 77,969 79,80 81,961 110,229 169,218 172,248 224,1004 225,407 243,412 257,894 278,387 279,1002 386,994 409,1098 474,997 497,938 516,950 519,553 604,1100 651,895 1039,1041 1061,1063X(65) = reflection of X(72) about X(10)
X(65) = isogonal conjugate of X(21)
X(65) = isotomic conjugate of X(314)
X(65) = anticomplement of X(960)
X(65) = X(I)-Ceva conjugate of X(J) for these (I,J): (1,73), (4,225), (7,226), (10,227), (109,513), (226,37)
X(65) = X(42)-cross conjugate of X(37)
X(65) = crosspoint of X(I) and X(J) for these (I,J): (1,4), (7,57)X(65) = X(I)-beth conjugate of X(J) for these (I,J):
(1,65), (8,72), (10,10), (65,1042), (80,65), (100,65), (101,213), (291,65), (668,65), (1018, 65)
X(66)
Trilinears bc/(b4 + c4 - a4) : ca/(c4 + a4 - b4) : ab/(a4 + b4 - c4)
Barycentrics 1/(b4 + c4 - a4) : 1/(c4 + a4 - b4) : 1/(a4 + b4 - c4)X(66) lies on these lines:
2,206 3,141 6,427 68,511 73,976 193,895 248,571 290,317 879,924X(66) = reflection of X(159) about X(141)
X(66) = isogonal conjugate of X(22)
X(66) = isotomic conjugate of X(315)
X(66) = anticomplement of X(206)
X(66) = cevapoint of X(125) and X(512)
X(66) = X(32)-cross conjugate of X(2)Let W be the vector-sum XA' + XB' + XC', where A'B'C' is the pedal triangle of X = X(66); then W = X(185)X(64).
X(67)
Trilinears bc/(b4 + c4 - a4 - b2c2) : ca/(c4 + a4 - b4 - c2a2) : ab/(a4 + b4 - c4 - a2b2)
Barycentrics 1/(b4 + c4 - a4 - b2c2) : 1/(c4 + a4 - b4 - c2a2) : 1/(a4 + b4 - c4 - a2b2)X(67) lies on these lines:
3,542 4,338 6,125 50,248 74,935 110,141 265,511 290,340 524,858 526,879X(67) = reflection of X(I) about X(J) for these (I,J): (6,125), (110,141)
X(67) = isogonal conjugate of X(23)
X(67) = isotomic conjugate of X(316)
X(67) = cevapoint of X(141) and X(524)
X(67) = X(187)-cross conjugate of X(2)
X(68)
Trilinears cos A sec 2A : cos B sec 2B : cos C sec 2C
Barycentrics tan 2A : tan 2B : tan 2CX(68) lies on these lines:
2,54 3,343 4,52 5,6 11,1069 20,74 26,161 30,64 65,91 66,511 73,1060 136,254 290,315 568,973X(68) = reflection of X(155) about X(5)
X(68) = isogonal conjugate of X(24)
X(68) = isotomic conjugate of X(317)
X(68) = X(96)-Ceva conjugate of X(3)
X(68) = cevapoint of X(I) and X(J) for these (I,J): (6,161), (125,520)
X(68) = X(115)-cross conjugate of X(525)Let W be the vector-sum XA' + XB' + XC', where A'B'C' is the pedal triangle of X = X(68); then W = X(52)X(68).
X(69) = SYMMEDIAN POINT OF THE ANTICOMPLEMENTARY TRIANGLE
Trilinears (cos A)/a2 : (cos B)/b2 : (cos C)/c2
= bc(b2 + c2 - a2) : ca(c2 + a2 - b2) : ab(a2 + b2 - c2)Barycentrics cot A : cot B : cot C
= b2 + c2 - a2 : c2 + a2 - b2 : a2 + b2 - c2X(69) lies on these lines:
2,6 3,332 4,76 7,8 9,344 10,969 20,64 22,159 54,95 63,71 72,304 73,77 74,99 110,206 125,895 144,190 150,668 189,309 192,742 194,695 200,269 248,287 263,308 265,328 274,443 290,670 297,393 347,664 350,497 404,1014 478,651 485,639 486,640 520,879X(69) = reflection of X(I) about X(J) for these (I,J): (6,141), (193,6)
X(69) = isogonal conjugate of X(25)
X(69) = isotomic conjugate of X(4)
X(69) = cyclocevian conjugate of X(253)
X(69) = complement of X(193) = anticomplement of X(6)
X(69) = X(I)-Ceva conjugate of X(J) for these (I,J): (76,2), (304,345), (314,75), (332,326)
X(69) = cevapoint of X(I) and X(J) for these (I,J): (2,20), (3,394), (6,159), (8,329), (63,78), (72,306), (125,525)X(69) = X(I)-cross conjugate of X(J) for these (I,J):
(3,2), (63,348), (72,63), (78,345), (125,525), (306,304), (307,75), (343,76)X(69) = crosspoint of X(I) and X(J) for these (I,J): (76,305), (314,332)
X(69) = X(2)-Hirst inverse of X(325)
X(69) = X(I)-beth conjugate of X(J) for these (I,J): (69,77), (99,347), (314,7), (332,69), (645,69), (668,69)Let W be the vector-sum XA' + XB' + XC', where A'B'C' is the pedal triangle of X = X(69); then W = X(185)X(20).
X(70)
Trilinears f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc/[b2 cos 2B + c2 cos 2C - a2 cos 2A]
Barycentrics g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = 1/[b2 cos 2B + c2 cos 2C - a2 cos 2A]X(70) = isogonal conjugate of X(26)
X(71)
Trilinears (b + c) cos A : (c + a ) cos B : (a + b) cos C
Barycentrics (b + c) sin 2A : (c + a ) sin 2B : (a + b) sin 2CX(71) lies on these lines:
1,579 3,48 4,9 6,31 35,284 37,65 54,572 63,69 64,198 74,101 165,610 190,290 583,1100X(71) = isogonal conjugate of X(27)
X(71) = X(I)-Ceva conjugate of X(J) for these (I,J): (3,228), (9, 37), (10,42), (63,72)
X(71) = X(228)-cross conjugate of X(73)
X(71) = crosspoint of X(I) and X(J) for these (I,J): (3,63), (9,219), (10,306)
X(71) = X(4)-line conjugate of X(242)
X(71) = X(I)-beth conjugate of X(J) for these (I,J): (219,71), (1018,71)
X(72)
Trilinears (b + c) cot A : (c + a) cot B : (a + b) cot C
= (b + c)(b2 + c2 - a2) : (c + a)(c2 + a2 - b2) : (a + b)(a2 + b2 - c2)Barycentrics (b + c) cos A : (c + a) cos B : (a + b) cos C
X(72) lies on these lines:
1,6 2,942 3,63 4,8 5,908 7,443 10,12 20,144 21,943 31,976 35,191 40,64 43,986 54,1006 56,997 57,474 69,304 73,201 74,100 145,452 171,1046 185,916 190,1043 222,1038 248,293 290,668 295,337 306,440 394,1060 519,950 672,1009 894,1010 940,975 978,982X(72) = reflection of X(65) about X(10)
X(72) = isogonal conjugate of X(28)
X(72) = isotomic conjugate of X(286)
X(72) = anticomplement of X(942)
X(72) = X(I)-Ceva conjugate of X(J) for these (I,J): (8,10), (63,71), (69,306), (321,37)
X(72) = X(I)-cross conjugate of X(J) for these (I,J): (201,10), (228,37)
X(72) = crosspoint of X(I) and X(J) for these (I,J): (8,78), (63,69), (306,307)
X(72) = X(I)-beth conjugate of X(J) for these (I,J): (8,65), (72,73), (78,72), (100,227), (644,72)
X(73) CROSSPOINT OF INCENTER AND CIRCUMCENTER
Trilinears (cos B + cos C) cos A : (cos C + cos A) cos B : (cos A + cos B) cos C
Barycentrics (cos B + cos C) sin 2A : (cos C + cos A) sin 2B : (cos A + cos B) sin 2C
X(73) lies on these lines:
1,4 3,212 6,41 21,651 35,74 36,54 37,836 42,65 55,64 57,386 66,976 68,1060 69,77 72,201 102,947 228,408 284,951 290,336 1036,1037 1057,1059X(73) = isogonal conjugate of X(29)
X(73) = X(1)-Ceva conjugate of X(65)
X(73) = X(228)-cross conjugate of X(71)
X(73) = crosspoint of X(I) and X(J) for these (I,J): (1,3), (77,222), (226,307)
X(73) = X(1)-Hirst inverse of X(243)
X(73) = X(I)-beth conjugate of X(J) for these (I,J): (1,1042), (3,73), (21,946), (72,72), (100,10), (101,73), (295,73)
X(74)  ISOGONAL CONJUGATE OF EULER INFINITY POINT
Trilinears 1/(cos A - 2 cos B cos C) : 1/(cos B - 2 cos C cos A) : 1/(cos C - 2 cos A cos B)
= f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a/[2a4 - (b2 - c2)2 - a2(b2 + c2)]Barycentrics a/(cos A - 2 cos B cos C) : b/(cos B - 2 cos C cos A) : c/(cos C - 2 cos A cos B)
As the isogonal conjugate of the point in which the Euler line meets the line at infinity, X(74) lies on the circumcircle; its antipode is X(110). X(74) is the cevapoint of the isodynamic points.
X(74) lies on these lines:
2,113 3,110 4,107 6,112 20,68 24,64 30,265 35,73 54,185 65,108 67,935 69,99 71,101 72,100 98,690 187,248 477,523 511,691 512,842 550,930X(74) = reflection of X(I) about X(J) for these (I,J): (4,125), (110,3), (146,113)
X(74) = isogonal conjugate of X(30)
X(74) = complement of X(146)
X(74) = anticomplement of X(113)
X(74) = cevapoint of X(I) and X(J) for these (I,J): (15,16), (50,184)
X(74) = X(I)-cross conjugate of X(J) for these (I,J): (186,54), (526,110)
X(75) ISOTOMIC CONJUGATE OF INCENTER
Trilinears 1/a2 : 1/b2 : 1/c2
Barycentrics 1/a : 1/b : 1/cThis is the center X(37) of the anticomplementary triangle.
X(75) lies on these lines:
1,86 2,37 6,239 7,8 9,190 10,76 19,27 21,272 31,82 32,746 38,310 43,872 48,336 77,664 99,261 100,675 101,767 141,334 144,391 158,240 194,1107 225,264 234,556 257,698 280,309 299,554 523,876 537,668 689,745 700,971 753,789 758,994 799,897 811,1099X(75) = reflection of X(192) about X(37)
X(75) = isogonal conjugate of X(31)
X(75) = isotomic conjugate of X(1)
X(75) = complement of X(192)
X(75) = anticomplement of X(37)
X(75) = X(I)-Ceva conjugate of X(J) for these (I,J): (76,312), (274,2), (310,76), (314,69)
X(75) = cevapoint of X(I) and X(J) for these (I,J): (1,63), (2,8), (7,347), (10,321), (244,514)X(75) = X(I)-cross conjugate of X(J) for these (I,J):
(1,92), (2,85), (7,309), (8,312), (10,2), (38,1), (63,304), (244,514), (307,69), (321,76), (347,322), (522,190)X(75) = crosspoint of X(I) and X(J) for these (I,J): (2,330), (274,310)
X(75) = X(I)-Hirst inverse of X(J) for these (I,J): (2,350), (334,335)
X(75) = X(83)-aleph conjugate of X(31)X(75) = X(I)-beth conjugate of X(J) for these (I,J):
(8,984), (75,7), (99,77), (314,75), (522,876), (645,9), (646,75), (668,75), (811,342)
X(76) = 3rd BROCARD POINT
Trilinears 1/a3 : 1/b3 : 1/c3
= csc(A - ω) : csc(B - ω) : csc(C - ω)Barycentrics 1/a2 : 1/b2 : 1/c2
X(76) lies on these lines:
1,350 2,39 3,98 4,69 5,262 6,83 8,668 10,75 13,299 14,298 17,303 18,302 31,734 32,384 85,226 95,96 100,767 115,626 141,698 275,276 297,343 321,561 335,871 338,599 485,491 486,492 524,598 689,755 693,764 761,789 826,882X(76) = reflection of X(194) about X(39)
X(76) = isogonal conjugate of X(32)
X(76) = isotomic conjugate of X(6)
X(76) = complement of X(194)
X(76) = anticomplement of X(39)
X(76) = X(I)-Ceva conjugate of X(J) for these (I,J): (308,2), (310,75)
X(76) = cevapoint of X(I) and X(J) for these (I,J): (2,69), (6,22), (75,312), (311,343), (313,321), (339,525)
X(76) = X(I)-cross conjugate of X(J) for these (I,J): (2,264), (69,305), (141,2), (321,75), (343,69), (525,99)
X(76) = X(I)-beth conjugate of X(J) for these (I,J): (76,85), (799,348)
X(77)
Trilinears 1/(1 + sec A) : 1/(1 + sec B) : 1/(1 + sec C)
= cos A sec2(A/2) : cos B sec2(B/2) : cos C sec2(C/2)
= (b2 + c2 - a2)/(b + c - a) : (c2 + a2 - b2)/(c + a - b) : (a2 + b2 - c2)/(a + b - c)Barycentrics a/(1 + sec A) : b/(1 + sec B) : c/(1 + sec C)
X(77) lies on these lines:
1,7 2,189 6,241 9,651 29,34 40,947 55,1037 56,1036 57,81 63,219 65,969 69,73 75,664 102,934 283,603 309,318 738,951 988,1106 999,1057X(77) = isogonal conjugate of X(33)
X(77) = isotomic conjugate of X(318)
X(77) = X(I)-Ceva conjugate of X(J) for these (I,J): (85,57), (86,7), (348,63)
X(77) = cevapoint of X(I) and X(J) for these (I,J): (1,223), (3,222)
X(77) = X(I)-cross conjugate of X(J) for these (I,J): (3,63), (73,222)X(77) = X(I)-beth conjugate of X(J) for these (I,J):
(21,990), (69,69), (86,269), (99,75), (332,326), (336,77), (662,77), (664,77), (811,77)
X(78)
Trilinears 1/(1 - sec A) : 1/(1 - sec B) : 1/(1 - sec C)
= cos A csc2(A/2) : cos B csc2(B/2) : cos C csc2(C/2)
= (b2 + c2 - a2)(b + c - a) : (c2 + a2 - b2)(c + a - b) : (a2 + b2 - c2)(a + b - c)Barycentrics a/(1 - sec A) : b/(1 - sec B) : c/(1 - sec C)
X(78) lies on these lines:
1,2 3,63 4,908 9,21 20,329 29,33 37,965 38,988 40,100 46,758 55,960 56,480 57,404 69,73 101,205 207,653 210,958 212,283 220,949 226,377 271,394 273,322 280,282 345,1040 392,1057 474,942 517,945 644,728 999,1059X(78) = isogonal conjugate of X(34)
X(78) = isotomic conjugate of X(273)
X(78) = X(I)-Ceva conjugate of X(J) for these (I,J): (69,63), (312,9), (332,345)
X(78) = X(I)-cross conjugate of X(J) for these (I,J): (3,271), (72,8), (212,9), (219,63)
X(78) = crosspoint of X(69) and X(345)
X(78) = X(I)-beth conjugate of X(J) for these (I,J): (78,3), (643,40), (1043,1)
X(79)
Trilinears 1/(1 + 2 cos A) : 1/(1 + 2 cos B) : 1/(1 + 2 cos C)
= f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc/(b2 + c2 - a2 + bc)
= g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A/2)(sin 3B/2)(sin 3C/2)Barycentrics h(a,b,c) : h(b,c,a) : h(c,a,b), where h(a,b,c) = 1/(b2 + c2 - a2 + bc)
X(79) lies on these lines:
1,30 8,758 9,46 12,484 21,36 33,1063 34,1061 35,226 57,90 65,80 104,946 314,320 388,1000X(79) = reflection of X(191) about X(442)
X(79) = isogonal conjugate of X(35)
X(79) = isotomic conjugate of X(319)
X(79) = cevapoint of X(481) and X(482)
X(80) REFLECTION OF INCENTER ABOUT FEUERBACH POINT
Trilinears 1/(1 - 2 cos A) : 1/(1 - 2 cos B) : 1/(1 - 2 cos C)
= f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc/(b2 + c2 - a2 - bc)Barycentrics g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = 1/(b2 + c2 - a2 - bc)
X(80) lies on these lines:
1,5 2,214 7,150 8,149 9,528 10,21 30,484 33,1061 34,1063 36,104 40,90 46,84 65,79 313,314 497,1000 499,944 516,655 519,908 943,950X(80) = midpoint between X(8) and X(149)
X(80) = reflection of X(I) about X(J) for these (I,J): (1,11), (100,10)
X(80) = isogonal conjugate of X(36)
X(80) = isotomic conjugate of X(320)
X(80) = inverse of X(1) in the Furhmann circle
X(80) = anticomplement of X(214)
X(80) = cevapoint of X(10) and X(519)
X(80) = X(I)-cross conjugate of X(J) for these (I,J): (44,2), (517,1)
X(80) = X(8)-beth conjugate of X(100)
X(81) CEVAPOINT OF INCENTER AND SYMMEDIAN POINT
Trilinears 1/(b + c) : 1/(c + a) : 1/(a + b)
Barycentrics a/(b + c) : b/(c + a) : c/(a + b)X(81) lies on these lines:
1,21 2,6 7,27 8,1010 19,969 28,60 29,189 32,980 42,100 43,750 55,1002 56,959 57,77 65,961 88,662 99,739 105,110 145,1043 226,651 239,274 314,321 377,387 386,404 411,581 593,757 715,932 859,957 941,967 982,985 1019,1022 1051,1054 1098,1104X(81) = isogonal conjugate of X(37)
X(81) = isotomic conjugate of X(321)
X(81) = X(I)-Ceva conjugate of X(J) for these (I,J): (7,229), (86,21), (286,28)
X(81) = cevapoint of X(I) and X(J) for these (I,J): (1,6), (57,222), (58,284)
X(81) = X(I)-cross conjugate of X(J) for these (I,J): (1,86), (3,272), (6,58), (57,27), (284,21)
X(81) = crosspoint of X(274) and X(286)
X(81) = X(I)-beth conjugate of X(J) for these (I,J): (333,333), (643,81), (645,81), (648,81), (662,81), (931,81)
X(82)
Trilinears 1/(b2 + c2) : 1/(c2 + a2) : 1/(a2 + b2)
= sin A csc(A + ω) : sin B csc(B + ω) : sin C csc(C + ω)Barycentrics a/(b2 + c2) : b/(c2 + a2) : c/(a2 + b2)
X(82) lies on these lines: 1,560 10,83 31,75 37,251 58,596 689,715 759,827
X(82) = isogonal conjugate of X(38) X(82) = cevapoint of X(1) and X(31)
X(83) CEVAPOINT OF CENTROID AND SYMMEDIAN POINT
Trilinears bc/(b2 + c2) : ca/(c2 + a2) : ab/(a2 + b2)
= csc(A + ω) : csc(B + ω) : csc(C + ω)Barycentrics 1/(b2 + c2) : 1/(c2 + a2) : 1/(a2 + b2)
X(83) lies on these lines:
2,32 3,262 4,182 5,98 6,76 10,82 17,624 18,623 39,99 213,239 217,287 275,297 597,671 689,729X(83) = isogonal conjugate of X(39)
X(83) = isotomic conjugate of X(141)
X(83) = cevapoint of X(2) and X(6)
X(83) = X(I)-cross conjugate of X(J) for these (I,J): (2,308), (6,251), (512,99)
X(84)
Trilinears f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = 1/(cos B + cos C - cos A - 1)
Barycentrics (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)Let A',B',C' be the excenters. The perpendiculars from B' to A'B and from C' to A'C meet in a point A". Points B" and C" are determined cyclically. The hexyl triangle, A"B"C", is perspective to ABC, and X(84) is the perspector.
X(84) lies on these lines: 1,221 3,9 4,57 7,946 8,20 21,285 33,603 36,90 46,80 58,990 171,989 256,988 294,580 309,314 581,941 944,1000
X(84) = isogonal conjugate of X(40)
X(84) = isotomic conjugate of X(322)
X(84) = X(I)-Ceva conjugate of X(J) for these (I,J): (189,282), (280,1)
X(84) = X(I)-cross conjugate of X(J) for these (I,J): (19,57), (56,1)
X(84) = X(280)-aleph conjugate of X(84)
X(84) = X(I)-beth conjugate of X(J) for these (I,J): (271,3), (280,280), (285,84)
X(85) ISOTOMIC CONJUGATE OF X(9)
Trilinears b2c2/(b + c - a) : c2a2/(c + a - b) : a2b2/(a + b - c)
= tan(A/2) cos2A : tan(B/2) cos2B : tan(C/2) cos2CBarycentrics bc/(b + c - a) : ca/(c + a - b) : ab/(a + b - c)
X(85) lies on these lines:
1,664 2,241 7,8 12,120 29,34 56,870 57,274 76,226 92,331 109,767 150,355 178,508 264,309X(85) = isogonal conjugate of X(41)
X(85) = isotomic conjugate of X(9)
X(85) = X(274)-Ceva conjugate of X(348)
X(85) = cevapoint of X(I) and X(J) for these (I,J): (1,169), (2,7), (57,77), (92,342)
X(85) = X(I)-cross conjugate of X(J) for these (I,J): (2,75), (57,273), (92,309), (142,2), (226,7)X(85) = X(I)-beth conjugate of X(J) for these (I,J):
(76,76), (85,279), (99,1), (274,85), (668,85), (789,85), (799,85), (811,85)
X(86) CEVAPOINT OF INCENTER AND CENTROID
Trilinears bc/(b + c) : ca/(c + a) : ab/(a + b)
Barycentrics 1/(b + c) : 1/(c + a) : 1/(a + b)X(86) lies on these lines:
1,75 2,6 7,21 10,319 29,34 37,190 58,238 60,272 99,106 110,675 142,284 239,1100 269,1088 283,307 310,350 741,789 870,871X(86) = isogonal conjugate of X(42)
X(86) = isotomic conjugate of X(10)
X(86) = X(274)-Ceva conjugate of X(333)
X(86) = cevapoint of X(I) and X(J) for these (I,J): (1,2), (7,77), (21,81)
X(86) = X(I)-cross conjugate of X(J) for these (I,J): (1,81), (2,274), (7,286), (21,333), (58,27), (513,190)
X(86) = X(I)-beth conjugate of X(J) for these (I,J): (86,1014), (99,86), (261,86), (314,314), (645,86), (811,86)
X(87) X(2)-CROSS CONJUGATE OF X(1)
Trilinears 1/(ab + ac - bc) : 1/(bc + ba - ca) : 1/(ca + cb - ab)
Barycentrics a/(ab + ac - bc) : b/(bc + ba - ca) : c/(ca + cb - ab)X(87) lies on these lines: 1,192 6,43 9,292 10,979 34,242 56,238 58,978 106,932
X(87) = isogonal conjugate of X(43)
X(87) = cevapoint of X(2) and X(330)
X(87) = X(2)-cross conjugate of X(1)
X(87) = X(932)-beth conjugate of X(87)
X(88)
Trilinears 1/(b + c - 2a) : 1/(c + a - 2b) : 1/(a + b - 2c)
Barycentrics a/(b + c - 2a) : b/(c + a - 2b) : c/(a + b - 2c)X(88) lies on these lines: 1,100 2,45 6,89 28,162 44,679 57,651 81,662 105,901 274,799 278,653 279,658 291,660
X(88) = isogonal conjugate of X(44)
X(88) = cevapoint of X(I) and X(J) for these (I,J): (1,44), (6,36)
X(88) = X(I)-cross conjugate of X(J) for these (I,J): (44,1), (517,7)
X(88) = X(I)-aleph conjugate of X(J) for these (I,J): (88,1), (679,88), (903,63), (1022,1052)
X(88) = X(333)-beth conjugate of X(190)
X(89)
Trilinears 1/(2b + 2c - a) : 1/(2c + 2a - b) : 1/(2a + 2b - c)
Barycentrics a/(2b + 2c - a) : b/(2c + 2a - b) : c/(2a + 2b - c)X(89) lies on these lines: 1,902 2,44 6,88 649,1022
X(89) = isogonal conjugate of X(45)
X(90) X(3)-CROSS CONJUGATE OF X(1)
Trilinears 1/(cos B + cos C - cos A) : 1/(cos C + cos A - cos B) : 1/(cos A + cos B - cos C)
Barycentrics a/(cos B + cos C - cos A) : b/(cos C + cos A - cos B) : c/(cos A + cos B - cos C)X(90) lies on these lines: 1,155 4,46 9,35 21,224 33,47 36,84 40,80 57,79
X(90) = isogonal conjugate of X(46)
X(90) = X(3)-cross conjugate of X(1)
X(91)
Trilinears sec 2A : sec 2B : sec 2C
Barycentrics sin A sec 2A : sin B sec 2B : sin C sec 2CX(91) lies on these lines: 19,920 31,1087 37,498 47,92 63,921 65,68 225,847 255,1109 759,925
X(91) = isogonal conjugate of X(47)
X(91) = X(48)-cross conjugate of X(92)
X(92) CEVAPOINT OF INCENTER AND CLAWSON POINT
Trilinears csc 2A : csc 2B : csc 2C
Barycentrics sec A : sec B : sec CX(92) lies on these lines:
1,29 2,273 4,8 7,189 19,27 25,242 31,162 38,240 40,412 47,91 55,243 57,653 85,331 100,917 226,342 239,607 255,1087 257,297 264,306 304,561 406,1068 608,894X(92) = isogonal conjugate of X(48)
X(92) = isotomic conjugate of X(63)
X(92) = X(I)-Ceva conjugate of X(J) for these (I,J): (85, 342), (264,318), (286,4), (331,273)
X(92) = cevapoint of X(I) and X(J) for these (I,J): (1,19), (4,281), (47,48), (196,278)
X(92) = X(I)-cross conjugate of X(J) for these (I,J): (1,75), (4,273), (19,158), (48,91), (226,2), (281,318)
X(92) = crosspoint of X(I) and X(J) for these (I,J): (85,309), (264,331)
X(92) = X(275)-aleph conjugate of X(47)
X(92) = X(I)-beth conjugate of X(J) for these (I,J): (92,278), (312,329), (648,57)
X(93)
Trilinears sec 3A : sec 3B : sec 3C
Barycentrics sin A sec 3A : sin B sec 3B : sin C sec 3CX(93) lies on these lines: 4,562 49,94 186,252
X(93) = isogonal conjugate of X(49)
X(93) = X(50)-cross conjugate of X(94)
X(94)
Trilinears csc 3A : csc 3B : csc 3C
Barycentrics sin A csc 3A : sin B csc 3B : sin C csc 3CX(94) lies on these lines: 2,300 4,143 23,98 49,93 96,925 275,324
X(94) = isogonal conjugate of X(50)
X(94) = isotomic conjugate of X(323)
X(94) = cevapoint of X(49) and X(50)
X(94) = X(I)-cross conjugate of X(J) for these (I,J): (30,264), (50,93), (265,328)
X(94) = X(300)-Hirst inverse of X(301)
X(95) CEVAPOINT OF CENTROID AND CIRCUMCENTER
Trilinears b2c2 sec(B - C) : c2a2 sec(C - A) : a2b2 sec(A - B)
Barycentrics bc sec(B - C) : ca sec(C - A) : ab sec(A - B)X(95) lies on these lines:
2,97 3,264 54,69 76,96 99,311 140,340 141,287 160,327 183,305 216,648 307,320X(95) = isogonal conjugate of X(51)
X(95) = isotomic conjugate of X(5)
X(95) = anticomplement of X(233)
X(95) = X(276)-Ceva conjugate of X(275)
X(95) = cevapoint of X(I) and X(J) for these (I,J): (2,3), (6,160), (54,97)
X(95) = X(I)-cross conjugate of X(J) for these (I,J): (2,276), (3,97), (54,275), (140,2)
X(96)
Trilinears sec 2A sec(B - C) : sec 2B sec(C - A) : sec 2C sec(A - B)
Barycentrics a sec 2A sec(B - C) : b sec 2B sec(C - A) : c sec 2C sec(A - B)X(96) lies on these lines: 2,54 4,231 24,847 76,95 94,925
X(96) = isogonal conjugate of X(52)
X(96) = cevapoint of X(3) and X(68)
X(96) = X(3)-cross conjugate of X(54)
X(97)
Trilinears cot A sec(B - C) : cot B sec(C - A) : cot C sec(A - B)
Barycentrics cos A sec(B - C) : cos B sec(C - A) : cos C sec(A - B)X(97) lies on these lines: 2,95 3,54 110,418 216,288 276,401
X(97) = isogonal conjugate of X(53)
X(97) = isotomic conjugate of X(324)
X(97) = X(95)-Ceva conjugate of X(54)
X(97) = X(3)-cross conjugate of X(95)
Centers 98- 112,
74, and 476 lie on the circumcircle. Mappings Λ and Ψ for such points are defined here:
Λ(P,X) = isogonal conjugate of the point where line PX meets the line at infinity; let
Y = Λ(P,X); Q = isogonal conjugate of P; Y and Z = points where line YQ meets the circumcircle;
then Ψ(P,X) = Z.
X(98) = TARRY POINT
Trilinears sec(A + ω) : sec(B + ω) : sec(C + ω)
= f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc/(b4 + c4 - a2b2 - a2c2)Barycentrics g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = 1/(b4 + c4 - a2b2 - a2c2)
The antipode of X(99), and a point of intersection of the circumcircle and the Kiepert hyperbola.
Also, X(98) = Ψ(X(101), X(10)).J. W. Clawson, "Points on the circumcircle," American Mathematical Monthly 32 (1925) 169-174.
X(98) lies on these lines:
2,110 3,76 4,32 5,83 6,262 10,101 13,1080 14,383 20,148 22,925 23,94 25,107 30,671 100,228 109,171 186,935 275,427 376,543 381,598 385,511 468,685 523,842 620,631 804,878X(98) = midpoint between X(20) and X(148)
X(98) = reflection of X(I) about X(J) for these (I,J): (4,115), (99,3), (147,114)
X(98) = isogonal conjugate of X(511)
X(98) = isotomic conjugate of X(325)
X(98) = complement of X(147)
X(98) = anticomplement of X(114)
X(98) = X(290)-Ceva conjugate of X(287)
X(98) = cevapoint of X(I) and X(J) for these (I,J): (2,385), (6,237)
X(98) = X(I)-cross conjugate of X(J) for these (I,J): (230,2), (237,6), (248,287), (446,511)
X(98) = X(2)-Hirst inverse of X(287)
X(99) = STEINER POINT
Trilinears bc/(b2 - c2) : ca/(c2 - a2) : ab/(a2 - b2)
= b2c2 csc(B - C) : c2a2 csc(C - A) : a2b2 csc(A - B)Barycentrics 1/(b2 - c2) : 1/(c2 - a2) : 1/(a2 - b2)
The antipode of X(98), and a point of intersection of the circumcircle and the Steiner ellipse.
Also, X(98) = Ψ(X(6), X(2)).X(99) lies on these lines:
1,741 2,111 3,76 4,114 6,729 13,303 14,302 20,147 21,105 22,305 30,316 31,715 32,194 36,350 38,745 39,83 58,727 69,74 75,261 81,739 86,106 95,311 100,668 101,190 102,332 103,1043 104,314 108,811 109,643 110,690 112,648 141,755 163,825 187,385 249,525 264,378 286,915 298,531 299,530 310,675 476,850 512,805 523,691 524,843 666,919 669,886 670,804 692,785 695,711 813,1016 889,898X(99) = midpoint between X(I) and X(J) for these (I,J): (20,147), (616,617)
X(99) = reflection of X(I) about X(J) for these (I,J): (4,114), (98,3), (148,115), (316,325), (385,187)
X(99) = isogonal conjugate of X(512)
X(99) = isotomic conjugate of X(523)
X(99) = complement of X(148)
X(99) = anticomplement of X(115)
X(99) = cevapoint of X(I) and X(J) for these (I,J): (2,523), (3,525), (39,512), (100,190)
X(99) = X(I)-cross conjugate of X(J) for these (I,J): (3,249), (22,250), (512,83), (523,2), (525,76)
X(99) = X(21)-beth conjugate of X(741)
X(100) ANTICOMPLEMENT OF FEUERBACH POINT
Trilinears 1/(b - c) : 1/(c - a) : 1/(a - b)
= (a - b)(a - c) : (b - c)(b - a) : (c - a)(c - b)Barycentrics a/(b - c) : b/(c - a) : c/(a - b)
The antipode of X(104) on the circumcircle; X(100) = Ψ(X(6), X(1)).
X(100) lies on these lines:
1,88 2,11 3,8 4,119 6,739 7,1004 9,1005 10,21 20,153 22,197 31,43 32,713 36,519 37,111 40,78 42,81 46,224 56,145 59,521 63,103 72,74 75,675 76,767 92,917 98,228 99,668 101,644 107,823 108,653 109,651 110,643 112,162 144,480 190,659 198,346 213,729 238,899 281,1013 329,972 442,943 484,758 513,765 516,908 517,953 518,840 522,655 560,697 594,1030 645,931 649,660 650,919 658,664 667,898 693,927 731,869 733,893 753,984 756,846 789,874 976,986X(100) = midpoint between X(20) and X(153)
X(100) = reflection of X(I) about X(J) for these (I,J): (1,214), (4,119), (80,10), (104,3), (149,11)
X(100) = isogonal conjugate of X(513)
X(100) = complement of X(149)
X(100) = anticomplement of X(11)
X(100) = X(99)-Ceva conjugate of X(190)
X(100) = cevapoint of X(I) and X(J) for these (I,J): (1,513), (3,521), (10,522), (142,514), (442,523)
X(100) = X(I)-cross conjugate of X(J) for these (I,J): (3,59), (513,1), (521,8), (522,21)
X(100) = X(1)-line conjugate of X(244)X(100) = X(I)-aleph conjugate of X(J) for these (I,J):
(1,1052), (100,1), (190,63), (643,411), (666,673), (765,100), (1016,190)X(100) = X(I)-beth conjugate of X(J) for these (I,J):
(8,80), (21,106), (100,109), (333,673), (643,100), (765,100)
X(101)
Trilinears a/(b - c) : b/(c - a) : c/(a - b)
= a(a - b)(a - c) : b(b - c)(b - a) : c(c - a)(c - b)Barycentrics a2/(b - c) : b2/(c - a) : c2/(a - b)
The antipode of X(103) on the circumcircle; X(101) = Ψ(X(1), X(6)).
X(101) lies on these lines:
1,41 2,116 3,103 4,118 6,106 9,48 10,98 19,913 20,152 31,609 32,595 36,672 37,284 40,972 42,111 56,218 58,172 59,657 71,74 75,767 78,205 99,190 100,644 102,198 109,654 110,163 514,664 517,910 522,929 560,713 643,931 649,901 651,934 663,919 667,813 668,789 692,926 733,904 743,869 761,984 765,898X(101) = midpoint between X(20) and X(152)
X(101) = reflection of X(I) about X(J) for these (I,J): (4,118), (103,3), (150,116)
X(101) = isogonal conjugate of X(514)
X(101) = complement of X(150)
X(101) = anticomplement of X(116)
X(101) = X(59)-Ceva conjugate of X(55)
X(101) = cevapoint of X(354) and X(513)
X(101) = X(I)-cross conjugate of X(J) for these (I,J): (55,59), (199,250)
X(101) = X(I)-aleph conjugate of X(J) for these (I,J): (100,165), (509,1052), (662,572), (664,169)
X(101) = X(I)-beth conjugate of X(J) for these (I,J): (21,105), (644,644)
X(102)
Trilinears f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = 1/[sin B (sec A - sec B) + sin C (sec A - sec C)]
= g(a,b,c) : g(b,c,a) : g(c,a,b), where
g(a,b,c) = a/[2a5 + (b + c)a4 - 2(b2 + c2)a3 - (b + c)(b2 - c2)2]Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where
g(A,B,C) = (sin A)/[sin B (sec A - sec B) + sin C (sec A - sec C)]The antipode of X(109) on the circumcircle; also, X(102) = Λ(X(1), X(4)).
X(102) lies on these lines:
1,108 2,117 3,109 4,124 19,282 29,107 40,78 73,947 77,934 99,332 101,198 103,928 110,283 112,284 226,1065 516,929X(102) = midpoint between X(20) and X(153)
X(102) = reflection of X(I) about X(J) for these (I,J): (4,124), (109,3), (151,117)
X(102) = isogonal conjugate of X(515)
X(102) = complement of X(151)
X(102) = anticomplement of X(117)
X(102) = X(21)-beth conjugate of X(108)
X(103)
Trilinears a/[(a - b) cot C + (a - c) cot B] : b/[(b - c) cot A + (b - a) cot C] : c/[(c - a) cot B + (c - b) cot A]
Barycentrics f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2/[(a - b) cot C + (a - c) cot B]The antipode of X(101) on the circumcircle; X(103) = Ψ(X(101), X(3)).
X(103) lies on these lines:
1,934 2,118 3,101 4,116 20,150 27,107 33,57 55,109 58,112 63,100 99,1043 102,928 295,813 376,544 515,929 516,927 572,825 672,919 910,971X(103) = midpoint between X(20) and X(150)
X(103) = reflection of X(I) about X(J) for these (I,J): (4,116), (101,3), (152,118)
X(103) = isogonal conjugate of X(516)
X(103) = complement of X(152)
X(103) = anticomplement of X(118)
X(103) = X(21)-beth conjugate of X(934) for these (I,J):
X(104)
Trilinears 1/(-1 + cos B + cos C) : 1/(-1 + cos C + cos A) : 1/(-1 + cos C + cos B)
Barycentrics a/(-1 + cos B + cos C) : b/(-1 + cos C + cos A) : c/(-1 + cos C + cos B)The antipode of X(100) on the circumcircle; X(104) = Λ(X(1), X(3)) = Ψ(X(101), X(9)).
X(104) lies on these lines:
1,109 2,119 3,8 4,11 7,934 9,48 20,149 21,110 28,107 36,80 55,1000 79,946 99,314 105,885 112,1108 256,1064 294,919 355,404 376,528 513,953 517,901 631,958X(104) = midpoint between X(20) and X(149)
X(104) = reflection of X(I) about X(J) for these (I,J): (4,11), (100,3), (153,119)
X(104) = isogonal conjugate of X(517)
X(104) = complement of X(153)
X(104) = anticomplement of X(517)
X(104) = cevapoint of X(I) and X(J) for these (I,J): (1,36), (44,55)
X(104) = X(21)-beth conjugate of X(109)
X(105)
Trilinears 1/[b2 + c2 - a(b + c)] : 1/[c2 + a2 - b(c + a)] : 1/[a2 + b2 - c(a + b)]
Barycentrics a/[b2 + c2 - a(b + c)] : b/[c2 + a2 - b(c + a)] : c/[a2 + b2 - c(a + b)]A center on the circumcircle; X(105) = Λ(X(1), X(6)) = Ψ(X(101), X(1)).
X(105 lies on these lines:
1,41 2,11 3,277 6,1002 21,99 25,108 28,112 31,57 56,279 81,110 88,901 104,885 106,1022 165,1054 238,291 330,932 513,840 644,1083 659,884 666,898 825,985 910,919 961,1104X(105) = isogonal conjugate of X(518)
X(105) = anticomplement of X(120)
X(105) = cevapoint of X(1) and X(238)
X(105) = X(1)-Hirst inverse of X(294)
X(105) = X(I)-beth conjugate of X(J) for these (I,J): (21,101), (927,105)
X(106)
Trilinears a/(2a - b - c) : b/(2b - c - a) : c/(2c - a - b)
Barycentrics a2/(2a - b - c) : b2/(2b - c - a) : c2/(2c - a - b)A center on the circumcircle; X(106) = Λ(X(1), X(2)) = Ψ(X(101), X(6)).
X(106) lies on these lines:
1,88 2,121 6,101 34,108 36,901 56,109 58,110 86,99 87,932 105,1022 238,898 269,934 292,813 614,998 663,840 789,870 833,977 919,1055X(106) = isogonal conjugate of X(519)
X(106) = anticomplement of X(121)
X(106) = X(36)-cross conjugate of X(58)
X(106) = X(I)-beth conjugate of X(J) for these (I,J): (21,100), (901,106)
X(107)
Trilinears f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = 1/[cos A (sin 2B - sin 2C)
= g(a,b,c) : g(b,c,a) : g(c,a,b) where g(a,b,c) = bc/[(b2 - c2)(b2 + c2 - a2)2]Barycentrics 1/[(b2 - c2)(b2 + c2 - a2)2] : 1/[(c2 - a2)(c2 + a2 - b2)2] : 1/[(a2 - b2)(a2 + b2 - c2)2]
A center on the circumcircle; X(107) = Ψ(X(6), X(4)).
X(107) lies on these lines:
2,122 4,74 24,1093 25,98 27,103 28,104 29,102 51,275 100,823 109,162 110,648 111,393 158,759 186,477 250,687 450,511 468,842 741,1096X(107) = reflection of X(4) about X(133)
X(107) = isogonal conjugate of X(520)
X(107) = anticomplement of X(122)
X(107) = cevapoint of X(4) and X(523)
X(107) = X(I)-cross conjugate of X(J) for these (I,J): (24,250), (108,162), (523,4)
X(107) = trilinear pole of line X(4)X(6)
X(108)
Trilinears a/(sec B - sec C) : b/(sec C - sec A): c/(sec A - sec B)
= g(a,b,c) : g(b,c,a) : g(c,a,b) where g(a,b,c) = 1/[(b - c)(b + c - a)(b2 + c2 - a2)]Barycentrics a2/(sec B - sec C) : b2/(sec C - sec A): c2/(sec A - sec B)
A center on the circumcircle; X(108) = Ψ(X(3), X(1)) = Ψ(X(1), X(4)).
X(108) lies on these lines:
1,102 2,123 4,11 7,1013 12,451 24,915 25,105 28,225 33,57 34,106 40,207 55,196 65,74 99,811 100,653 109,1020 110,162 204,223 273,675 318,404 331,767 388,406 429,961 608,739 648,931X(108) = isogonal conjugate of X(521)
X(108) = anticomplement of X(123)
X(108) = X(162)-Ceva conjugate of X(109)
X(108) = cevapoint of X(I) and X(J) for these (I,J): (56,513), (429,523)
X(108) = X(513)-cross conjugate of X(4)
X(108) = crosspoint of X(107) and X(162)
X(108) = X(I)-beth conjugate of X(J) for these (I,J): (21,102), (162,108)
X(109)
Trilinears a/(cos B - cos C) : b/(cos C - cos A): c/(cos A - cos B)
= g(a,b,c) : g(b,c,a) : g(c,a,b) where g(a,b,c) = a/[(b - c)(b + c - a)]Barycentrics a2/(cos B - cos C) : b2/(cos C - cos A): c2/(cos A - cos B)
The antipode of X(102) on the circumcircle; X(109) = Λ(X(1), X(3)).
X(109) lies on these lines:
1,104 2,124 3,102 4,117 7,675 20,151 31,57 34,46 35,73 36,953 40,255 55,103 56,106 58,65 59,901 85,767 98,171 99,643 100,651 101,654 107,162 108,1020 112,163 165,212 191,201 278,917 284,296 478,573 579,608 604,739 649,919 658,927 662,931 840,902X(109) = midpoint between X(20) and X(151)
X(109) = reflection of X(I) about X(J) for these (I,J): (4,117), (102,3)
X(109) = isogonal conjugate of X(522)
X(109) = anticomplement of X(124)
X(109) = X(I)-Ceva conjugate of X(J) for these (I,J): (59,56), (162,108)
X(109) = cevapoint of X(65) and X(513)
X(109) = X(I)-cross conjugate of X(J) for these (I,J): (56,59), (513,58)
X(109) = crosspoint of X(110) and X(162)
X(109) = X(I)-aleph conjugate of X(J) for these (I,J): (100,1079), (162,580), (651,223)
X(109) = X(I)-beth conjugate of X(J) for these (I,J): (21,104), (59,109), (100,100), (110,109), (765,109), (901,109)
X(110) = FOCUS OF KIEPERT PARABOLA
Trilinears csc(B - C) : csc(C - A) : csc(A - B)
= a/(b2 - c2) : b/(c2 - a2) : c/(a2 - b2)Barycentrics a2/(b2 - c2) : b2/(c2 - a2) : c2/(a2 - b2)
The antipode of X(74) on the circumcircle, and the isogonal conjugate of the isotomic conjugate of X(99).
Also, X(110) = Ψ(X(6), X(3)) = Feuerbach point of the tangential triangle.J. W. Clawson, "Points on the circumcircle," American Mathematical Monthly 32 (1925) 169-174.
Roland H. Eddy and R. Fritsch, "The conics of Ludwig Kiepert: a comprehensive lesson in the geometry of the triangle," Mathematics Magazine 67 (1994) 188-205.
X(110) lies on these lines:
1,60 2,98 3,74 4,113 5,49 6,111 11,215 20,146 21,104 22,154 23,323 24,155 27,917 28,915 30,477 31,593 32,729 39,755 58,106 65,229 67,141 69,206 81,105 86,675 97,418 99,690 100,643 101,163 102,283 107,648 108,162 143,195 187,352 190,835 249,512 250,520 251,694 274,767 324,436 351,526 353,574 373,575 376,541 476,523 525,935 560,715 595,849 668,839 669,805 670,689 681,823 685,850 789,799 859,953X(110) = midpoint between X(I) and X(J) for these (I,J): (3,399), (20,146), (23,323)
X(110) = reflection of X(I) about X(J) for these (I,J): (4,113), (67,141), (74,3), (265,5)
X(110) = isogonal conjugate of X(523)
X(110) = isotomic conjugate of X(850)
X(110) = inverse of X(2) in the Brocard circle
X(110) = anticomplement of X(125)
X(110) = X(I)-Ceva conjugate of X(J) for these (I,J): (249,6), (250,3)
X(110) = cevapoint of X(I) and X(J) for these (I,J): (3,520), (5,523), (6,512), (141,525)X(110) = X(I)-cross conjugate of X(J) for these (I,J):
(1,59), (3,250), (6,249), (109,162), (351,111), (512,6), (520,3), (523,54), (526,74)X(110) = X(I)-Hirst inverse of X(J) for these (I,J): (1,245), (2,125), (3,246), (4,247)
X(110) = X(I)-beth conjugate of X(J) for these (I,J): (21,759), (643,643)Let X = X(110) and let V be the vector-sum XA + XB + XC; then V = X(265)X(399).
Let W be the vector-sum XA' + XB' + XC', where A'B'C' is the pedal triangle of X;
then W = X(125)X(110) = X(265)X(113) = X(113,399).
X(111) = PARRY POINT
Trilinears a/(2a2 - b2 - c2) : b/(2b2 - c2 - a2) : c/(2c2 - a2 - b2)
Barycentrics a2/(2a2 - b2 - c2) : b2/(2b2 - c2 - a2) : c2/(2c2 - a2 - b2)A point on the circumcircle; X(111) = Λ(X(2), X(6)).
X(111) lies on these lines:
2,99 6,110 23,187 25,112 37,100 42,101 107,393 182,353 230,476 251,827 308,689 352,511 385,892 468,935 512,843 647,842 694,805 931,941X(111) = isogonal conjugate of X(524)
X(111) = inverse of X(353) in the Brocard circle
X(111) = anticomplement of X(126)
X(111) = cevapoint of X(6) and X(187)
X(111) = X(I)-cross conjugate of X(J) for these (I,J): (23,251), (187,6), (351,110)
X(112)
Trilinears a/(sin 2B - sin 2C) : b/(sin 2C - sin 2A) : c/(sin 2A - sin 2B)
= f(a,b,c) : f(b,c,a) : f(c,a,b) where f(a,b,c) = a/[(b2 - c2)(b2 + c2 - a2)]Barycentrics a2/(sin 2B - sin 2C) : b2/(sin 2C - sin 2A) : c2/(sin 2A - sin 2B)
A point on the circumcircle; X(112) = Ψ(X(4), X(6)).
X(112) lies on these lines:
2,127 4,32 6,74 19,759 25,111 27,675 28,105 33,609 50,477 54,217 58,103 99,648 100,162 102,284 104,1108 109,163 186,187 230,403 250,691 251,427 286,767 376,577 393,571 523,935 789,811X(112) = reflection of X(4) about X(132)
X(112) = isogonal conjugate of X(525)
X(112) = anticomplement of X(127)
X(112) = X(I)-Ceva conjugate of X(J) for these (I,J): (249,24), (250,25)
X(112) = cevapoint of X(I) and X(J) for these (I,J): (32,512), (427,523)
X(112) = X(I)-cross conjugate of X(J) for these (I,J): (25,250), (512,4), (523,251)
Centers 113-139
lie on the nine-point circle.
X(113) = JERABEK ANTIPODE
Trilinears f(A,B,C) : f(B,C,A) : f(C,A,B), where
f(A,B,C) = [1 - cos A (sin 2B + sin 2C)][cos A - 2 cos B cos C]Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A)f(A,B,C)
The antipode on the nine-point circle of X(125); also, X(74) of the medial triangle, and X(104) of the orthic triangle.
X(113) lies on these lines: 2,74 3,122 4,110 5,125 6,13 11,942 52,135 114,690 123,960 127,141 137,546
X(113) = midpoint between X(I) and X(J) for these (I,J): (4,110), (74,146), (265,399)
X(113) = reflection of X(125) about X(5)
X(113) = X(4)-Ceva conjugate of X(30)
X(113) = crosspoint of X(4) and X(403)Let X = X(113) and let V be the vector-sum XA + XB + XC; then V = X(113)X(146).
X(114) = KIEPERT ANTIPODE
Trilinears f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc[b sec(B + ω) + c sec(C + ω)]
Barycentrics g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = b sec(B + ω) + c sec(C + ω)The antipode on the nine-point circle of X(115); also, X(98) of the medial triangle, and X(103) of the orthic triangle.
X(114) lies on these lines: 2,98 3,127 4,99 5,39 25,135 52,211 113,690 132,684 136,427 325,511 381,543
X(114) = midpoint between X(I) and X(J) for these (I,J): (4,99), (98,147)
X(114) = reflection of X(115) about X(5)
X(114) = X(I)-Ceva conjugate of X(J) for these (I,J): (2,230), (4,511)
X(114) = crosspoint of X(2) and X(325)Let X = X(114) and let V be the vector-sum XA + XB + XC; then V = X(114)X(147).
X(115) = CENTER OF KIEPERT HYPERBOLA
Trilinears bc(b2 - c2)2 : ca(c2 - a2)2 : ab(a2 - b2)2
Barycentrics (b2 - c2)2 : (c2 - a2)2 : (a2 - b2)2On the nine-point circle; also, X(99) of the medial triangle, and X(101) of the orthic triangle.
Roland H. Eddy and R. Fritsch, "The conics of Ludwig Kiepert: a comprehensive lesson in the geometry of the triangle," Mathematics Magazine 67 (1994) 188-205.
X(115) lies on these lines:
2,99 4,32 5,39 6,13 11,1015 30,187 50,231 53,133 76,626 116,1086 120,442 125,245 127,338 128,233 129,389 131,216 232,403 316,385 325,538 395,530 396,531 593,1029 804,1084X(115) = midpoint between X(I) and X(J) for these (I,J): (4,98), (13,14), (99,148), (316,385)
X(115) = reflection of X(I) about X(J) for these (I,J): (114,5), (187,230)
X(115) = isogonal conjugate of X(249)
X(115) = inverse of X(6) in the orthocentroidal circle
X(115) = X(I)-Ceva conjugate of X(J) for these (I,J): (2,523), (4,512), (338,125)
X(115) = crosspoint of X(I) and X(J) for these (I,J): (2,523), (68,525)
X(115) = X(2)-Hirst inverse of X(148)Let X = X(115) and let V be the vector-sum XA + XB + XC; then V = X(115)X(148).
X(116)
Trilinears f(a,b,c) : f(b,c,a) : f(c,a,b) where
f(a,b,c) = bc/[(b4 + c4 - a(b3 + c3) - bc(b2 + c2) + abc(b + c)]Barycentrics g(a,b,c) : g(b,c,a) : g(c,a,b) where
g(a,b,c) = (b2 + c2 + bc - ab - ac)(b - c)2A point on the nine-point circle; also X(101) of the medial triangle.
X(116) lies on these lines: 2,101 4,103 5,118 10,120 115,1086 119,142 121,141 124,928
X(116) = midpoint between X(I) and X(J) for these (I,J): (4,103), (101,150)
X(116) = reflection of X(118) about X(5)
X(116) = X(4)-Ceva conjugate of X(514)Let X = X(116) and let V be the vector-sum XA + XB + XC; then V = X(116)X(150).
X(117)
Trilinears f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = g(b,c,a) + g(b,c,a), and
g(b,c,a) = b2c/[c(sec B - sec C) + a(sec B - sec A)]Barycentrics h(a,b,c) : h(b,c,a) : h(c,a,b) where h(a,b,c) = af(a,b,c)
A point on the nine-point circle; also X(102) of the medial triangle.
X(117) lies on these lines: 2,102 4,109 5,124 10,123 11,65 118,928 136,407
X(117) = midpoint between X(I) and X(J) for these (I,J): (4,109), (102,151)
X(117) = reflection of X(124) about X(5)
X(117) = X(4)-Ceva conjugate of X(515)Let X = X(117) and let V be the vector-sum XA + XB + XC; then V = X(117)X(151).
X(118)
Trilinears f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = g(b,c,a) + g(b,c,a), and
g(b,c,a) = b3c/[(b - c) cot A + (b - a) cot C]Barycentrics h(a,b,c) : h(b,c,a) : h(c,a,b) where h(a,b,c) = af(a,b,c)
A point on the nine-point circle; also X(103) of the medial triangle.
X(118) lies on these lines: 2,103 4,101 5,116 11,226 117,928 122,440 136,430 381,544 516,910
X(118) = midpoint between X(I) and X(J) for these (I,J): (4,101), (103,152)
X(118) = reflection of X(116) about X(5)
X(118) = X(4)-Ceva conjugate of X(516)Let X = X(118) and let V be the vector-sum XA + XB + XC; then V = X(118)X(152).
X(119) = FEUERBACH ANTIPODE
Trilinears f(A,B,C) : f(B,C,A) : f(C,A,B), where
f(A,B,C) = (csc A)(-1 + cos B + cos C)[sin 2B + sin 2C + 2(-1 + cos A)(sin B + sin C)]Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B) where
g(A,B,C) = (-1 + cos B + cos C)[sin 2B + sin 2C + 2(-1 + cos A)(sin B + sin C)]
Antipode on the nine-point circle of X(11); also, X(104) of the medial triangle.
X(119) lies on these lines:
1,5 2,104 3,123 4,100 10,124 116,142 125,442 135,431 136,429 214,515 381,528 517,908X(119) = midpoint between X(I) and X(J) for these (I,J): (4,100), (104,153)
X(119) = reflection of X(11) about X(5)
X(119) = X(4)-Ceva conjugate of X(517)Let X = X(119) and let V be the vector-sum XA + XB + XC; then V = X(119)X(153).
X(120)
Trilinears f(a,b,c) : f(b,c,a) : f(c,a,b), where
f(a,b,c) = bc[2abc - (b + c)(a2 + (b - c)2][b2 + c2 - ab -ac]Barycentrics g(a,b,c) : g(b,c,a) : g(c,a,b) where g(a,b,c) = [2abc - (b + c)(a2 + (b - c)2][b2 + c2 - ab -ac]
A point on the nine-point circle; also X(105) of the medial triangle.
X(120) lies on these lines: 2,11 10,116 12,85 115,442
X(120) = X(4)-Ceva conjugate of X(518)
X(121)
Trilinears f(a,b,c) : f(b,c,a) : f(c,a,b), where
f(a,b,c) = bc(b + c - 2a)[b3 + c3 + a(b2 + c2) - 2bc(b + c)]Barycentrics g(a,b,c) : g(b,c,a) : g(c,a,b) where g(a,b,c) = (b + c - 2a)[b3 + c3 + a(b2 + c2) - 2bc(b + c)]
A point on the nine-point circle; also X(106) of the medial triangle.
X(121) lies on these lines: 2,106 10,11 116,141
X(121) = X(4)-Ceva conjugate of X(519)
X(122)
Trilinears f(a,b,c) : f(b,c,a) : f(c,a,b), where
f(a,b,c) = (b2 - c2)2(cos A - cos B cos C) cot2ABarycentrics g(a,b,c) : g(b,c,a) : g(c,a,b) where g(a,b,c) = a(b2 - c2)2(cos A - cos B cos C) cot2A
A point on the nine-point circle; also X(107) of the medial triangle.
X(122) lies on these lines: 2,107 3,113 5,133 118,440 125,684 138,233
X(122) = reflection of X(133) about X(5)
X(122) = X(I)-Ceva conjugate of X(J) for these (I,J): (4,520), (253,525)
X(122) = crosspoint of X(253) and X(525)
X(123)
Trilinears f(A,B,C) : f(B,C,A) : f(C,A,B), where
f(A,B,C) = (csc A)(sec B - sec C)[(sec A)(sin2B - sin2C) + sin C tan C - sin B tan B]Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B) where
g(A,B,C) = (sec B - sec C)[(sec A)(sin2B - sin2) + sin C tan C - sin B tan B]A point on the nine-point circle; also X(108) of the medial triangle.
X(123) lies on these lines: 2,108 3,119 10,117 113,960
X(123) = X(4)-Ceva conjugate of X(521)
X(124)
Trilinears f(a,b,c) : f(b,c,a) : f(c,a,b), where
f(a,b,c) = bc(b + c - a)(b - c)2[(b + c)(b2 + c2 - a2 - bc) + abc]Barycentrics g(a,b,c) : g(b,c,a) : g(c,a,b), where
g(a,b,c) = (b + c - a)(b - c)2 [(b + c)(b2 + c2 - a2 - bc) + abc]A point on the nine-point circle; also X(109) of the medial triangle.
X(124) lies on these lines: 2,109 4,102 5,117 10,119 116,928
X(124) = midpoint between X(4) and X(102)
X(124) = reflection of X(117) about X(5)
X(124) = X(4)-Ceva conjugate of X(522)
X(125) = CENTER OF JERABEK HYPERBOLA
Trilinears cos A sin2(B - C) : cos B sin2(C - A)] : cos C sin2(A - B)
= (sec A)(c cos C - b cos B)2 : (sec B)(a cos A - c cos C)2 : (sec C)(b cos B - a cos A)2
= bc(b2 + c2 - a2)(b2 - c2)2 : ca(c2 + a2 - b2)(c2 - a2)2 : ab(a2 + b2 - c2)(a2 - b2)2Barycentrics (sin 2A)[sin(B - C)]2 : (sin 2B)[sin(C - A)]2 : (sin 2C)[sin(A - B)]2
On the nine-point circle; also, X(110) of the medial triangle and X(100) of the orthic triangle, if ABC is acute.
Roland H. Eddy and R. Fritsch, "The conics of Ludwig Kiepert: a comprehensive lesson in the geometry of the triangle," Mathematics Magazine 67 (1994) 188-205.
X(125) lies on these lines:
2,98 3,131 4,74 5,113 6,67 51,132 68,1092 69,895 115,245 119,442 122,684 126,141 128,140 136,338 381,541 511,858X(125) = midpoint between X(I) and X(J) for these (I,J): (3,265), (4,74), (6,67)
X(125) = reflection of X(113) about X(5)
X(125) = isogonal conjugate of X(250)
X(125) = inverse of X(184) in the Brocard circle
X(125) = complement of X(110)
X(125) = X(I)-Ceva conjugate of X(J) for these (I,J): (4,523), (66,512), (68,520), (69,525), (338,115)
X(125) = crosspoint of X(I) and X(J) for these (I,J): (4,523), (69,525), (338,339)
X(125) = X(2)-line conjugate of X(110)Let X = X(125) and let V be the vector-sum XA + XB + XC; then V = X(399)X(113) = X(113)X(265).
X(126)
Trilinears f(a,b,c) : f(b,c,a) : f(c,a,b), where
f(a,b,c) = bc(2a2 - b2 - c2)[b4 + c4 + a2(b2 + c2) - 4b2c2]Barycentrics g(a,b,c) : g(b,c,a) : g(c,a,b) where g(a,b,c) = (2a2 - b2 - c2)[b4 + c4 + a2(b2 + c2) - 4b2c2]
A point on the nine-point circle; also X(111) of the medial triangle.
X(126) lies on these lines: 2,99 125,141 625,858
X(126) = X(4)-Ceva conjugate of X(524)
X(127)
Trilinears f(a,b,c) : f(b,c,a) : f(c,a,b), where
f(a,b,c) = bc(sin 2B - sin 2C)[(b2 - c2)sin 2A - b2sin 2B + c2sin 2C]Barycentrics g(a,b,c) : g(b,c,a) : g(c,a,b), where
g(a,b,c) = (sin 2B - sin 2C)[(b2 - c2)sin 2A - b2sin 2B + c2sin 2C]A point on the nine-point circle; also X(112) of the medial triangle.
X(127) lies on these lines: 2,112 3,114 5,132 113,141 115,338 133,381 125,140
X(127) = reflection of X(132) about X(5)
X(127) = X(4)-Ceva conjugate of X(525)
X(128)
Trilinears f(A,B,C) : f(B,C,A) : f(C,A,B), where
f(A,B,C) = (sec A)(cos 2B + cos 2C)(1 + 2 cos 2A)(cos 2A + 2 cos 2B cos 2C)Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B) where g(A,B,C) = (sin A) f(A,B,C)
A point on the nine-point circle; also X(74) of the orthic triangle.
X(128) lies on these lines: 5,137 52,134 53,139 115,233 125,140
X(128) = reflection of X(137) about X(5)
X(128) = X(2)-Ceva conjugate of X(231)
X(129)
Trilinears f(A,B,C) : f(B,C,A) : f(C,A,B), where
f(A,B,C) = (sec A)(sin 2A)(sin 2B + sin 2C) s(A,B,C) t(A,B,C),
s(A,B,C) = sin4(2B) + sin4(2C) - sin2(2A) sin2(2B) - sin2(2A) sin2(2C),
t(A,B,C) = sin4(2A) + sin2(2A) u(A,B,C) + v(A,B,C),
u(A,B,C) = sin 2B sin 2C - sin2(2B) - sin2(2C),
v(A,B,C) = (sin 2B sin 2C)(sin 2B - sin 2C)2Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B) where g(A,B,C) = (sin A) f(A,B,C)
A point on the nine-point circle; also X(98) of the orthic triangle.
X(129) lies on these lines: 5,130 51,137 52,139 115,389
X(129) = reflection of X(130) about X(5)
X(130)
Trilinears f(A,B,C) : f(B,C,A) : f(C,A,B), where
f(A,B,C) = (sin A)(sin 2B + sin 2C)[(sin 2B - sin 2C)2][sin2(2A) + sin 2B sin 2C]Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A) f(A,B,C)
A point on the nine-point circle; also X(99) of the orthic triangle.
X(130) lies on these lines: 5,129 51,138
X(130) = reflection of X(129) about X(5)
X(131)
Trilinears f(A,B,C) : f(B,C,A) : f(C,A,B), where
f(A,B,C) = (sec A)[2T - S(sec 2B + sec 2C)](T - S sec 2A),
S = sin 2A + sin 2B + sin 2C, T = tan 2A + tan 2B + tan 2CBarycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A) f(A,B,C)
A point on the nine-point circle; also X(102) of the orthic triangle.
X(131) lies on these lines: 3,125 4,135 5,136 115,216
X(131) = reflection of X(136) about X(5)
X(132)
Trilinears f(A,B,C) : f(B,C,A) : f(C,A,B), where
f(A,B,C) = (sec A) u(A,B,C) v(A,B,C),
u(A,B,C) = [sin2(2A) + (sin 2B - sin 2C)2 + (sin 2A)(sin 2A - sin 2B - sin 2C)],
v(A,B,C) = [sin2(2B) + sin2(2C) - (sin 2A sin 2B) - (sin 2A sin 2C)]Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A) f(A,B,C)
A point on the nine-point circle; also X(105) of the orthic triangle.
X(132) lies on these lines: 2,107 4,32 5,127 25,136 51,125 114,684 137,428 147,648
X(132) = midpoint between X(4) and X(112)
X(132) = reflection of X(127) about X(5)
X(132) = X(2)-Ceva conjugate of X(232)
X(132) = X(4)-line conjugate of X(248)
X(133)
Trilinears f(A,B,C) : f(B,C,A) : f(C,A,B), where
f(A,B,C) = (sec A) u(A,B,C) v(A,B,C),
u(A,B,C) = (sin 2B - sin 2C)2 + sin 2A sin 2B - sin 2A sin 2C - 2 sin 2B sin 2C),
v(A,B,C) = 2 sin 2A - sin 2B - sin 2C)]Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A) f(A,B,C)
A point on the nine-point circle; also X(106) of the orthic triangle.
X(133) lies on these lines: 4,74 5,122 53,115 127,381 136,235
X(133) = midpoint between X(4) and X(107)
X(133) = reflection of X(122) about X(5)
X(134)
Trilinears f(A,B,C) : f(B,C,A) : f(C,A,B), where
f(A,B,C) = (sec A) u(A,B,C) [v(B,C,A) - v(C,B,A)],
u(A,B,C) = (sin 2A)[sin2(2B) - sin2(2C)][sin2(2B) + sin2(2C) - sin2(2A)]2,
v(B,C,A) = sin 2C [sin2(2A) - sin2(2B)][sin2(2A) + sin2(2B) - sin2(2C)]2Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A) f(A,B,C)
A point on the nine-point circle; also X(107) of the orthic triangle.
X(134) lies on this line: 52,128
X(135)
Trilinears f(A,B,C) : f(B,C,A) : f(C,A,B), where
f(A,B,C) = (sec A)[(sin 2B)/(sec 2C - sec 2A) + (sin 2C)/(sec 2A - sec 2B)]Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where
g(A,B,C) = (tan A)[(sin 2B)/(sec 2C - sec 2A) + (sin 2C)/(sec 2A - sec 2B)]A point on the nine-point circle; also X(108) of the orthic triangle.
X(135) lies on these lines: 4,131 25,114 52,113 119,431
X(136)
Trilinears f(A,B,C) : f(B,C,A) : f(C,A,B), where
f(A,B,C) = (sec A)[(sin 2B - sin 2C)2](sin 2B + sin 2C - sin 2A) u(A,B,C),
u(A,B,C) = [sin2(2B) + sin2(2C) - sin2(2A)]Barycentrics af(A,B,C) : bf(B,C,A) : cf(C,A,B)
A point on the nine-point circle; also X(109) of the orthic triangle.
X(136) lies on these lines:
2,925 4,110 5,131 25,132 68,254 114,427 117,407 118,430 119,429 125,338 127,868 133,235X(136) = reflection of X(131) about X(5)
X(136) = complement of X(925)
X(136) = X(254)-Ceva conjugate of X(523)
X(137)
Trilinears f(A,B,C) : f(B,C,A) : f(C,A,B), where
f(A,B,C) = (sec A)(sin 2B + sin 2C)[(sin 2B - sin 2C)2] u(A,B,C),
u(A,B,C) = [sin2(2A) - sin2(2B) - sin2(2C) - (sin 2B sin 2C)]Barycentrics af(A,B,C) : bf(B,C,A) : cf(C,A,B)
A point on the nine-point circle; also X(110) of the orthic triangle.
X(137) lies on these lines: 5,128 51,129 53,138 113,546 132,428
X(137) = reflection of X(128) about X(5) X(137) = complement of X(930)
X(138)
Trilinears (v + w) sec A : (w + u) sec B : (u + v) sec C, where
u = u(A,B,C) = (sin 2A)/(2 sin22A - sin22B - sin22C), v = u(B,C,A), w = u(C,A,B)
Barycentrics (v + w) tan A : (w + u) tan B : (u + v) tan C
A point on the nine-point circle; also X(111) of the orthic triangle.
X(138) lies on these lines: 51,130 53,137 122,233
X(139)
Trilinears f(A,B,C) : f(B,C,A) : f(C,A,B), where
f(A,B,C) = (sec A)(sin 2B + sin 2C)[(sin 2B - sin 2C)2][sin2(2B) + sin2(2C) - sin2(2A)] u(A,B,C),
u(A,B,C) = (sin 2B)4 + (sin 2C)4 - (sin 2A)4 + (sin 2B sin 2C)[sin2(2B) + sin2(2C) - sin2(2A)]Barycentrics af(A,B,C) : bf(B,C,A) : cf(C,A,B)
A point on the nine-point circle; also X(112) of the orthic triangle.
X(139) lies on these lines: 52,129 53,128
Centers 113- 170
113- 127, 140- 143: centers of the medial triangle
128- 139: centers of the orthic triangle
144- 153: centers of the anticomplementary triangle
154- 157, 159- 163: centers of the tangential triangle
164- 170: centers of the excentral triangle
X(140) = Midpoint of X(3) and X(5)
Trilinears 2 cos A + cos(B - C) : 2 cos B + cos(C - A) : 2 cos C + cos(A - B)
= 1/(cos A + 2 sin B sin C) : 1/(cos B + 2 sin C sin A) : 1/(cos C + 2 sin A sin B)
= f(a,b,c) : f(b,c,a) : f(c,a,b), where
f(a,b,c) = bc[b cos( C - A ) + c cos (B - A)]Barycentrics g(a,b,c) : g(b,c,a) : g(c,a,b) where g(a,b,c) = b cos( C - A ) + c cos (B - A)
A center on the Euler line, the crosspoint of the two Napoleon points, also, X(5) of the medial triangle.
X(140) lies on these lines:
2,3 10,214 11,35 12,36 15,18 16,17 39,230 54,252 55,496 56,495 61,395 62,396 95,340 125,128 141,182 143,511 195,323 298,628 299,627 302,633 303,634 343,569 371,615 372,590 524,575 576,597 601,748 602,750 618,630 619,629X(140) = midpoint between X(I) and X(J) for these (I,J): (3,5), (141,182)
X(140) = complement of X(5)
X(140) = X(2)-Ceva conjugate of X(233)
X(140) = crosspoint of X(I) and X(J) for these (I,J): (2,95), (17,18)Let X = X(140) and let V be the vector-sum XA + XB + XC; then V = X(140)X(3) = X(143,389) = X(5,140).
X(141) COMPLEMENT OF SYMMEDIAN POINT
Trilinears bc(b2 + c2) : ca(c2 + a2) : ab(a2 + b2)
f(A,B,C) = csc2A sin(A + ω) : csc2B sin(B + ω) : csc2C sin(C + ω)Barycentrics b2 + c2 : c2 + a2 : a2 + b2
X(6) of the medial triangle.
X(141) lies on these lines:
2,6 3,66 5,211 10,142 37,742 39,732 45,344 53,264 67,110 75,334 76,698 95,287 99,755 113,127 116,121 125,126 140,182 239,319 241,307 308,670 311,338 317,458 320,894 384,1031 441,577 486,591 498,611 499,613 523,882 542,549 575,629 997,1060X(141) = midpoint between X(I) and X(J) for these (I,J): (6,69), (66,159), (67,110)
X(141) = reflection of X(182) about X(140)
X(141) = isogonal conjugate of X(251)
X(141) = isotomic conjugate of X(83)
X(141) = inverse of X(625) in the nine-point circle
X(141) = complement of X(6)
X(141) = X(I)-Ceva conjugate of X(J) for these (I,J): (2,39), (67,524), (110,525)
X(141) = X(39)-cross conjugate of X(427)
X(141) = crosspoint of X(2) and X(76)
X(141) = X(645)-beth conjugate of X(141)Let X = X(141) and let V be the vector-sum XA + XB + XC; then V = X(141)X(69).
Let W be the vector-sum XA' + XB' + XC', where A'B'C' is the pedal triangle of X; then W = X(143)X(140).
X(142) COMPLEMENT OF MITTENPUNKT
Trilinears b + c - [(b - c)2]/a : c + a - [(c - a)2]/b : a + b - [(a - b)2]/c
Barycentrics bc[ab + ac - (b - c)2] : ca[bc + ba - (c - a)2] : ab[ca + cb - (a - b)2]X(9) of the medial triangle. Also, X(142) is the centroid of the set {X(1), X(4), X(7), X(40)}.
X(142) lies on these lines: 1,277 2,7 3,516 5,971 10,141 37,1086 86,284 116,119 214,528 269,948 377,950 474,954
X(142) = midpoint between X(7) and X(9)
X(142) = complement of X(9)
X(142) = X(100)-Ceva conjugate of X(514)
X(142) = crosspoint of X(2) and X(85)
X(142) = X(190)-beth conjugate of X(142)Let X = X(142) and let V be the vector-sum XA + XB + XC; then V = X(142)X(7).
X(143)
Trilinears f(A,B,C) : f(B,C,A) : f(C,A,B), where
f(A,B,C) = (sec A)([cos(2C - 2A) + cos(2A - 2B)]Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (tan A)([cos(2C - 2A) + cos(2A - 2B)]
X(5) of the orthic triangle.
X(143) lies on these lines: 4,94 5,51 6,26 25,156 30,389 110,195 140,511 324,565
X(143) = midpoint between X(5) and X(52)
X(143) = isogonal conjugate of X(252)
X(144) ANTICOMPLEMENT OF X(7)
Trilinears f(A,B,C) : f(B,C,A) : f(C,A,B), where
Barycentrics tan B/2 + tan C/2 - tan A/2 : tan C/2 + tan A/2 - tan B/2 : tan A/2 + tan B/2 - tan C/2X(7) of the anticomplementary triangle.
X(144) lies on these lines:
2,7 8,516 20,72 21,954 69,190 75,391 100,480 145,192 219,347 220,279 320,344
X(144) = reflection of X(I) about X(J) for these (I,J): (7,9), (145,390)
X(144) = anticomplement of X(7)
X(144) = X(8)-Ceva conjugate of X(2)
X(144) = X(I)-beth conjugate of X(J) for these (I,J): (190,144), (645,346)
X(145) ANTICOMPLEMENT OF NAGEL POINT
Trilinears bc(3a - b - c) : ca(3b - c - a) : ab(3c - a - b)
Barycentrics 3a - b - c : 3b - c -a : 3c - a - b
X(8) of the anticomplementary triangle.
X(145) lies on these lines: 1,2 4,149 6,346 20,517 21,956 37,391 56,100 72,452 81,1043 144,192 218,644 279,664 329,950 330,1002 377,1056 404,999 515,962
X(145) = reflection of X(I) about X(J) for these (I,J): (8,1), (144,390)
X(145) = anticomplement of X(8)
X(145) = X(7)-Ceva conjugate of X(2)
X(145) = X(643)-beth conjugate of X(56)
X(146)
Trilinears bc(-avw + bwu + cuv) : ca(-bwu + cuv + avw) : ab(-cuv + avw + bwu), where
u = u(A,B,C) = cos A - 2 cos B cos C, v = u(B,C,A), w = u(C,A,B)Barycentrics -avw + bwu + cuv : -bwu + cuv + avw : -cuv + avw + bwu
X(74) of the anticomplementary triangle.
X(146) lies on these lines: 2,74 4,94 20,110 30,323 147,690 148,193
X(146) = reflection of X(I) about X(J) for these (I,J): (20,110), (74,113)
X(147) TARRY POINT OF ANTICOMPLEMENTARY TRIANGLE
Trilinears f(a,b,c) : f(b,c,a) : f(c,a,b), where
f(a,b,c) = bc[a8 + (b2 + c2)a6 - (2b4 + 3b2c2 + 2c4)a4
+ (b6 + b4c2 + b2c4 + c6)a2 - b8 + b6c2 + b2c6 - c8]Barycentrics g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = af(a,b,c)
X(98) of the anticomplementary triangle.
X(147) lies on these lines: 1,150 2,98 4,148 20,99 132,648 146,690 684,804
X(147) = reflection of X(I) about X(J) for these (I,J): (20,99), (98,114), (148,4)
X(147) = X(325)-Ceva conjugate of X(2)
X(148) STEINER POINT OF ANTICOMPLEMENTARY TRIANGLE
Trilinears f(a,b,c) : f(b,c,a) : f(c,a,b), where
f(a,b,c) = bc[a4 - (b2 - c2)2 + b2c2 - a2b2 - a2c2]Barycentrics g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = a4 - (b2 - c2)2 + b2c2 - a2b2 - a2c2
X(99) of the anticomplementary triangle.
X(148) lies on these lines: 2,99 4,147 13,617 20,98 30,385 146,193 316,538
X(148) = reflection of X(I) about X(J) for these (I,J): (20,98), (99,115), (147,4)
X(148) = X(523)-Ceva conjugate of X(2)
X(148) = X(2)-Hirst inverse of X(115)
X(149)
Trilinears f(a,b,c) : f(b,c,a) : f(c,a,b), where
f(a,b,c) = bc[b3 + c3 - a3 + (a2 - bc)(b + c) + a(bc - b2 - c2)]Barycentrics g(a,b,c) : g(b,c,a) : g(c,a,b), where
g(a,b,c) = b3 + c3 - a3 + (a2 - bc)(b + c) + a(bc - b2 - c2)
X(100) of the anticomplementary triangle.
X(149) lies on these lines: 2,11 4,145 8,80 20,104 151,962 377,1058 404,496
X(149) = reflection of X(I) about X(J) for these (I,J): (8,80), (20,104), (100,11), (153,4)
X(150)
Trilinears f(a,b,c) : f(b,c,a) : f(c,a,b), where
f(a,b,c) = bc[b4 + c4 - a4 + a(bc2 +cb2 - b3 - c3) - bc(a2 + b2 + c2) + (b + c)a3]Barycentrics g(a,b,c) : g(b,c,a) : g(c,a,b), where
g(a,b,c) = b4 + c4 - a4 + a(bc2 +cb2 - b3 - c3) - bc(a2 + b2 + c2) + (b + c)a3
X(101) of the anticomplementary triangle.
X(150) lies on these lines: 1,147 2,101 4,152 7,80 20,103 69,668 85,355 295,334 348,944 664,952
X(150) = reflection of X(I) about X(J) for these (I,J): (20,103), (101,116), (152,4)
X(151)
Trilinears f(a,b,c) : f(b,c,a) : f(c,a,b), where
f(a,b,c) = (by + cz - ax)/a, where x : y : z = X(102)
Barycentrics g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = af(a,b,c)
X(102) of the anticomplementary triangle.
X(151) lies on these lines: 2,102 20,109 149,962 152,928
X(151) = reflection of X(I) about X(J) for these (I,J): (20,109), (102,117)
X(152)
Trilinears f(a,b,c) : f(b,c,a) : f(c,a,b), where
f(a,b,c) = (by + cz - ax)/a, where x : y : z = X(103)
Barycentrics g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = af(a,b,c)
X(103) of the anticomplementary triangle.
X(152) lies on these lines: 2,103 4,150 20,101 151,928
X(152) = reflection of X(I) about X(J) for these (I,J): (20,101), (103,118), (150,4)
X(153)
Trilinears f(a,b,c) : f(b,c,a) : f(c,a,b), where
f(a,b,c) = (by + cz - ax)/a, where x : y : z = X(104)
Barycentrics g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = af(a,b,c)
X(104) of the anticomplementary triangle.
X(153) lies on these lines: 2,104 4,145 7,80 11,388 20,100 515,908
X(153) = reflection of X(I) about X(J) for these (I,J): (20,100), (104,119), (149,4)
X(154) X(3)-CEVA CONJUGATE OF X(6)
Trilinears (cos A - cos B cos C)a2 : (cos B - cos C cos A)b2 : (cos C - cos A cos B)c2
= a(tan B + tan C - tan A) : b(tan C + tan A - tan B): c(tan A + tan B - tan C)Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin2 A)(tan B + tan C - tan A)
X(2) of the tangential triangle.
X(154) lies on these lines:
3,64 6,25 22,110 26,155 31,56 48,55 160,418 197,692 198,212 205,220 237,682
X(154) = isogonal conjugate of X(253)
X(154) = X(3)-Ceva conjugate of X(6)
X(154) = X(109)-beth conjugate of X(154)Let X = X(154) and let V be the vector-sum XA + XB + XC; then V = X(64)X(20) = X(66)X(159).
X(155) EIGENCENTER OF ORTHIC TRIANGLE
Trilinears f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (cos A)[cos2B + cos2C - cos2A]
Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A)f(A,B,C)
X(4) of the tangential triangle.
X(155) lies on these lines:
1,90 3,49 4,254 5,6 20,323 24,110 25,52 26,154 30,1078 159,511 195,381 382,399 450,1075 648,1093 651,1068
X(155) = reflection of X(I) about X(J) for these (I,J): (26,156), (68,5)
X(155) = isogonal conjugate of X(254)
X(155) = eigencenter of cevian triangle of X(4)
X(155) = eigencenter of anticevian triangle of X(3)
X(155) = X(4)-Ceva conjugate of X(3)Let W be the vector-sum XA' + XB' + XC', where A'B'C' is the pedal triangle of X(155); then W = X(68)X(4) = X(3)X(155).
X(156)
Trilinears f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a[b2y/v + c2z/w - a2x/u],
u = u(A,B,C) = sin 2A, v = u(B,C,A), w = u(C,A,B);
x = x(A,B,C) = u2(v2 + w2) - (v2 - w2)2, y = x(B,C,A), z = x(C,A,B)Barycentrics af(a,b,c) : bf(b,c,a) : cf(c,a,b)
X(5) of the tangential triangle.
X(156) lies on these lines: 3,74 4,49 5,184 25,143 26,154 54,381 546,578 550,1092
X(156) = midpoint between X(26) and X(155)
X(157)
Trilinears f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a[b3cos B + c3cos C - a3cos A]
= g(a,b,c) : g(b,c,a) : g(c,a,b), where
g(a,b,c) = a[a6 - b6 - c6 - a4(b2 + c2) + b4(c2 + a2) + c4(a2 + b2)]Barycentrics af(a,b,c) : bf(b,c,a) : cf(c,a,b)
X(6) of the tangential triangle.
X(157) lies on these lines: 3,66 6,248 22,183 25,53 161,418 206,216
X(157) = X(264)-Ceva conjugate of X(6)
X(158)
Trilinears sec2A : sec2B : sec2C
Barycentrics sec A tan A : sec B tan B : sec C tan C
X(158) lies on these lines:
1,29 3,243 4,65 10,318 37,281 46,412 47,162 75,240 107,759 225,1093 255,775 286,969 823,897 920,921
X(158) = isogonal conjugate of X(255) = isogonal conjugate of X(326)
X(158) = X(I)-cross conjugate of X(J) for these (I,J): (19,92), (225,4)
X(158) = X(I)-aleph conjugate of X(J) for these (I,J): (821,158), (1105,255)
X(158) = X(107)-beth conjugate of X(34)
X(159)
Trilinears f(a,b,c) : f(b,c,a) : f(c,a,b), where
f(a,b,c) = a[(a2 + b2 + c2)sin 2A + (c2 - b2 - a2)sin 2B + (b2 - c2 - a2)sin 2C]Barycentrics g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = af(a,b,c)
X(9) of the tangential triangle.
X(159) lies on these lines: 3,66 6,25 22,69 23,193 155,511 197,200
X(159) = reflection of X(I) about X(J) for these (I,J): (6,206), (66,141)
X(159) = X(I)-Ceva conjugate of X(J) for these (I,J): (22,3), (69,6)Let W be the vector-sum XA' + XB' + XC', where A'B'C' is the pedal triangle of X(159); then W = X(64)X(20) = X(66)X(159).
X(160)
Trilinears f(a,b,c) : f(b,c,a) : f(c,a,b), where
f(a,b,c) = a[(a2 + b2)sin 2A + (c2 - a2)sin 2B +(b2 - c2)sin 2CBarycentrics g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = af(a,b,c)
X(37) of the tangential triangle.
X(160) lies on these lines: 3,66 6,237 22,325 95,327 154,418 206,57
X(160) = X(95)-Ceva conjugate of X(6)
X(161)
Trilinears f(a,b,c) : f(b,c,a) : f(c,a,b), where
f(a,b,c) = a[(a2 + b2 + c2)sin2(2A) + (c2 - b2 - a2)sin2(2B) +(b2 - c2 - a2)sin2(2C)Barycentrics g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = af(a,b,c)
X(63) of the tangential triangle.
X(161) lies on these lines: 6,25 22,343 26,68 157,418
X(161) = X(68)-Ceva conjugate of X(6)
X(162)
Trilinears 1/(sin 2B - sin 2C) : 1/(sin 2C - sin 2A) : 1/(sin 2A - sin 2B)
= f(a,b,c) : f(b,c,a) : f(c,a,b) , where f(a,b,c) = 1/[(b2 - c2)(b2 + c2 - a2)]Barycentrics a/(sin 2B - sin 2C) : b/(sin 2C - sin 2A) : c/(sin 2A - sin 2B)
X(100) of the tangential triangle.
X(162) lies on these lines:
4,270 6,1013 19,897 27,673 28,88 29,58 31,92 47,158 63,204 100,112 107,109 108,110 190,643 238,415 240,896 242,422 255,1099 412,580 799,811X(162) = isogonal conjugate of X(656)
X(162) = X(250)-Ceva conjugate of X(270)
X(162) = cevapoint of X(I) and X(J) for this (I,J): (108,109)
X(162) = X(I)-cross conjugate of X(J) for these (I,J): (108,107), (109,110)
X(162) = X(I)-aleph conjugate of X(J) for these (I,J): (28,1052), (107,920), (162,1), (648,63)
X(162) = trilinear pole of line X(1)X(19)
X(163)
Trilinears (sin 2A)/(sin 2B - sin 2C) : (sin 2B)/(sin 2C - sin 2A) : (sin 2C)/(sin 2A - sin 2B)
= a2/(b2 - c2) : b2/(c2 - a2) : c2/(a2 - b2)Barycentrics a3/(b2 - c2) : b3/(c2 - a2) : c3/(a2 - b2)
X(101) of the tangential triangle.
X(163) lies on these lines: 1,293 19,563 31,923 32,849 48,1094 99,825 101,110 109,112 284,909 643,1018 692,906 798,1101 813,827
X(163) = X(I)-aleph conjugate of X(J) for these (I,J): (648,19), (662,610)
X(164) INCENTER OF EXCENTRAL TRIANGLE
Trilinears sin 2B + sin 2C - sin 2A : sin 2C + sin 2A - sin 2B : sin 2A + sin 2B - sin 2C
Barycentrics a(sin 2B + sin 2C - sin 2A) : b(sin 2C + sin 2A - sin 2B) : c(sin 2A + sin 2B - sin 2C)X(1) of the excentral triangle.
X(164) lies on these lines: 1,258 9,168 40,188 57,177 165,167 173,504 361,503 362,845
X(164) = isogonal conjugate of X(505)
X(164) = X(188)-Ceva conjugate of X(1)
X(164) = X(I)-aleph conjugate of X(J) for these (I,J): (1,361), (2,362), (9,844), (188,164), (366,173)
X(165) = CENTROID OF THE EXCENTRAL TRIANGLE
Trilinears tan(B/2) + tan(C/2) - tan(A/2) : tan(C/2) + tan(A/2) - tan(B/2) : tan(2/A) + tan(B/2) - tan(C/2)
Barycentrics a[tan(B/2) + tan(C/2) - tan(A/2)] : b[tan(C/2) + tan(A/2) - tan(B/2)] : c[tan(2/A) + tan(B/2) - tan(C/2)]X(165) is the centroid of the triangle with vertices X(1), X(8), X(20), as well as the triangle with vertices X(4), X(20), X(40).
X(165) lies on these lines:
1,3 2,516 9,910 10,20 42,991 43,573 63,100 71,610 105,1054 109,212 164,167 166,168 210,971 255,1103 355,550 376,515 380,579 411,936 572,1051 580,601 612,990 614,902 631,946 750,968X(165) = X(9)-Ceva conjugate of X(1)
X(165) = X(I)-aleph conjugate of X(J) for these (I,J):
(2,169), (9,165), (21,572), (100,101), (188,9), (259,43), (365,978), (366,57), (650,1053)X(165) = X(I)-beth conjugate of X(J) for these (I,J): (100,165), (643,200)
Let X = X(165) and let V be the vector-sum XA + XB + XC; then V = X(1)X(20) = X(4)X(40) = X(382)X(355).
Let W be the vector-sum XA' + XB' + XC', where A'B'C' is the pedal triangle of X; then W = X(392)X(20).
X(166) GERGONNE POINT OF EXCENTRAL TRIANGLE
Trilinears f(A,B,C) : f(B,C,A) : f(C,A,B), where
f(A,B,C) = (tan A/2)/(cos B/2 + cos C/2 - cos A/2)Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A)f(A,B,C)
X(7) of the excentral triangle.
X(166) lies on these lines: 165,168 167,188
X(166) = X(9)-aleph conjugate of X(167)
X(167) NAGEL POINT OF EXCENTRAL TRIANGLE
Trilinears f(A,B,C) : f(B,C,A) : f(C,A,B), where
f(A,B,C) = s(B,C,A)t(B,C,A) + s(C,A,B)t(C,A,B) + s(A,B,C)t(A,B,C),
s(A,B,C) = sin(A/2), t(A,B,C) = cos B/2 + cos C/2 - cos A/2Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A)f(A,B,C)
X(8) of the excentral triangle.
X(167) lies on these lines: 1,174 164,165 166,188
X(167) = X(9)-aleph conjugate of X(166)
X(168) MITTENPUNKT OF EXCENTRAL TRIANGLE
Trilinears f(A,B,C) : f(B,C,A) : f(C,A,B), where
f(A,B,C) = sin A - sin B - sin C + 2[cos A/2 + sin(B/2 - A/2) + sin(C/2 - A/2)]Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A)f(A,B,C)
X(9) of the excentral triangle.
X(168) lies on these lines: 1,173 9,164 165,166
X(168) = X(188)-aleph conjugate of X(363)
X(169)
Trilinears f(A,B,C) : f(B,C,A) : f(C,A,B), where
f(A,B,C) = - (sin A )cos2(A/2) + (sin B)cos2(B/2) + (sin C)cos2(C/2)Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A)f(A,B,C)
X(32) of the excentral triangle.
X(169) lies on these lines: 1,41 4,9 6,942 46,672 57,277 63,379 65,218 220,517 572,610
X(169) = X(85)-Ceva conjugate of X(1)
X(169) = X(I)-aleph conjugate of X(J) for these (I,J):
(2,165), (85,169), (86,572), (174,43), (188,170), (508,1), (514,1053), (664,101)
X(170)
Trilinears f(A,B,C) : f(B,C,A) : f(C,A,B), where
f(A,B,C) = - (tan A/2)sec2(A/2) + (tan B/2)sec2(B/2) + (tan C/2)sec2(C/2)Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A)f(A,B,C)
X(76) of the excentral triangle.
X(170) lies on these lines: 1,7 43,218
X(170) = X(220)-Ceva conjugate of X(1)
X(170) = X(I)-aleph conjugate of X(J) for these (I,J): (9,9), (55,43), (188,169), (220,170), (644,1018)
X(170) = X(664)-beth conjugate of X(170)
X(171)
Trilinears a2 + bc : b2 + ca : c2 + ab
Barycentrics a3 + abc : b3 + abc : c3 + abc
X(171) lies on these lines: 1,3 2,31 4,601 6,43 7,983 10,58 37,846 42,81 47,498 63,612 72,1046 84,989 98,109 181,511 222,611 292,893 319,757 385,894 388,603 474,978 602,631 756,896
X(171) = isogonal conjugate of X(256)
X(171) = X(292)-Ceva conjugate of X(238)
X(171) = X(I)-beth conjugate of X(J) for these (I,J): (100,171), (643,42)
X(172)
Trilinears a3 + abc : b3 + abc : c3 + abc
Barycentrics a4 + bca2 : b4 + cab2 : c3 + abc2
X(172) lies on these lines:
1,32 6,41 12,230 21,37 35,187 36,39 42,199 58,101 65,248 350,384 577,1038 694,904 699,932X(172) = isogonal conjugate of X(257)
X(172) = X(101)-beth conjugate of X(172)
X(173) = CONGRUENT ISOSCELIZERS POINT
Trilinears f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = cos B/2 + cos C/2 - cos A/2
Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A)f(A,B,C)Let P(B)Q(C) be an isoscelizer: let P(B) on sideline AC and Q(C) on AB be equidistant from A, so that AP(B)Q(C) is an isosceles triangle. Line P(B)-to-Q(C), P(C)-to-Q(A), P(A)-to-Q(B) concur in X(173). (P. Yff, unpublished notes, 1989)
X(173) lies on these lines: 1,168 9,177 57,174 164,504 180,483 503,844
X(173) = isogonal conjugate of X(258)
X(173) = X(174)-Ceva conjugate of X(1)X(173) = X(I)-aleph conjugate of X(J) for these (I,J):
(1,503), (2,504), (174,173), (188,845), (366,164), (507,1), (508,362), (509,361)
X(174) = YFF CENTER OF CONGRUENCE
Trilinears sec A/2 : sec B/2 : sec C/2
f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = [bc/(b + c - a)]1/2Barycentrics sin A/2 : sin B/2 : sin C/2
In notes dated 1987, Yff raises a question concerning certain triangles lying within ABC: can three isoscelizers (as defined in connection with X(173), P(B)Q(C), P(C)Q(A), P(A)Q(B) be constructed so that the four triangles P(A)Q(A)A, P(B)Q(B)B, P(C)Q(C)C, ABC are congruent? After proving that the answer is yes, Yff moves the three isoscelizers in such a way that the three outer triangles, P(A)Q(A)A, P(B)Q(B)B, P(C)Q(C)C stay congruent and the inner triangle, ABC, shrinks to X(174).
X(174) lies on these lines: 1,167 2,236 7,234 57,173 175,483 188,266
X(174) = isogonal conjugate of X(259)
X(174) = X(508)-Ceva conjugate of X(188)
X(174) = cevapoint of X(I) and X(J) for these (I,J): (1,173), (259,266)
X(174) = X(I)-cross conjugate of X(J) for these (I,J): (177,7), (259,188)
X(174) = X(556)-beth conjugate of X(556)
X(175) = ISOPERIMETRIC POINT
Trilinears -1 + sec A/2 cos B/2 cos C/2 : -1 + sec B/2 cos C/2 cos A/2 : -1 + sec C/2 cos A/2 cos B/2
Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A)(-1 + sec A/2 cos B/2 cos C/2)If a + b + c > 4R + r, where R and r denote the circumradius and inradius, respectively, then there exists a point X for which the perimeters of triangles XBC, XCA, XAB are equal. Veldkamp proved that X = X(175), and Yff, in unpublished notes, proved that X(175) is the center of the outer Soddy circle. See also the 1st and 2nd Eppstein points, X(481), X(482).
Clark Kimberling and R. W. Wagner, Problem E 3020 and Solution, American Mathematical Monthly 93 (1986) 650-652 [proposed 1983].
G. R. Veldkamp, "The isoperimetric point and the point(s) of equal detour," American Mathematical Monthly 92 (1985) 546-558.
X(175) lies on these lines: 1,7 174,483 490,664
X(175) = X(8)-Ceva conjugate of X(176)
X(175) = X(664)-beth conjugate of X(175)
X(176) = EQUAL DETOUR POINT
Trilinears 1 + sec A/2 cos B/2 cos C/2 : 1 + sec B/2 cos C/2 cos A/2 : 1 + sec C/2 cos A/2 cos B/2
Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A)(1 + sec A/2 cos B/2 cos C/2)If X is a point not between A and B, we make a detour of magnitude |AX| + |XB| - |AB| if we walk from A to B via X; then a point has the equal detour property if the magnitues of the three detours, A to B via X, B to C via X, and C to A via X, are equal; X(176) is the only such point unless ABC has an angle greater than 2*arcsin(4/5), and then X(175) also has the equal detour property. Yff found that X(176) is also is the center of the inner Soddy circle. The following construction was found by Elkies: call two circles within ABC companion circles if they are the incircles of two triangles formed by dividing ABC into two smaller triangles by passing a line through one of the vertices and some point on the opposite side; chain of circles O(1), O(2), ... such that O(n),O(n+1) are companion incircles for every n consists of at most six distinct circles; there is a unique chain consisting of only three distinct circles; and for this chain, the three subdividing lines concur in X(176). Centers X(175) and X(176) are harmonic conjugates with respect to X(1) and X(7).
G. R. Veldkamp, "The isoperimetric point and the point(s) of equal detour," American Mathematical Monthly 92 (1985) 546-558.
Noam D. Elkies and Jiro Fukuta, Problem E 3236 and Solution, American Mathematical Monthly 97 (1990) 529-531 [proposed 1987].
X(176) lies on these lines: 1,7 489,664
X(176) = X(8)-Ceva conjugate of X(175)
X(176) = X(664)-beth conjugate of X(176)
X(177) = 1st MID-ARC POINT
Trilinears (cos B/2 + cos C/2) sec A/2 : (cos C/2 + cos A/2) sec B/2 : (cos A/2 + cos B/2) sec C/2
Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A)(cos B/2 + cos C/2) sec A/2Let A',B',C' be the first points of intersection of the angle bisectors of ABC with its incircle. The tangents at A', B', C' form a triangle A"B"C", and the lines AA",BB",CC" concur in X(177). Also, X(177) = X(1) of the intouch triangle.
Clark Kimberling and G. R. Veldkamp, Problem 1160 and Solution, Crux Mathematicorum 13 (1987) 298-299 [proposed 1986].
X(177) lies on these lines: 1,167 7,555 8,556 9,173 57,164
X(177) = isogonal conjugate of X(260)
X(177) = X(7)-Ceva conjugate of X(234)
X(177) = crosspoint of X(7) and X(174)
X(178) = 2nd MID-ARC POINT
Trilinears (cos B/2 + cos C/2) csc A : (cos C/2 + cos A/2) csc B : (cos A/2 + cos B/2) csc C
Barycentrics cos B/2 + cos C/2 : cos C/2 + cos A/2 : cos A/2 + cos B/2Let A',B',C' be the first points of intersection of the angle bisectors of ABC with its incircle. Let A",B",C" be the midpoints of segments BC,CA,AB, respectively. The lines A'A",B'B",C'C" concur in X(178).
Clark Kimberling, Problem 804, Nieuw Archikef voor Wiskunde 6 (1988) 170.
X(178) lies on these lines: 2,188 8,236 85,508
X(178) = complement of X(188)
X(178) = crosspoint of X(2) and X(508)
X(179) = 1st AJIMA-MALFATTI POINT
Trilinears sec4(A/4) : sec4(B/4) : sec4(C/4)
Barycentrics sin A sec4(A/4) : sin B sec4(B/4) : sin C sec4(C/4)The famous Malfatti Problem is to construct three circles O(A), O(B), O(C) inside ABC such that each is externally tangent to the other two, O(A) is tangent to lines AB and AC, O(B) is tangent to BC and BA, and O(C) is tangent to CA and CB. Let A' = O(B)^ O(C), B' = O(C)^O(A), C' = O(A)^O(B). The lines AA',BB',CC' concur in X(179). Trilinears are found in Yff's unpublished notes. See also the Yff-Malfatti Point, X(400), having trilinears csc4(A/4) : csc4(B/4) : csc4(C/4), and the references for historical notes.
H. Fukagawa and D. Pedoe, Japanese Temple Geometry Problems (San Gaku), The Charles Babbage Research Centre, Winnipeg, Canada, 1989.
Michael Goldberg, "On the original Malfatti problem," Mathematics Magazine, 40 (1967) 241-247.
Clark Kimberling and I. G. MacDonald, Problem E 3251 and Solution, American Mathematical Monthly 97 (1990) 612-613.
X(180) = 2nd AJIMA-MALFATTI POINT
Trilinears f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = 1/t(B,C,A) + 1/t(C,B,A) - 1/t(C,A,B),
t(A,B,C) = 1 + 2(sec A/4 cos B/4 cos C/4)2Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A)f(A,B,C)
Let A",B",C" be the excenters of ABC, and let A',B',C' be as in the construction of X(179). The lines A'A",B'B",B'B" concur in X(180). Trilinears are found in Yff's unpublished notes. See X(179).
X(180) lies on this line: 173,483
X(181) = APOLLONIUS POINT
Trilinears a(b + c)2/(b + c - a) : b(c + a)2/(c + a - b) : c(a + b)2/(a + b - c)
= a2cos2(B/2 - C/2) : b2cos2(C/2 - A/2) : c2cos2(A/2 - B/2)Barycentrics a3cos2(B/2 - C/2) : b3cos2(C/2 - A/2) : c3cos2(A/2 - B/2)
Let O(A),O(B),O(C) be the excircles. Apollonius's Problem includes the construction of the circle O tangent to the three excircles and encompassing them. Let A' = O^O(A), B'=O^O(B), C'=O^O(C). The lines AA',BB',CC' concur in X(181). Yff derived trilinears in 1992.
Clark Kimberling, Shiko Iwata, and Hidetosi Fukagawa, Problem 1091 and Solution, Crux Mathematicorum 13 (1987) 128-129; 217-218. [proposed 1985].
X(181) lies on these lines:
1,970 6,197 8,959 10,12 31,51 42,228 43,57 44,375 55,573 56,386 171,511 373,748X(181) = isogonal conjugate of X(261)
X(181) = X(I)-beth conjugate of X(J) for these (I,J): (42,181), (660,181), (756,756)
X(182) = MIDPOINT OF BROCARD DIAMETER
Trilinears cos(A - ω) : cos(B - ω) : cos(C - ω)
Barycentrics sin A cos(A - ω) : sin B cos(B - ω) : sin C cos(C - ω)Midpoint of the Brocard diameter (the segment X(3)-to-X(6)); also the center of the 1st Lemoine circle, and the center of the Brocard circle.
X(182) lies on these lines:
1,983 2,98 3,6 4,83 5,206 22,51 54,69 55,613 56,611 111,353 140,141 524,549 692,1001 952,996X(182) = midpoint between X(3) and X(6)
X(182) = reflection of X(141) about X(140)
X(182) = isogonal conjugate of X(262)
X(182) = isotomic conjugate of X(327)Let W be the vector-sum XA' + XB' + XC', where A'B'C' is the pedal triangle of X(182); then W = X(5)X(3) = X(4)X(5).
X(183)
Trilinears b2c2cos(A - ω) : c2a2cos(B - ω) : a2b2cos(C - ω)
Barycentrics csc A cos(A - ω) : csc B cos(B - ω) : csc C cos(C - ω)X(183) lies on these lines:
2,6 3,76 5,315 22,157 25,264 55,350 95,305 187,1003 274,474 316,381 317,427 383,621 538,574 622,1080 668,956X(183) = isogonal conjugate of X(263)
X(183) = isotomic conjugate of X(262)
X(183) = X(645)-beth conjugate of X(183)
X(184) = INVERSE OF X(125) IN THE BROCARD CIRCLE
Trilinears a2cos A : b2cos B : c2cos C
Barycentrics a3cos A : b3cos B : c3cos CX(184) lies on these lines:
2,98 3,49 4,54 5,156 6,25 22,511 23,576 24,389 26,52 22,511 31,604 32,211 48,212 55,215 157,570 160,571 199,573 205,213 251,263 351,686 381,567 397,463 398,462 418,577 572,1011 647,878X(184) = isogonal conjugate of X(264)
X(184) = inverse of X(125) in the Brocard circle
X(184) = X(I)-Ceva conjugate of X(J) for these (I,J): (6,32), (54,6), (74,50)
X(184) = X(217)-cross conjugate of X(6)
X(184) = crosspoint of X(3) and X(6)
X(184) = X(32)-Hirst inverse of X(237)
X(184) = X(I)-beth conjugate of X(J) for these (I,J): (212,212), (692,184)Let W be the vector-sum XA' + XB' + XC', where A'B'C' is the pedal triangle of X(184); then W = X(343)X(22) = X(427)X(184).
X(185) = NAGEL POINT OF THE ORTHIC TRIANGLE
Trilinears (cos A)[1 - cos A cos(B - C)] : (cos B)[1 - cos B cos(C - A)] : (cos C)[1 - cos C cos(A - B)]
Barycentrics (sin 2A)[1 - cos A cos(B - C)] : (sin 2B)[1 - cos B cos(C - A)] : (sin 2C)[1 - cos C cos(A - B)]X(185) lies on these lines:
1,296 3,49 4,51 5,113 6,64 20,193 25,1078 30,52 39,217 54,74 72,916 287,384 378,578 382,568 411,970 648,1105X(185) = reflection of X(4) about X(389)
X(185) = isogonal conjugate of X(1105)
X(185) = X(I)-Ceva conjugate of X(J) for these (I,J): (3,417), (4,235)
X(185) = crosspoint of X(3) and X(4)
X(186) = INVERSE OF X(4) IN CIRCUMCIRCLE
Trilinears 4 cos A - sec A : 4 cos B - sec B : 4 cos C - sec C
= sin 3A csc 2A : sin 3B csc 2B : sin 3C csc 2CBarycentrics (sin A)(4 cos A - sec A) : (sin B)(4 cos B - sec B) : (sin C)(4 cos C - sec C)
X(186) lies on these lines: 2,3 54,389 93,252 98,935 107,477 112,187 249,250
X(186) = reflection of X(I) about X(J) for these (I,J): (4,403), (403,468)
X(186) = isogonal conjugate of X(265)
X(186) = isotomic conjugate of X(328)
X(186) = inverse of X(4) in the circumcircle
X(186) = X(340)-Ceva conjugate of X(323)
X(186) = X(50)-cross conjugate of X(323)
X(186) = crosspoint of X(54) and X(74)Let X = X(186) and let V be the vector-sum XA + XB + XC; then V = X(4)X(23).
X(187) = INVERSE OF X(6) IN CIRCUMCIRCLE (SCHOUTE CENTER)
Trilinears a(2a2 - b2 - c2) : b(2b2 - c2 - a2) : c(2c2 - a2 - b2)
Barycentrics a2(2a2 - b2 - c2) : b2(2b2 - c2 - a2) : c2(2c2 - a2 - b2)X(187) lies on these lines:
2,316 3,6 23,111 30,115 35,172 36,1015 74,248 99,385 110,352 112,186 183,1003 237,351 249,323 325,620 395,531 396,530 729,805X(187) = midpoint between X(I) and X(J) for these (I,J): (15,16), (99,385)
X(187) = reflection of X(115) about X(230)
X(187) = isogonal conjugate of X(671)
X(187) = inverse of X(6) in the circumcircle
X(187) = inverse of X(574) inthe Brocard circle
X(187) = complement of X(316)
X(187) = anticomplement of X(625)
X(187) = X(111)-Ceva conjugate of X(6)
X(187) = crosspoint of X(I) and X(J) for these (I,J): (2,67), (6,111), (468,524)
X(187) = X(55)-beth conjugate of X(187)
X(188) = 2nd MID-ARC POINT OF ANTICOMPLEMENTARY TRIANGLE
Trilinears csc A/2 : csc B/2 : csc C/2
= [a/(b + c - a)]1/2 : [b/(c + a - b)]1/2 : [c/(a + b - c)]1/2Barycentrics sin A csc A/2 : sin B csc B/2 : sin C csc C/2
X(188) lies on these lines: 1,361 2,178 9,173 40,164 166,167 174,266
X(188) = isogonal conjugate of X(266)
X(188) = isotomic conjugate of X(508)
X(188) = anticomplement of X(178)
X(188) = X(I)-Ceva conjugate of X(J) for these (I,J): (2,236), (508,174)
X(188) = cevapoint of X(1) and X(164)
X(188) = X(259)-cross conjugate of X(174)
X(188) = X(188)-beth conjugate of X(266)
X(189) = CYCLOCEVIAN CONJUGATE OF X(8)
Trilinears (cos B + cos C - cos A - 1)/a : (cos C + cos A - cos B - 1)/b : (cos A + cos B - cos C - 1)/c
Barycentrics 1/(cos B + cos C - cos A - 1) : 1/(cos C + cos A - cos B - 1) : 1/(cos A + cos B - cos C - 1)X(189) lies on these lines: 2,77 7,92 8,20 29,81 69,309 222,281
X(189) = isogonal conjugate of X(198)
X(189) = isotomic conjugate of X(329)
X(189) = cyclocevian conjugate of X(8)
X(189) = anticomplement of X(223)
X(189) = X(309)-Ceva conjugate of X(280)
X(189) = cevapoint of X(84) and X(282)
X(189) = X(I)-cross conjugate of X(J) for these (I,J): (4,7), (57,2), (282,280)
X(190) = YFF PARABOLIC POINT
Trilinears bc/(b - c) : ca/(c - a) : ab/(a - b)
Barycentrics 1/(b - c) : 1/(c - a) : 1/(a - bIn unpublished notes, Yff has studied the parabola tangent to sidelines BC, CA, AB and having focus X(101). If A',B',C' are the respective points of tangency, then the lines AA', BB', CC' concur in X(190).
X(190) lies on these lines:
1,537 2,45 6,192 7,344 8,528 9,75 10,671 37,86 40,341 44,239 63,312 69,144 71,290 72,1043 99,101 100,659 110,835 162,643 191,1089 238,726 320,527 321,333 329,345 350,672 513,660 514,1016 522,666 644,651 646,668 649,889 658,1020 670,799 789,813 872,1045X(190) = reflection of X(I) about X(J) for these (I,J): (239,44), (335,37)
X(190) = isogonal conjugate of X(649)
X(190) = isotomic conjugate of X(514)
X(190) = anticomplement of X(1086)
X(190) = X(99)-Ceva conjugate of X(100)
X(190) = cevapoint of X(I) and X(J) for these (I,J): (2,514), (9,522), (37,513), (440,525)
X(190) = X(I)-cross conjugate of X(J) for these (I,J): (513,86), (514,2), (522,75)
X(190) = X(I)-aleph conjugate of X(J) for these (I,J): (2,1052), (190,1), (645,411), (668,63), (1016,100)
X(190) = X(I)-beth conjugate of X(J) for these (I,J): (9,292), (190,651), (333,88), (645,190), (646,646), (1016,190)
X(190) = pole of the line X(1)X(2)
Centers 191- 236
are Ceva conjugates. The P-Ceva conjugate of Q is the perspector
of the cevian triangle of P and the anticevian triangle of Q.
X(191) = X(10)-CEVA CONJUGATE OF X(1)
Trilinears f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b + c - a)(bc + ca + ab) + b3 + c3 - a3
Barycentrics g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = af(a,b,c).X(191) lies on these lines:
1,21 9,46 10,267 30,40 35,72 36,960 109,201 190,1089 329,498X(191) = reflection of X(I) about X(J) for these (I,J): (1,21), (79,442)
X(191) = isotomic conjugate of X(267)
X(191) = X(10)-Ceva conjugate of X(1)
X(191) = crosspoint of X(I) and X(J) for these (I,J): (10,502)
X(191) = X(I)-aleph conjugate of X(J) for these (I,J): (2,2), (8,20), (10,191), (37,1045), (188,3), (366,6)
X(191) = X(643)-beth conjugate of X(191)
X(192) = X(1)-CEVA CONJUGATE OF X(2) (EQUAL PARALLELIANS POINT)
Trilinears bc(ca + ab - bc) : ca(ab + bc - ca) : ab(bc + ca - ab)
Barycentrics ca + ab - bc : ab + bc - ca : bc + ca - abSegments through X(192) parallel to the sidelines with endpoints on the sidelines have equal length. For references as early as 1881, see Hyacinthos message 2929 (Paul Yiu, May 29, 2001). See also
Sabrina Bier, "Equilateral Triangles Intercepted by Oriented Parallelians," Forum Geometricorum 1 (2001) 25-32.
X(192) lies on these lines:
1,87 2,37 6,190 7,335 8,256 9,239 55,385 69,742 144,145 315,746 869,1045X(192) = reflection of X(75) about X(37)
X(192) = isotomic conjugate of X(330)
X(192) = anticomplement of X(75)
X(192) = X(1)-Ceva conjugate of X(2)
X(192) = crosspoint of X(1) and X(43)
X(192) = X(9)-Hirst inverse of X(239)
X(192) = X(646)-beth conjugate of X(192)
X(193) = X(4)-CEVA CONJUGATE OF X(2)
Trilinears (csc A)(cos B + cos C - cos A) : (csc B)(cos C + cos A - cos B) : (csc C)(cos A + cos B - cos C)
Barycentrics cos B + cos C - cos A : cos C + cos A - cos B : cos A + cos B - cos C
X(193) lies on these lines:
2,6 7,239 8,894 20,185 23,159 44,344 66,895 144,145 146,148 253,287 317,393 330,959 371,488 372,487 608,651X(193) = reflection of X(69) about X(6)
X(193) = anticomplement of X(69)
X(193) = X(I)-Ceva conjugate of X(J) for these (I,J): (4,2), (459,439)
X(193) = crosspoint of X(4) and X(459)
X(193) = X(2)-Hirst inverse of X(230)
X(193) = X(I)-beth conjugate of X(J) for these (I,J): (645,193), (662,608)Let W be the vector-sum XA' + XB' + XC', where A'B'C' is the pedal triangle of X(193); then W = X(3)X(52) = X(20)X(185).
X(194) = X(6)-CEVA CONJUGATE OF X(2)
Trilinears bc[a2b2 + a2c2 - b2c2] : ca[b2c2 + b2a2 - c2a2] : ab[c2a2 + c2b2 - a2b2]
Barycentrics a2b2 + a2c2 - b2c2 : b2c2 + b2a2 - c2a2 : c2a2 + c2b2 - a2b2X(194) lies on these lines:
1,87 2,39 3,385 4,147 6,384 8,730 20,185 32,99 63,239 69,695 75,1107 257,986 315,736X(194) = reflection of X(76) about X(39)
X(194) = anticomplement of X(76)
X(194) = eigencenter of cevian triangle of X(6)
X(194) = eigencenter of anticevian triangle of X(2)
X(194) = X(6)-Ceva conjugate of X(2)
X(194) = X(3)-Hirst inverse of X(385)
X(195) = X(5)-CEVA CONJUGATE OF X(3)
Trilinears f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (cos A)(v + w - u),
u = u(A,B,C) = cos A cos(B - A) cos(C - A), v = u(B,C,A), w = u(C,A,B)Barycentrics af(A,B,C) : bf(B,C,A) : cf(C,A,B)
X(195) lies on these lines:
3,54 4,399 6,17 49,52 110,143 140,323 155,381 382,1078Let W be the vector-sum XA' + XB' + XC', where A'B'C' is the pedal triangle of X(195); then W = X(3)X(54) = X(54)X(195).
X(195) = reflection of X(3) about X(54)
X(195) = X(5)-Ceva conjugate of X(3)
X(196) = X(7)-CEVA CONJUGATE OF X(4)
Trilinears f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (cos B + cos C - cos A - 1) sec A tan A/2
Barycentrics g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (cos B + cos C - cos A - 1) tan A tan A/2X(196) lies on these lines:
1,207 2,653 4,65 7,92 19,57 34,937 40,208 55,108 226,281 329,342X(196) = isogonal conjugate of X(268)
X(196) = X(I)-Ceva conjugate of X(J) for these (I,J): (7,4), (92,278)
X(196) = cevapoint of X(19) and X(207)
X(196) = X(221)-cross conjugate of X(347)
X(196) = X(I)-beth conjugate of X(J) for these (I,J): (648,2) (653,196)
X(197) = X(8)-CEVA CONJUGATE OF X(6)
Trilinears f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = a[-a2tan A/2 + b2tan B/2 + c2tan C/2]
Barycentrics af(A,B,C) : bf(B,C,A) : cf(C,A,B)X(197) lies on these lines:
3,10 6,181 19,25 22,100 42,48 56,227 159,200X(197) = X(8)-Ceva conjugate of X(6)
X(198) = X(9)-CEVA CONJUGATE OF X(6)
Trilinears f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = a(cos B + cos C - cos A - 1)
Barycentrics af(A,B,C) : bf(B,C,A) : cf(C,A,B)X(198) lies on these lines:
3,9 6,41 19,25 45,1030 64,71 100,346 101,102 154,212 208,227 218,579 284,859 478,577 958,966X(198) = isogonal conjugate of X(189)
X(198) = X(I)-Ceva conjugate of X(J) for these (I,J): (3,55), (9,6), (223,221)
X(198) = crosspoint of X(40) and X(223)
X(198) = X(I)-beth conjugate of X(J) for these (I,J): (9,19), (101,198)
X(199) = X(10)-CEVA CONJUGATE OF X(6)
Trilinears f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a[b4 + c4 - a4 + (b2 + c2 - a2)(bc + ca + ab )]
Barycentrics af(A,B,C) : bf(B,C,A) : cf(C,A,B)X(199) lies on these lines: 2,3 42,172 51,572 55,1030 184,573
X(199) = X(10)-Ceva conjugate of X(6)
X(199) = crosspoint of X(101) and X(250)
X(200) = X(8)-CEVA CONJUGATE OF X(9)
Trilinears cot2(A/2) : cot(B/2) : cot(C/2)
= (b + c - a)2 : (c + a - b) 2 : (a + b - c)2Barycentrics a(b + c - a)2 : b(c + a - b) 2 : c(a + b - c)2
X(200) lies on these lines:
1,2 3,963 9,55 33,281 40,64 46,1004 57,518 63,100 69,269 159,197 219,282 220,728 255,271 318,1089 319,326 329,516 341,1043 756,968X(200) = isogonal conjugate of X(269) X(200) = isotomic conjugate of X(1088)
X(200) = X(8)-Ceva conjugate of X(9)
X(200) = cevapoint of X(220) and X(480)
X(200) = X(220)-cross conjugate of X(9)
X(200) = crosspoint of X(8) and X(346)
X(200) = X(I)-beth conjugate of X(J) for these (I,J): (100,223), (200,55), (643,165)