s1
Glossary Search Sketches Links Thanks More

PART 2


X(201) = X(10)-CEVA CONJUGATE OF X(12)

Trilinears       (cos A)[1 + cos(B - C)] : (cos B)[1 + cos(C - A)] : (cos C)[1 + cos(A - B)]
Barycentrics  (sin 2A)[1 + cos(B - C)] : (sin 2B)[1 + cos(C - A)] : (sin 2C)[1 + cos(A - B)]

X(201) lies on these lines:
1,212   9,34   10,225   12,756   33,40   37,65   38,56   55,774   57,975   63,603   72,73   109,191   210,227   220,221   255,1060   337,348   388,984   601,920

X(201) = isogonal conjugate of X(270)
X(201) = X(10)-Ceva conjugate of X(12)
X(201) = crosspoint of X(10) and X(72)
X(201) = X(I)-beth conjugate of X(J) for these (I,J): (72,201), (1018,201)


X(202) = X(1)-CEVA CONJUGATE OF X(15)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = u(v + w - u),
                         u = u(A,B,C) = sin(A + π/3), v = u(B,C,A), w = u(C,A,B)

Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(202) lies on these lines:
1,62   6,101   11,13   12,18   15,36   16,55   17,499   56,61   395,495   397,496

X(202) = X(1)-Ceva conjugate of X(15)


X(203) = X(1)-CEVA CONJUGATE OF X(16)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = u(v + w - u),
                         u = u(A,B,C) = sin(A - π/3), v = u(B,C,A), w = u(C,A,B)

Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(203) lies on these lines:
1,61   6,101   11,14   12,17   15,55   16,36   18,499   56,62   396,495   398,496

X(203) = X(1)-Ceva conjugate of X(16)


X(204) = X(1)-CEVA CONJUGATE OF X(19)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (tan A)(tan B + tan C - tan A)
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(204) lies on these lines: 6,33   19,31   25,34   55,1033   63,162   108,223   207,221

X(204) = X(1)-Ceva conjugate of X(19)
X(204) = X(I)-beth conjugate of X(J) for these (I,J): (108,204), (162,223)


X(205) = X(9)-CEVA CONJUGATE OF X(31)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a2[b2tan B/2 + c2tan C/2 - a2tan A/2]
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(205) lies on these lines: 25,41   37,48   78,101   154,220   184,213

X(205) = X(9)-Ceva conjugate of X(31)


X(206) = X(2)-CEVA CONJUGATE OF X(32)

Trilinears       a3(b4 + c4 - a4) : b3(c4 + a4 - b4) : c3(a4 + b4 - c4)
Barycentrics  a4(b4 + c4 - a4) : b4(c4 + a4 - b4) : c4(a4 + b4 - c4)

This is also X(66) of the medial triangle.

X(206) lies on these lines:
2,66   5,182   6,25   26,511   69,110   157,216   160,577   219,692   237,571

X(206) = midpoint between X(6) and X(159)
X(206) = complement of X(66)
X(206) = X(2)-Ceva conjugate of X(32)
X(206) = crosspoint of X(2) and X(315)

Let W be the vector-sum XA' + XB' + XC', where A'B'C' is the pedal triangle of X(206); then W = X(66)X(141) = X(141)X(159).


X(207) = X(1)-CEVA CONJUGATE OF X(34)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (1 - sec A)(sec B + sec C - sec A - 1)
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(207) lies on these lines: 1,196   19,56   33,64   34,1042   40,108   78,653   204,221

X(207) = X(I)-Ceva conjugate of X(J) for these (I,J): (1,34), (196,19)
X(207) = X(1)-beth conjugate of X(64)


X(208) = X(4)-CEVA CONJUGATE OF X(34)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (1 - sec A)(cos B + cos C - cos A - 1)
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(208) lies on these lines:
1,102   4,57   19,225   25,34   33,64   40,196   198,227   226,406   318,653

X(208) = isogonal conjugate of X(271)
X(208) = X(I)-Ceva conjugate of X(J) for these (I,J): (4,34), (57,19), (342,223)
X(208) = X(I)-beth conjugate of X(J) for these (I,J): (108,208), (162,1)


X(209) = X(4)-CEVA CONJUGATE OF X(37)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (sin B + sin C)[sin A + sin(A - B) + sin(A - C)]
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(209) lies on these lines: 6,31   10,12   44,51   306,518

X(209) = isogonal conjugate of X(272)
X(209) = X(4)-Ceva conjugate of X(37)


X(210) = X(10)-CEVA CONJUGATE OF X(37)

Trilinears       (b + c)(b + c - a) : (c + a)(c + a - b) : (a + b)(a + b - c)
Barycentrics  a(b + c)(b + c - a) : b(c + a)(c + a - b) : c(a + b)(a + b - c)

X(210) lies on these lines:
2,354   6,612   8,312   9,55   10,12   31,44   33,220   37,42   38,899   43,984   45,968   51,374   56,936   63,1004   78,958   165,971   201,227   213,762   381,517   392,519   430,594   869,1107   956,997   976,1104

X(210) = reflection of X(I) about X(J) for these (I,J): (51,375), (354,2)
X(210) = isogonal conjugate of X(1014)
X(210) = X(10)-Ceva conjugate of X(37)
X(210) = crosspoint of X(8) and X(9)
X(210) = X(I)-beth conjugate of X(J) for these (I,J): (200,210), (210,42)

Let X = X(210) and let V be the vector-sum XA + XB + XC; then V = X(65)X(8) = X(1)X(72).


X(211) = X(4)-CEVA CONJUGATE OF X(39)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C)
                        = sin(A + ω)[cos B sin(B + ω) + cos C sin(C + ω) - cos A sin(A + ω)]

Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(211) lies on these lines: 5,141   32,184   52,114

X(211) = X(4)-Ceva conjugate of X(39)


X(212) = X(9)-CEVA CONJUGATE OF X(41)

Trilinears       (cos A)(1 + cos A) : (cos B)(1 + cos B) : (cos C)(1 + cos C)
                        = (cos A)cos2(A/2) : (cos B)cos2(B/2) : (cos C)cos2(C/2)

Barycentrics  (sin 2A)(1 + cos A) : (sin 2B)(1 + cos B) : (sin 2C)(1 + cos C)

X(212) lies on these lines:
1,201   3,73   6,31   9,33   11,748   34,40   35,47   48,184   56,939   63,1040   78,283   109,165   154,198   238,497   312,643   582,942

X(212) = isogonal conjugate of X(273)
X(212) = X(I)-Ceva conjugate of X(J) for these (I,J): (3,48), (9,41), (283,219)
X(212) = X(228)-cross conjugate of X(55)
X(212) = crosspoint of X(I) and X(J) for these (I,J): (3,219), (9,78)
X(212) = X(212)-beth conjugate of X(184)


X(213) = X(6)-CEVA CONJUGATE OF X(42)

Trilinears       (b + c)a2 : (c + a)b2 : (a + b)c2
Barycentrics  (b + c)a3 : (c + a)b3 : (a + b)c3

X(213) lies on these lines: 1,6   8,981   31,32   39,672   58,101   63,980   83,239   100,729   184,205   274,894   607,1096   667,875   692,923

X(213) = isogonal conjugate of X(274)
X(213) = X(I)-Ceva conjugate of X(J) for these (I,J): (6,42), (37,228)
X(213) = crosspoint of X(6) and X(31)
X(213) = X(I)-beth conjugate of X(J) for these (I,J): (41,213), (101,65), (644,213)


X(214) = X(2)-CEVA CONJUGATE OF X(44)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b + c - 2a)(b2 + c2 - a2 - bc)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(214) lies on these lines: 1,88   2,80   9,48   10,140   11,442   36,758   44,1017   119,515   142,528   535,908   662,759   1015,1100

X(214) = midpoint between X(1) and X(100)
X(214) = complement of X(80)
X(214) = X(2)-Ceva conjugate of X(44)
X(214) = crosspoint of X(2) and X(320)
X(214) = X(21)-beth conjugate of X(244)


X(215) = X(1)-CEVA CONJUGATE OF X(50)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (sin 3A)(sin 3B + sin 3C - sin 3A)
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(215) lies on these lines: 1,49   11,110   12,54   55,184

X(215) = X(I)-Ceva conjugate of X(J) for these (I,J): (1,50)


X(216) = X(5)-CEVA CONJUGATE OF X(51)

Trilinears       sin 2A cos(B - C) : sin 2B cos(C - A) : sin 2C cos(A - B)
Barycentrics  (sin A)(sin 2A)cos(B - C) : sin B sin 2B cos(C - A) : sin C sin 2C cos(A - B)

X(216) lies on these lines:
2,232   3,6   5,53   51,418   95,648   97,288   115,131   157,206   395,465   373,852   395,465   396,466   631,1075   1015,1060

X(216) = isogonal conjugate of X(275)
X(216) = isotomic conjugate of X(276)
X(216) = inverse of X(577) in the Brocard circle
X(216) = complement of X(264)
X(216) = X(I)-Ceva conjugate of X(J) for these (I,J): (2,5), (3,418), (5,51), (324,52)
X(216) = cevapoint of X(217) and X(418)
X(216) = X(217)-cross conjugate of X(51)
X(216) = crosspoint of X(I) and X(J) for these (I,J): (2,3), (5,343)


X(217) = X(6)-CEVA CONJUGATE OF X(51)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (sin3A) cos A cos(B - C)
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(217) lies on these lines: 4,6   32,184   39,185   54,112   83,287   232,389

X(217) = isogonal conjugate of X(276)
X(217) = X(I)-Ceva conjugate of X(J) for these (I,J): (6,51), (216,418)
X(217) = crosspoint of X(I) and X(J) for these (I,J): (6,184), (51,216)


X(218) = X(7)-CEVA CONJUGATE OF X(55)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where
                        f(A,B,C) = cos2(A/2) [cos4(B/2) + cos4(C/2)- cos4(A/2)]

Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(218) lies on these lines:
1,6   3,41   4,294   7,277   32,906   43,170   46,910   56,101   65,169   145,644   198,579   222,241   279,651

X(218) = isogonal conjugate of X(277)
X(218) = eigencenter of cevian triangle of X(7)
X(218) = eigencenter of anticevian triangle of X(55)
X(218) = X(7)-Ceva conjugate of X(55)
X(218) = X(644)-beth conjugate of X(218)


X(219) = X(8)-CEVA CONJUGATE OF X(55)

Trilinears       cos A cos A/2 : cos B cos B/2 : cos C cos C/2
                        = (sin A)/(1 - sec A) : (sin B)/(1 - sec B) : (sin C)/(1 - sec C)
                        = 1/(csc A - 2 csc 2A) : 1/(csc B - 2 csc 2B) : 1/(csc C - 2 csc 2C)

Barycentrics  sin 2A cos A/2 : sin 2B cos B/2 : sin 2C cos C/2

X(219) lies on these lines:
1,6   3,48   8,29   10,965   19,517   40,610   41,1036   55,284   56,579   63,77   101,102   144,347   200,282   206,692   255,268   278,329   332,345   346,644   572,947   577,906   604,672

X(219) = isogonal conjugate of X(278)
X(219) = isotomic conjugate of X(331)
X(219) = X(I)-Ceva conjugate of X(J) for these (I,J): (8,55), (63,3), (283,212)
X(219) = X(I)-cross conjugate of X(J) for these (I,J): (48,268), (71,9), (212,3)
X(219) = crosspoint of X(I) and X(J) for these (I,J): (8,345), (64,78)
X(219) = X(I)-beth conjugate of X(J) for these (I,J): (101,478), (219,48), (644,219)

Let W be the vector-sum XA' + XB' + XC', where A'B'C' is the pedal triangle of X(219); then W = X(19)X(219).


X(220) = X(9)-CEVA CONJUGATE OF X(55)

Trilinears       csc A/2 cos3(A/2) : csc B/2 cos3(B/2) : csc C/2 cos3(C/2)
Barycentrics  sin A csc A/2 cos3(A/2) : sin B csc B/2 cos3(B/2) : sin C csc C/2 cos3(C/2)

X(220) lies on these lines:
1,6   3,101   8,294   33,210   40,910   41,55   48,963   63,241   64,71   78,949   144,279   154,205   169,517   200,728   201,221   268,577   277,1086   281,594   329,948   346,1043

X(220) = isogonal conjugate of X(279)
X(220) = X(I)-Ceva conjugate of X(J) for these (I,J): (9,55), (200,480)
X(220) = cevapoint of X(1) and X(170)
X(220) = crosspoint of X(9) and X(200)
X(220) = X(I)-beth conjugate of X(J) for these (I,J): (101,221), (220,41), (644,220), (728,728)


X(221) = X(1)-CEVA CONJUGATE OF X(56)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (sin2A/2)(cos B + cos C - cos A - 1)
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(221) lies on these lines:
1,84   3,102   6,19   8,651   31,56   40,223   55,64   201,220   204,207   960,1038

X(221) = isogonal conjugate of X(280)
X(221) = X(I)-Ceva conjugate of X(J) for these (I,J): (1,56), (222,6), (223,198)
X(221) = crosspoint of X(I) and X(J) for these (I,J): (1,40), (196,347)
X(221) = X(I)-beth conjugate of X(J) for these (I,J): (1,34), (40,40), (101,220), (109,221), (110,3)


X(222) = X(7)-CEVA CONJUGATE OF X(56)

Trilinears       cos A tan A/2 : cos B tan B/2 : cos C tan C/2
                        = 1/(csc A + 2 csc 2A) : 1/(csc B + 2 csc 2B) : 1/(csc A + 2 csc 2C)
                        = a(b2 + c2 - a2)/(b + c - a) : b(c2 + a2 - b2)/(c + a - b) : c(a2 + b2 - c2)/(a + b - c)

Barycentrics  a2/(1 + sec A) : b2/(1 + sec B) : c2/(1 + sec C)

X(222) lies on these lines:
1,84   2,651   3,73   6,57   7,27   33,971   34,942   46,227   55,103   56,58   63,77   72,1038   171,611   189,281   218,241   226,478   268,1073   581,1035   601,1066   613,982   912,1060

X(222) = isogonal conjugate of X(281)
X(222) = X(I)-Ceva conjugate of X(J) for these (I,J): (7,56), (77,3), (81,57)
X(222) = cevapoint of X(6) and X(221)
X(222) = X(I)-cross conjugate of X(J) for these (I,J): (48,3), (73,77)
X(222) = crosspoint of X(7) and X(348)

X(222) = X(I)-beth conjugate of X(J) for these (I,J):
(21,1012), (63,63), (110,222), (287,222), (648,222), (651,222), (662,2), (895,222)

Let W be the vector-sum XA' + XB' + XC', where A'B'C' is the pedal triangle of X(222); then W = X(33)X(222).


X(223) = X(2)-CEVA CONJUGATE OF X(57)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (tan A/2)(cos B + cos C - cos A - 1]
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(223) lies on these lines:
1,4   2,77   3,1035   6,57   9,1073   40,221   56,937   63,651   108,204   109,165   312,664   329,347   380,608   580,603   936,1038

X(223) = isogonal conjugate of X(282)>BR> X(223) = complement of X(189)
X(223) = X(I)-Ceva conjugate of X(J) for these (I,J): (2,57), (77,1), (342,208), (347,40)
X(223) = cevapoint of X(198) and X(221)
X(223) = X(I)-cross conjugate of X(J) for these (I,J): (198,40), (227,347)
X(223) = crosspoint of X(2) and X(329)

X(223) = X(I)-aleph conjugate of X(J) for these (I,J):
(63,1079), (77,223), (81,580), (174,46), (508,19), (651,109)

X(223) = X(I)-beth conjugate of X(J) for these (I,J):
(2,278), (100,200), (162,204), (329,329), (651,223), (662,63)


X(224) = X(7)-CEVA CONJUGATE OF X(63)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where
                        f(A,B,C) = [cot B cos2(B/2) + cot C (cot C/2)2 - cot A (cot C/2)2]cot A

Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(224) lies on these lines: 1,377   3,63   8,914   21,90   46,100   65,1004
X(224) = X(7)-Ceva conjugate of X(63)


X(225) = X(4)-CEVA CONJUGATE OF X(65)

Trilinears       (sec A)(cos B + cos C) : (sec B)(cos C + cos A) : (sec C)(cos A + cos B)
Barycentrics  (tan A)(cos B + cos C) : (tan B)(cos C + cos A) : (tan C)(cos A + cos B)

X(225) lies on these lines:
1,4   3,1074   7,969   10,201   12,37   19,208   28,108   46,254   65,407   75,264   91,847   158,1093   377,1038   412,775   653,897

X(225) = isogonal conjugate of X(283)
X(225) = isotomic conjugate of X(332)
X(225) = X(4)-Ceva conjugate of X(65)
X(225) = X(407)-cross conjugate of X(4)
X(225) = crosspoint of X(I) and X(J) for these (I,J): (4,158), (273,278)
X(225) = X(I)-beth conjugate of X(J) for these (I,J): (4,225), (10,227), (108,1042), (318,10)


X(226) = X(7)-CEVA CONJUGATE OF X(65)

Trilinears       (csc A)(cos B + cos C) : (csc B)(cos C + cos A) : (csc C)(cos A + cos B)
                        = bc(b + c)/(b + c - a) : ca(c + a)/(c + a - b) : ab(a + b)/(a + b - c)

Barycentrics  (b + c)/(b + c - a) : (c + a)/(c + a - b) : (a + b)/(a + b - c)

This center is also X(63) of the medial triangle.

X(226) lies on these lines:
1,4   2,7   5,912   10,12   11,118   13,1082   14,554   27,284   29,951   35,79   36,1006   37,440   41,379   46,498   55,516   56,405   76,85   78,377   81,651   92,342   98,109   102,1065   196,281   208,406   222,478   228,851   262,982   273,469   306,321   443,936   481,485   482,486   495,517   535,551   664,671   975,1038   990,1040

X(226) = isogonal conjugate of X(284)
X(226) = isotomic conjugate of X(333)
X(226) = complement of X(63)
X(226) = X(I)-Ceva conjugate of X(J) for these (I,J): (7,65), (349,307)
X(226) = cevapoint of X(37) and X(65)
X(226) = X(I)-cross conjugate of X(J) for these (I,J): (37,10), (73,307)
X(226) = crosspoint of X(2) and X(92)

X(226) = X(I)-beth conjugate of X(J) for these (I,J): (2,226), (21,1064), (100,42), (190,226), (312,306), (321,321), (335,226), (835,226)


X(227) = X(10)-CEVA CONJUGATE OF X(65)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b + c)(cos B + cos C - cos A - 1)tan 2A
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(227) lies on these lines:
12,37   34,55   40,221   42,65   46,222   56,197   198,208   201,210   322,347   607,910

X(227) = isogonal conjugate of X(285)
X(227) = X(10)-Ceva conjugate of X(65)
X(227) = crosspoint of X(223) and X(347)
X(227) = X(I)-beth conjugate of X(J) for these (I,J): (10,225), (40,227), (100,72)


X(228) = X(3)-CEVA CONJUGATE OF X(71)

Trilinears       (sin 2A)(sin B + sin C) : (sin 2B)(sin C + sin A) : (sin 2C)(sin A + sin B)
Barycentrics  (sin A sin 2A)(sin B + sin C) : (sin B sin 2B)(sin C + sin A) : (sin C sin 2C)(sin A + sin B)

X(228) lies on these lines:
3,63   9,1011   12,407   19,25   28,943   31,32   35,846   42,181   48,184   73,408   98,100   226,851

X(228) = isogonal conjugate of X(286)
X(228) = X(I)-Ceva conjugate of X(J) for these (I,J): (3,71), (37,213), (55,42)
X(228) = crosspoint of X(I) and X(J) for these (I,J): (3,48), (37,72), (55,212), (71,73)
X(228) = X(212)-beth conjugate of X(228)


X(229) = X(7)-CEVA CONJUGATE OF X(81)

Trilinears       f(a,b,c) : f(b,c,a : f(c,a,b), where f(a,b,c) = (v + w - u)/(b + c),
                         u = u(a,b,c) = a(b + c - a)/(b + c), v = u(b,c,a), w = u(c,a,b)

Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(229) lies on these lines: 1,267   21,36   28,60   58,244   65,110   593,1104

X(229) = midpoint between X(1) and X(267)
X(229) = X(7)-Ceva conjugate of X(81)


X(230) = X(2)-CEVA CONJUGATE OF X(114)

Trilinears       f(a,b,c) : f(b,c,a : f(c,a,b), where
                        f(a,b,c) = bc[a2(2a2 - b2 - c2) + (b2 - c2)2]

Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(230) lies on these lines:
2,6   5,32   12,172   25,53   30,115   39,140   50,858   111,476   112,403   231,232   393,459   538,620   549,574   625,754

X(230) = midpoint between X(I) and X(J) for these (I,J): (115,187), (325,385), (395,396)
X(230) = complement of X(325)
X(230) = X(2)-Ceva conjugate of X(114)
X(230) = crosspoint of X(2) and X(98)
X(230) = X(2)-Hirst inverse of X(193)
X(230) = X(I)-beth conjugate of X(J) for these (I,J): (281,230), (645,230)

Let X = X(230) and let V be the vector-sum XA + XB + XC; then V = X(230)X(385) = X(265)X(399).


X(231) = X(2)-CEVA CONJUGATE OF X(128)

Trilinears       f(a,b,c) : f(b,c,a : f(c,a,b), where f(a,b,c) = u(-au + bv + cw), u : v : w = X(128)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(231) lies on these lines: 4,96   6,17   50,115   230,232

X(231) = X(2)-Ceva conjugate of X(128)
X(231) = X(281)-beth conjugate of X(230)


X(232) = X(2)-CEVA CONJUGATE OF X(132)

Trilinears       tan A cos(A + ω) : tan B cos(B + ω) : tan C cos(C = ω)
Barycentrics  sin A tan A cos(A + ω) : sin B tan B cos(B + ω) : sin C tan C cos(C = ω)

X(232) lies on these lines:
2,216   4,39   6,25   19,444   22,577   23,250   24,32   53,427   112,186   115,403   217,389   230,231   297,325   378,574   385,648   459,800

X(232) = isogonal conjugate of X(287)
X(232) = X(I)-Ceva conjugate of X(J) for these (I,J): (2,132), (297,511)
X(232) = X(237)-cross conjugate of X(511)
X(232) = X(6)-Hirst inverse of X(25)
X(232) = X(281)-beth conjugate of X(232)


X(233) = X(2)-CEVA CONJUGATE OF X(140)

Trilinears       f(a,b,c) : f(b,c,a : f(c,a,b), where f(a,b,c) = [b cos(C - A) + c cos(B - A)]cos(B - C)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(233) lies on these lines: 2,95   5,53   6,17   115,128   122,138

X(233) = isogonal conjugate of X(288)
X(233) = complement of X(95)
X(233) = X(2)-Ceva conjugate of X(140)
X(233) = crosspoint of X(2) and X(5)


X(234) = X(7)-CEVA CONJUGATE OF X(177)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (cos B/2 + cos C/2)(cos B/2 cos C/2)2
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(234) lies on these lines: 2,178   7,174   57,362   75,556   555,1088

X(234) = X(7)-Ceva conjugate of X(177)


X(235) = X(4)-CEVA CONJUGATE OF X(185)

Trilinears       f(a,b,c) : f(b,c,a : f(c,a,b), where f(a,b,c) = u(-u cos A + v cos B + w cos C), where u : v : w = X(185)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(235) lies on these lines: 2,3   11,34   12,33   52,113   133,136

X(235) = midpoint between X(4) and X(24)
X(235) = X(4)-Ceva conjugate of X(185)


X(236) = X(2)-CEVA CONJUGATE OF X(188)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (csc A/2)(cos B/2 + cos C/2 - cos A/2)
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(236) lies on these lines: 2,174   8,178   9,173

X(236) = isogonal conjugate of X(289)
X(236) = X(2)-Ceva conjugate of X(188)



leftri Centers 237- 248 rightri
are line conjugates. The P-line conjugate of Q is the point
where line PQ meets the polar of the isogonal conjugate of Q.

underbar

X(237) = X(3)-LINE CONJUGATE OF X(2)

Trilinears       a2cos(A + ω) : b2cos(B + ω)2cos(C + ω)
Barycentrics  a3cos(A + ω) : b3cos(B + ω) : c3cos(C + ω)

X(237) lies on these lines: 2,3   6,160   31,904   32,184   39,51   154,682   187,351   206,571

X(237) = isogonal conjugate of X(290)
X(237) = X(98)-Ceva conjugate of X(6)
X(237) = crosspoint of X(I) and X(J) for these (I,J): (6,98), (232,511)
X(237) = X(32)-Hirst inverse of X(184)
X(237) = X(3)-line conjugate of X(2)
X(237) = X(55)-beth conjugate of X(237)


X(238) = X(1)-LINE CONJUGATE OF X(37)

Trilinears       a2 - bc : b2 - ca : c2 - ab
Barycentrics  a3 - abc : b3 - abc : c3 - abc

X(238) lies on these lines:
1,6   2,31   3,978   4,602   8,983   10,82   21,256   36,513   43,55   47,499   56,87   58,86   63,614   100,899   105,291   106,898   162,415   190,726   212,497   239,740   242,419   244,896   516,673   517,1052   519,765   580,946   601,631   942,1046   992,1009   993,995   1006,1064

X(238) = isogonal conjugate of X(291)
X(238) = isotomic conjugate of X(334)
X(238) = X(I)-Ceva conjugate of X(J) for these (I,J): (105,1), (292,171)
X(238) = X(I)-Hirst inverse of X(J) for these (I,J): (1,6), (43,55)
X(238) = X(1)-line conjugate of X(37)
X(238) = X(105)-aleph conjugate of X(238)
X(238) = X(I)-beth conjugate of X(J) for these (I,J): (21,238), (643,902), (644,238), (932,238)

Let X = X(238) and let V be the vector-sum XA + XB + XC; then V = X(320)X(1).


X(239) = X(1)-LINE CONJUGATE OF X(42)

Trilinears       bc(a2 - bc) : ca(b2 - ca) : ab(c2 - ab)
Barycentrics  a2 - bc : b2 - ca : c2 - ab

X(239) lies on these lines:
1,2   6,75   7,193   9,192   44,190   57,330   63,194   81,274   83,213   86,1100   92,607   141,319   238,740   241,664   257,333   294,666   318,458   320,524   335,518   514,649   1043,1104

X(239) = isogonal conjugate of X(292) = isotomic conjugate of X(335)
X(239) = reflection of X(190) about X(44)
X(239) = crosspoint of X(256) and X(291)
X(239) = X(I)-Hirst inverse of X(J) for these (I,J): (1,2), (9,192)
X(239) = X(1)-line conjugate of X(42)
X(239) = X(I)-beth conjugate of X(J) for these (I,J): (333,239), (645,44)


X(240) = X(1)-LINE CONJUGATE OF X(48)

Trilinears       sec A cos(A + ω) : sec B cos(B + ω) : sec C cos(C + ω)
Barycentrics  tan A cos(A + ω) : tan B cos(B + ω) : tan C cos(C + ω)

X(240) lies on these lines: 1,19   4,256   38,92   63,1096   75,158   162,896   278,982   281,984   522,656   607,611   608,613

X(240) = isogonal conjugate of X(293)
X(240) = isotomic conjugate of X(336)
X(240) = X(1)-Hirst inverse of X(19)
X(240) = X(31-line conjugate of X(48)
X(240) = X(318)-beth conjugate of X(240)


X(241) = X(1)-LINE CONJUGATE OF X(55)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where
                        f(A,B,C) = cos4B/2 - [cos2(A/2)][cos2(B/2) +cos2(C/2)] + cos4(C/2)

Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(241) lies on these lines: 1,3   2,85   6,77   7,37   9,269   44,651   63,220   141,307   218,222   239,664   277,278   294,910   347,1108   514,650   960,1042

X(241) = isogonal conjugate of X(294)
X(241) = X(1)-Hirst inverse of X(57)
X(241) = X(1)-line conjugate of X(55)
X(241) = X(I)-beth conjugate of X(J) for these (I,J): (2,241), (100,241), (1025,241), (1026,241)


X(242) = X(4)-LINE CONJUGATE OF X(71)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (sec A)[sin2A - sin B sin C]
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(242) lies on these lines: 4,9   25,92   28,261   29,257   34,87   162,422   238,419   278,459   915,929

X(242) = isogonal conjugate of X(295)
X(242) = isotomic conjugate of X(337)
X(242) = X(4)-Hirst inverse of X(19)
X(242) = X(4)-line conjugate of X(71)


X(243) = X(4)-LINE CONJUGATE OF X(73)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (sec A)[cos2A - cos B cos C]
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(243) lies on these lines: 1,4   3,158   55,92   65,412   318,958   411,821   425,662   522,652   920,1075   1040,1096

X(243) = isogonal conjugate of X(296)
X(243) = X(1)-Hirst inverse of X(4)
X(243) = X(1)-line conjugate of X(73)


X(244) = X(1)-LINE CONJUGATE OF X(100)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = [1 - cos(B - C)]sin2(A/2)
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(244) lies on these lines: 1,88   2,38   11,867   31,57   34,1106   42,354   58,229   63,748   238,896   474,976   518,899   596,1089   665,866

X(244) = X(I)-Ceva conjugate of X(J) for these (I,J): (1,513), (75,514)
X(244) = crosspoint of X(1) and X(513)
X(244) = X(1)-line conjugate of X(100)


X(245) = X(1)-LINE CONJUGATE OF X(110)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where
                        f(A,B,C) = csc2(C - A) + csc(C - B) [csc(C - A) -csc(B - A)] + csc2(A - B)

Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(245) lies on these lines: 1,60   115,125

X(245) = X(1)-line conjugate of X(110)


X(246) = X(3)-LINE CONJUGATE OF X(110)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where
                        f(A,B,C) = csc(B-A)[cos A csc(B - A) + cos C csc(B - C)] - csc(C - A) u(A,B,C),
                        u(A,B,C) = [cos A csc(C - A) + cos B csc(C - B)]

Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(246) lies on these lines: 3,74   115,125

X(246) = X(3)-line conjugate of X(110)


X(247) = X(4)-LINE CONJUGATE OF X(110)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where
                        f(A,B,C) = csc(B-A)[sec A csc(B - A) + sec C csc(B - C)] - csc(C - A) u(A,B,C),
                        u(A,B,C) = [sec A csc(C - A) + sec B csc(C - B)]

Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(247) lies on these lines: 4,110   115,125

X(247) = X(4)-line conjugate of X(110)


X(248) = X(4)-LINE CONJUGATE OF X(132)

Trilinears       sin 2A sec(A + ω) : sin 2B sec(B + ω) : sin 2C sec(C + ω)
Barycentrics  sin A sin 2A sec(A + ω) : sin B sin 2B sec(B + ω) : sin C sin 2C sec(C + ω)

X(248) lies on these lines:
4,32   6,157   39,54   50,67   65,172   66,571   69,287   72,293   74,187   290,385   682,695

X(248) = isogonal conjugate of X(297)
X(248) = crosspoint of X(98) and X(287)
X(248) = X(4)-line conjugate of X(132)



leftri Centers 249- 297 rightri
are isogonal conjugates of previously listed centers.

underbar

X(249)

Trilinears       (csc A)cos2(B - C) : (csc B)cos2(C - A) : (csc C)cos2(A - B)
                        = a/(b2 - c2)2 : b/(c2 - a2)2 : c/(a2 - b2)2

Barycentrics  cos2(B - C) : cos2(C - A) : cos2(A - B)

X(249) lies on these lines: 99,525   110,512   186,250   187,323   297,316   648,687   805,827   849,1110

X(249) = isogonal conjugate of X(115)
X(249) = isotomic conjugate of X(338)
X(249) = cevapoint of X(I) and X(J) for these (I,J): (6,110), (24,112)
X(249) = X(I)-cross conjugate of X(J) for these (I,J): (3,99), (6,110)

Let X = X(249) and let V be the vector-sum XA + XB + XC; then V = X(316)X(323).


X(250)

Trilinears       (sec A)csc2(B - C) : (sec B)csc2(C - A) : (sec C)csc2(A - B)
                        = (a2sec A)/(b2 - c2)2 : (b2sec B)/(c2 - a2)2 : (c2sec C)/(a2 - b2)2

Barycentrics  (tan A)csc2(B - C) : (tan B)csc2(C - A) : (tan C)csc2(A - B)

X(250) lies on these lines: 23,232   107,687   110,520   112,691   186,249   325,340   476,933   523,648   827,935

X(250) = isogonal conjugate of X(125)
X(250) = isotomic conjugate of X(339)
X(250) = cevapoint of X(I) and X(J) for these (I,J): (3,110), (25,112), (162,270)
X(250) = X(I)-cross conjugate of X(J) for these (I,J): (3,110), (22,99), (24,107), (25,112), (199,101)

Let X = X(250) and let V be the vector-sum XA + XB + XC; then V = X(340)X(23).


X(251)

Trilinears       a2csc(A + ω) : b2csc(B + ω) : c2csc(C + ω)
                        = a/(b2 + c2) : b/(c2 + a2) : c/(a2 + b2)

Barycentrics  a3csc(A + ω) : b3csc(B + ω) : c3csc(C + ω)

X(251) lies on these lines: 2,32   6,22   37,82   110,694   112,427   184,263   308,385   609,614   689,699

X(251) = isogonal conjugate of X(141)
X(251) = cevapoint of X(6) and X(32)
X(251) = X(I)-cross conjugate of X(J) for these (I,J): (6,83), (23,111), (523,112)


X(252)

Trilinears       (cos A csc 2A)/f(A,B,C) : (cos B csc 2B)/f(B,C,A) : (cos C csc 2C)/f(C,A,B), where
                        f(A,B,C) = [(v + w)2][u4 + v4 + w4 - u2(2 v2 + 2w2 - vw) - vw(v2 + w2)], where
u = sin(2A), v = sin(2B), w = sin(2C).

Barycentrics  1/f(A,B,C) : 1/f(B,C,A) : 1/f(C,A,B)

X(252) lies on these lines: 3,930   54,140   93,186

X(252) = isogonal conjugate of X(143)


X(253)  X(4)-CROSS CONJUGATE OF X(2)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (csc A)/(tan B + tan C - tan A)
                        g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (csc2A)/(cos A - cos B cos C)

Barycentrics  g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = 1/(tan B + tan C - tan A)

X(253) lies on these lines: 2,1073   7,280   8,307   20,64   193,287   306,329   318,342   322,341

X(253) = isogonal conjugate of X(154)
X(253) = isotomic conjugate of X(20)
X(253) = cyclocevian conjugate of X(69)
X(253) = cevapoint of X(122) and X(525)
X(253) = X(I)-cross conjugate of X(J) for these (I,J): (4,2), (122,525)


X(254)  X(3)-CROSS CONJUGATE OF X(4)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (sec A)/(cos2B + cos2C - cos2A)
Barycentrics  g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (tan A)/(cos2B + cos2C - cos2A)

X(254) lies on these lines: 2,847   4,155   24,393   46,225   68,136

X(254) = isogonal conjugate of X(155)
X(254) = cevapoint of X(136) and X(523)
X(254) = X(3)-cross conjugate of X(4)


X(255)

Trilinears       cos2A : cos2B : cos2C
Barycentrics  sin A cos2A : sin B cos2B : sin C cos2C

X(255) lies on these lines: 1,21   3,73   35,991   36,1106   40,109   48,563   55,601   56,602   57,580   91,1109   92,1087   158,775   162,1099   165,1103   200,271   201,1060   219,268   293,304   326,1102   411,651   498,750   499,748

X(255) = isogonal conjugate of X(158)
X(255) = X(I)-Ceva conjugate of X(J) for these (I,J): (63,48), (283,3)
X(255) = crosspoint of X(63) and X(326)
X(255) = X(I)-aleph conjugate of X(J) for these (I,J): (775,255), (1105,158)

Let W be the vector-sum XA' + XB' + XC', where A'B'C' is the pedal triangle of X(255); then W = X(225)X(255).


X(256)

Trilinears       1/(a2 + bc) : 1/(b2 + ca) : 1/(c2 + ab)
Barycentrics  a/(a2 + bc) : b/(b2 + ca) : c/(c2 + ab)

X(256) lies on these lines: 1,511   3,987   4,240   7,982   8,192   9,43   21,238   37,694   40,989   55,983   84,988   104,1064   291,894   314,350   573,981

X(256) = isogonal conjugate of X(171)
X(256) = X(239)-cross conjugate of X(291)


X(257)

Trilinears       1/(a3 + abc) : 1/(b3 + abc) : 1/(c3 + abc)
Barycentrics  a/(a3 + abc) : b/(b3 + abc) : c/(c3 + abc)

X(257) lies on these lines: 1,385   8,192   29,242   65,894   75,698   92,297   194,986   239,333   330,982   335,694

X(257) = isogonal conjugate of X(172)
X(527) = isotomic conjugate of X(894)
X(257) = X(350)-cross conjugate of X(335)


X(258) = CONGRUENT INCIRCLES ISOSCELIZER POINT

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = 1/( cos B/2 + cos C/2 - cos A/2)
                        = g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = 1 + sin(B/2) + sin(C/2) - sin(A/2)

Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

In Yff's isoscelizer configuration, if X = X(258), then the isosceles triangles Ta, Tb, Tc have congruent incircles.

X(258) lies on these lines: 1,164   57,173   259,289

X(258) = isogonal conjugate of X(173)
X(258) = X(259)-cross conjugate of X(1)
X(258) = X(366)-aleph conjugate of X(363)


X(259)

Trilinears       cos A/2 : cos B/2 : cos C/2
                        = [a(b + c - a)]1/2 : [b(c + a - b)]1/2 : [c(a + b - c)]1/2

Barycentrics  sin A cos A/2 : sin B cos B/2 : sin C cos C/2

X(259) lies on these lines: 1,168   258,289   260,266

X(259) = isogonal conjugate of X(174)
X(259) = X(I)-Ceva conjugate of X(J) for these (I,J): (174,266), (260,55)
X(259) = cevapoint of X(1) and X(503)
X(259) = crosspoint of X(I) and X(J) for these (I,J): (1,258), (174,188)


X(260)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (cos A/2)/[cos B/2 + cos C/2 - cos A/2)]
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(260) lies on these lines: 1,3   259,266

X(260) = isogonal conjugate of X(177)
X(260) = cevapoint of X(55) and X(259)


X(261)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = [(csc A)(sec(B/2 - C/2))]2
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(261) lies on these lines:
2,593   9,645   21,314   28,242   58,86   75,99   272,310   284,332   317,406   319,502   552,873   572,662

X(261) = isogonal conjugate of X(181)
X(261) = isotomic conjugate of X(12)
X(261) = cevapoint of X(21) and X(333)


X(262)

Trilinears       sec(A - ω) : sec(B - ω) : sec(C - ω)
Barycentrics  sin A sec(A - ω) : sin B sec(B - ω) : sin C sec(C - ω)

X(262) lies on these lines: 2,51   3,83   4,39   5,76   6,98   13,383   14,1080   25,275   30,598   226,982   381,671   385,576

X(262) = isogonal conjugate of X(182)
X(262) = isotomic conjugate of X(183)

Let X = X(262) and let V be the vector-sum XA + XB + XC; then V = X(76)X(4).


X(263)

Trilinears       a2sec(A - ω) : b2sec(B - ω) : c2sec(C - ω)
Barycentrics  a3sec(A - ω) : b3sec(B - ω) : c3sec(C - ω)

X(263) lies on these lines: 2,51   6,160   69,308   184,251

X(263) = isogonal conjugate of X(183)


X(264)  ISOTOMIC CONJUGATE OF CIRCUMCENTER

Trilinears       csc A csc 2A : csc B csc 2B : csc C csc 2C
                        = sec A csc2A : sec B csc2B : sec C csc2C
                        = tan A csc(A - ω) : tan B csc(B - ω) : tan C csc(C - ω)

Barycentrics  csc 2A : csc 2B : csc 2C

X(264) lies on these lines:
2,216   3,95   4,69   5,1093   6,287   25,183   33,350   53,141   75,225   85,309   92,306   99,378   274,475   281,344   298,472   299,473   300,302   301,303   305,325   339,381   379,823   401,577

X(264) = isogonal conjugate of X(184)
X(264) = isotomic conjugate of X(3)
X(264) = anticomplement of X(216)
X(264) = X(276)-Ceva conjugate of X(2)
X(264) = cevapoint of X(I) and X(J) for these (I,J): (2,4), (5,324), (6,157), (92,318), (273,342), (338,523), (491,492)

X(264) = X(I)-cross conjugate of X(J) for these (I,J): (2,76), (5,2), (30,94), (92,331), (427,4), (442,321)


X(265)

Trilinears       sin 2A csc 3A : sin 2B csc 3B : sin 2C csc 3C
                        = 1/(4 cos A - sec A) : 1/(4 cos B - sec B) : 1/(4 cos C sec C)

Barycentrics  sin A sin 2A csc 3A : sin B sin 2B csc 3B : sin C sin 2C csc 3C

X(265) lies on these lines: 3,125   4,94   5,49   6,13   30,74   64,382   65,79   67,511   69,328   290,316   300,621   301,622

X(265) = reflection of X(I) about X(J) for these (I,J): (3,125), (110,5), (399,113)
X(265) = isogonal conjugate of X(186)
X(265) = isotomic conjugate of X(340)
X(265) = cevapoint of X(5) and X(30)
X(265) = crosspoint of X(94) and X(328)


X(266)

Trilinears       sin A/2 : sin B/2 : sin C/2
                        = [bc(b + c - a)]1/2 : [ca(c + a - b)]1/2 : [ab(a + b - c)]1/2

Barycentrics  sin A sin A/2 : sin B sin B/2 : sin C sin C/2

X(266) lies on these lines:1,164   56,289   174,188   259,260   361,978

X(266) = isogonal conjugate of X(188)
X(266) = eigencenter of cevian triangle of X(174) X(266) = eigencenter of anticevian triangle of X(259)
X(266) = X(174)-Ceva conjugate of X(259)
X(266) = cevapoint of X(1) and X(361)
X(266) = X(6)-cross conjugate of X(289)
X(266) = crosspoint of X(1) and X(505)


X(267)

Trilinears       f(a,b,c) : f(b,c,a) : f(ca,b), where
                        f(a,b,c) = 1/[b3 + c3 - a3 + (b + c - a)(bc + ca + ab)]

Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(267) lies on these lines: 1,229   10,191   35,37

X(267) = reflection of X(1) about X(229)
X(267) = isogonal conjugate of X(191)
X(267) = cevapoint of X(58) and X(501)
X(267) = X(58)-cross conjugate of X(1)


X(268)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (cos A cot A/2)/(-1 - cos A + cos B + cos C)
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(268) lies on these lines: 3,9   21,280   219,255   220,577   222,1073   281,1012

X(268) = isogonal conjugate of X(196)
X(268) = X(I)-cross conjugate of X(J) for these (I,J): (48,219), (55,3)


X(269)

Trilinears       tan2A/2 : tan2B/2 : tan2C/2
Barycentrics  sin A tan2A/2 : sin B tan2B/2 : sin C tan2C/2

X(269) lies on these lines: 1,7   3,939   6,57   9,241   46,1103   56,738   69,200   86,1088   106,934   142,948   273,1111   292,1020   307,936   320,326   479,614

X(269) = isogonal conjugate of X(200)
X(269) = isotomic conjugate of X(341)
X(269) = X(279)-Ceva conjugate of X(57)
X(269) = X(56)-cross conjugate of X(57)
X(269) = crosspoint of X(279) and X(479)


X(270)

Trilinears       (sec A)/[1 + cos(B - C)] : (sec B)/[1 + cos(C - A)] : (sec C)/[1 + cos (A - B)]
Barycentrics  (tan A)/[1 + cos(B - C)] : (tan B)/[1 + cos(C - A)] : (tan C)/[1 + cos (A - B)]

X(270) lies on these lines: 4,162   27,58   28,60   29,283   759,933

X(270) = isogonal conjugate of X(201)
X(270) = X(250)-Ceva conjugate of X(162)
X(270) = cevapoint of X(28) and X(58)
X(270) = X(58)-cross conjugate of X(60)


X(271)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (cot A cot A/2)/(-1 - cos A + cos B + cos C)
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(271) lies on these lines: 2,1034   8,20   78,394   200,255   282,283

X(271) = isogonal conjugate of X(208)
X(271) = isotomic conjugate of X(342)
X(271) = X(I)-cross conjugate of X(J) for these (I,J): (3,78), (9,63)


X(272)

Trilinears       f(A,B,C)/(b + c) : f(B,C,A)/(c + a) : f(C,A,B)/(a +b), where
                        f(A,B,C) = 1/[sin A + sin(A - B) + sin(A - C)]

Barycentrics  af(A,B,C)/(b + c) : bf(B,C,A)/(c + a) : cf(C,A,B)/(a +b)

X(272) lies on these lines: 2,284   7,58   21,75   28,273   60,86   261,310   1014,1088

X(272) = isogonal conjugate of X(209)
X(272) = X(3)-cross conjugate of X(81)


X(273)

Trilinears       sec A sec2(A/2) : sec B sec2(B/2) : sec C sec2(C/2)
                        = (1- sec A)csc2A : (1 - sec B)csc2B : (1 - sec C)csc2C

Barycentrics  tan A sec2(A/2) : tan B sec2(B/2) : tan C sec2(C/2)

X(273) lies on these lines: 2,92   4,7   19,653   27,57   28,272   29,34   53,1086   75,225   78,322   108,675   226,469   269,1111   317,320   458,894

X(273) = isogonal conjugate of X(212)
X(273) = isotomic conjugate of X(78)
X(273) = X(I)-Ceva conjugate of X(J) for these (I,J): (264,342), (286,7), (331,92)
X(273) = cevapoint of X(I) and X(J) for these (I,J): (4,278), (34,57)
X(273) = X(I)-cross conjugate of X(J) for these (I,J): (4,92), (57,85), (225,278)


X(274)

Trilinears       b2c2/(b + c) : c2a2/(c + a) : a2b2/(a + b)
                        = [a csc(A - ω)]/(b + c) : [b csc(B - ω)]/(c + a) :[c csc(C - ω)]/(a + b)

Barycentrics  bc/(b + c) : ca/(c + a) : ab/(a + b)

X(274) lies on these lines:
1,75   2,39   7,959   10,291   21,99   28,242   57,85   58,870   69,443   81,239   88,799   110,767   183,474   213,894   264,475   278,331   315,377   325,442   961,1014

X(274) = isogonal conjugate of X(213)
X(274) = isotomic conjugate of X(37)
X(274) = X(310)-Ceva conjugate of X(314)
X(274) = cevapoint of X(I) and X(J) for these (I,J): (2,75), (85,348), (86,333)
X(274) = X(I)-cross conjugate of X(J) for these (I,J): (2,86), (75,310), (81,286), (333,314)


X(275)  CEVAPOINT OF ORTHOCENTER AND SYMMEDIAN POINT

Trilinears       csc 2A sec(B - C) : csc 2B sec(C - A) : csc 2C sec(A - B)
Barycentrics  sec A sec(B - C) : sec B sec(C - A) : sec C sec(A - B)

X(275) lies on these lines:
2,95   4,54   13,472   14,473   17,471   18,470   25,262   51,107   53,288   76,276   83,297   94,324   98,427

X(275) = isogonal conjugate of X(216)
X(275) = isotomic conjugate of X(343)
X(275) = X(276)-Ceva conjugate of X(95)
X(275) = cevapoint of X(4) and X(6)
X(275) = X(I)-cross conjugate of X(J) for these (I,J): (6,54), (54,95)


X(276)

Trilinears       a3sec A sec(B - C) : b3sec B sec(C - A) : c3sec C sec(A - B)
Barycentrics  a4sec A sec(B - C) : b4sec B sec(C - A) : c4sec C sec(A - B)

X(276) lies on these lines: 3,95   4,327   54,290   76,275   97,401

X(276) = isogonal conjugate of X(217)
X(276) = isotomic conjugate of X(216)
X(276) = cevapoint of X(I) and X(J) for these (I,J): (2,264), (95,275)
X(276) = X(I)-cross conjugate of X(J) for these (I,J): (2,95), (401,290)


X(277)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where
                        f(A,B,C) = [sec2(A/2)]/[- cos4A/2 + cos4B/2 + cos4C/2]
Barycentrics  af(A,B,C) : bf(B,C,A) : cf(C,A,B)

X(277) lies on these lines: 1,142   3,105   7,218   57,169   220,1086   241,278   942,1002

X(277) = isogonal conjugate of X(218)
X(277) = isotomic conjugate of X(345)
X(277) = X(55)-cross conjugate of X(7)


X(278)

Trilinears       sec A tan A/2 : sec B tan B/2 : sec C tan C/2
                        = csc A - 2 csc 2A : csc B - 2 csc 2B : csc C - 2 csc 2C
                        = (1 - sec A)/a : (1 - sec B)/b : (1 - sec C)/c

Barycentrics  tan A tan A/2 : tan B tan B/2 : tan C tan C/2

        = 1 - sec A : 1 - sec B : 1 - sec C

X(278) lies on these lines:
1,4   2,92   7,27   19,57   25,105   28,56   65,387   88,653   109,917   219,329   240,982   241,277   242,459   274,331   354,955   393,1108   412,962   443,1038   614,1096

X(278) = isogonal conjugate of X(219)
X(278) = isotomic conjugate of X(345)
X(278) = X(I)-Ceva conjugate of X(J) for these (I,J): (27,57), (92,196), (273,4), (331,7)
X(278) = cevapoint of X(19) and X(34)
X(278) = X(I)-cross conjugate of X(J) for these (I,J): (19,4), (56,7), (225,273)


X(279)

Trilinears       csc A tan2A/2 : csc B tan2B/2 : csc C tan2C/2
Barycentrics  tan2A/2 : tan2B/2 : tan2C/2

X(279) lies on these lines: 1,7   2,85   28,1014   56,105   57,479   65,1002   144,220   145,664   304,346   942,955   985,1106

X(279) = isogonal conjugate of X(220)
X(279) = isotomic conjugate of X(346)
X(279) = cevapoint of X(57) and X(269)
X(279) = X(I)-cross conjugate of X(J) for these (I,J): (57,7), (269,479)


X(280)  X(1)-CROSS CONJUGATE OF X(8)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (csc2A/2)/(-1 - cos A + cos B + cos C)
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(280) lies on these lines: 2,318   7,253   8,20   21,268   75,309   78,282   285,1043   341,345

X(280) = isogonal conjugate of X(221)
X(280) = isotomic conjugate of X(347)
X(280) = X(309)-Ceva conjugate of X(189)
X(280) = cevapoint of X(1) and X(84)
X(280) = X(I)-cross conjugate of X(J) for these (I,J): (1,8), (281,2), (282,189)


X(281)

Trilinears       sec A cot A/2 : sec B cot B/2 : sec C cot C/2
                        = csc A + 2 csc 2A : csc B + 2 csc 2B : csc C + 2 csc 2C
                        = (1 + sec A)/a : (1 + sec B)/b : (1 + sec C)/c

Barycentrics  tan A cot A/2 : tan B cot B/2 : tan C cot C/2

        = 1 + sec A : 1 + sec B : 1 + sec C

X(281) lies on these lines:
1,282   2,92   4,9   7,653   8,29   28,958   33,200   37,158   45,53   48,944   100,1013   189,222   196,226      220,594   240,984   264,344   268,1012   318,346   380,950   451,1068   515,610   612,1096

X(281) = isogonal conjugate of X(222)
X(281) = isotomic conjugate of X(348)
X(281) = complement of X(347)
X(281) = X(I)-Ceva conjugate of X(J) for these (I,J): (29,33), (92,4)
X(281) = X(I)-cross conjugate of X(J) for these (I,J): (33,4), (37,9), (55,8)
X(281) = crosspoint of X(I) and X(J) for these (I,J): (2,280), (92,318)


X(282)  X(6)-CROSS CONJUGATE OF X(9)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (cot A/2)/(-1 - cos A + cos B + cos C)
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(282) lies on these lines: 1,281   2,77   3,9   19,102   48,947   78,280   200,219   271,283   380,1036

X(282) = isogonal conjugate of X(223)
X(282) = X(189)-Ceva conjugate of X(84)
X(282) = X(I)-cross conjugate of X(J) for these (I,J): (6,9), (33,1)
X(282) = crosspoint of X(189) and X(280)


X(283)

Trilinears       (cos A)/(cos B + cos C) : (cos B)/(cos C + cos A) : (cos C)/(cos A + cos B)
Barycentrics  (sin 2A)/(cos B + cos C) : (sin 2B)/(cos C + cos A) : (sin 2C)/(cos A + cos B)

X(283) lies on these lines: 1,21   2,580   3,49   29,270   60,284   77,603   78,212   86,307   102,110   271,282   474,582   643,1043   859,945   1010,1065

X(283) = isogonal conjugate of X(225)
X(283) = X(333)-Ceva conjugate of X(284)
X(283) = cevapoint of X(I) and X(J) for these (I,J): (3,255), (212,219)
X(283) = X(3)-cross conjugate of X(21)
X(283) = crosspoint of X(332) and X(333)

Let W be the vector-sum XA' + XB' + XC', where A'B'C' is the pedal triangle of X(283); then W = X(407)X(283).


X(284)

Trilinears       (sin A)/(cos B + cos C) : (sin B)/(cos C + cos A) : (sin C)/(cos A + cos B)
Barycentrics  a2/(cos B + cos C) : b2/(cos C + cos A) : c2/(cos A + cos B)

X(284) lies on these lines:
1,19   2,272   3,6   9,21   27,226   29,950   35,71   37,101   55,219   57,77   60,283   73,951   86,142   102,112   109,296   163,909   198,859   261,332   405,965   515,1065   942,1100

X(284) = isogonal conjugate of X(226)
X(284) = isotomic conjugate of X(349)
X(284) = inverse of X(579) in the Brocard circle
X(284) = X(I)-Ceva conjugate of X(J) for these (I,J): (81,58), (333,283)
X(284) = cevapoint of X(I) and X(J) for these (I,J): (6,48), (41,55)
X(284) = X(55)-cross conjugate of X(21)
X(284) = crosspoint of X(I) and X(J) for these (I,J): (21,81), (29,333)


X(285)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where
                        f(A,B,C) = 1/[(cos B + cos C)(-1 - cos A + cos B + cos C)]

Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(285) lies on these lines: 21,84   29,81   271,282   280,1043

X(285) = isogonal conjugate of X(227)
X(285) = X(58)-cross conjugate of X(21)


X(286)

Trilinears       (csc 2A)/(sin B + sin C) : (csc 2B)/(sin C + sin A) : (csc 2C)/(sin A + sin B)
Barycentrics  (sec A)/(sin B + sin C) : (sec B)/(sin C + sin A) : (sec C)/(sin A + sin B)

X(286) lies on these lines: 4,69   7,331   19,27   28,242   29,34   99,915   112,767   158,969   322,1043

X(286) = isogonal conjugate of X(228)
X(286) = isotomic conjugate of X(72)
X(286) = cevapoint of X(I) and X(J) for these (I,J): (4,92), (7,273), (27,29), (28,81)
X(286) = X(I)-cross conjugate of X(J) for these (I,J): (4,27), (7,86), (81,274)


X(287)

Trilinears       cot A sec(A + ω) : cot B sec(B + ω) : cot C sec(C + ω)
Barycentrics  cos A sec(A + ω) : cos B sec(B + ω) : cos C sec(C + ω)

X(287) lies on these lines:
2,98   6,264   69,248   83,217   95,141   185,384   193,253   293,306   297,685   305,394   401,511   651,894   879,895

X(287) = isogonal conjugate of X(232)
X(287) = isotomic conjugate of X(297)
X(287) = X(290)-Ceva conjugate of X(98)
X(287) = cevapoint of X(2) and X(401)
X(287) = X(248)-cross conjugate of X(98)
X(287) = X(2)-Hirst inverse of X(98)


X(288)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = [sec(B - C)]/[b cos(C - A) + c cos(B - A)]
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(288) lies on these lines: 51,54   53,275   97,216

X(288) = isogonal conjugate of X(233)
X(288) = cevapoint of X(6) and X(54)


X(289)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (sin A/2)/(cos B/2 + cos C/2 - cos A/2)
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(289) lies on these lines: 1,363   56,266   258,259

X(289) = isogonal conjugate of X(236)
X(289) = X(6)-cross conjugate of X(266)


X(290)

Trilinears       csc2A sec(A + ω) : csc2B sec(B + ω) : csc2C sec(C + ω)
Barycentrics  csc A sec(A + ω) : csc B sec(B + ω) : csc C sec(C + ω)

X(290) lies on these lines:
2,327   3,76   6,264   54,276   66,317   67,340   68,315   69,670   71,190   72,668   73,336   248,385   265,316   308,311   892,895

X(290) = isogonal conjugate of X(237)
X(290) = isotomic conjugate of X(511)
X(290) = cevapoint of X(I) and X(J) for these (I,J): (2,511), (98,287)
X(290) = X(I)-cross conjugate of X(J) for these (I,J): (385,308), (401,276), (511,2)


X(291)

Trilinears       1/(a2 - bc) : 1/(b2 - ca) : 1/(c2 - ab)
Barycentrics  a/(a2 - bc) : b/(b2 - ca) : c/(c2 - ab)

X(291) lies on these lines: 1,39   2,38   6,985   8,330   10,274   42,81   43,57   88,660   105,238   256,894   337,986   350,726   659,897   876,891

X(291) = isogonal conjugate of X(238)
X(291) = isotomic conjugate of X(350)
X(291) = X(I)-cross conjugate of X(J) for these (I,J): (239,256), (518,1)
X(291) = X(I)-Hirst inverse of X(J) for these (I,J): (1,292), (2,335)


X(292)

Trilinears       a/(a2 - bc) : b/(b2 - ca) : c/(c2 - ab)
Barycentrics  a2/(a2 - bc) : b2/(b2 - ca) : c2/(c2 - ab)

X(292) lies on these lines: 1,39   2,334   6,869   9,87   37,86   44,660   58,101   106,813   171,893   269,1020   659,665

X(292) = isogonal conjugate of X(239)
X(292) = X(335)-Ceva conjugate of X(295)
X(292) = cevapoint of X(171) and X(238)
X(292) = X(1)-Hirst inverse of X(291)


X(293)

Trilinears       cos A sec(A + ω) : cos B sec(B + ω) : cos C sec(C + ω)
Barycentrics  sin 2A sec(A + ω) : sin 2B sec(B + ω) : sin 2C sec(C + ω)

X(293) lies on these lines: 1,163   31,92   72,248   98,109   255,304   287,306

X(293) = isogonal conjugate of X(240)


X(294)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b + c - a)/(b2 + c2 - ab - ac)
Barycentrics  af(a,b,c) : bf(b,c,a) :cf(c,a,b)

X(294) lies on these lines: 1,41   2,949   4,218   6,7   8,220   19,1041   84,580   104,919   239,666   241,910   314,645

X(294) = isogonal conjugate of X(241)
X(294) = X(1)-Hirst inverse of X(105)


X(295)

Trilinears       (cos A)/(a2 - bc) : (cos B)/(b2 - ca) : (cos C)/(c2 - ab)
Barycentrics  (sin 2A)/(a2 - bc) : (sin 2B)/(b2 - ca) : (sin 2C)/(c2 - ab)

X(295) lies on these lines: 27,335   43,57   58,101   72,337   103,813   150,334   875,926   876,928

X(295) = isogonal conjugate of X(242)
X(295) = X(335)-Ceva conjugate of X(292)
X(295) = crosspoint of X(335) and X(337)


X(296)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where
                        f(A,B,C) = (cos A)/[cos2A - cos B cos C]
Barycentrics  g(A,B,C) : g(B,C,A) : g(C,A,B), where
                        g(A,B,C) = (sin 2A)/[cos2A - cos B cos C]

X(296) lies on these lines: 1,185   3,820   29,65   109,284

X(296) = isogonal conjugate of X(243)


X(297)  X(2)-HIRST INVERSE OF X(4)

Trilinears       csc 2A cos(A + ω) : csc 2B cos(B + ω) : csc 2C cos(C + ω)
Barycentrics  sec A cos(A + ω) : sec B cos(B + ω) : sec C cos(C + ω)

X(297) lies on these lines:
2,3   6,317   53,141   69,393   76,343   83,275   92,257   232,325   249,316   287,685   315,394   340,524   525,850

X(297) = isogonal conjugate of X(248)
X(297) = isotomic conjugate of X(287)
X(297) = inverse of X(458) in orthocentroidal circle
X(297) = complement of X(401)
X(297) = anticomplement of X(441)
X(297) = cevapoint of X(232) and X(511)
X(297) = X(511)-cross conjugate of X(325)
X(297) = X(2)-Hirst inverse of X(4)



leftri Centers 298- 350 rightri
are isotomic conjugates of previously listed centers.

underbar

X(298)  ISOTOMIC CONJUGATE OF 1st ISOGONIC CENTER

Trilinears       csc2A sin(A + π/3) : csc2B sin(B + π/3) : csc2C sin(C + π/3)
Barycentrics  csc A sin(A + π/3) : csc B sin(B + π/3) : csc C sin(C + π/3)

X(298) lies on these lines:
2,6   3,617   5,634   13,532   14,76   15,533   18,636   99,531   140,628   264,472   316,530   317,473   319,1082   340,470   381,622   511,1080

X(298) = reflection of X(I) about X(J) for these (I,J): (299,325), (385,395)
X(298) = isotomic conjugate of X(13)
X(298) = anticomplement of X(396)
X(298) = X(300)-Ceva conjugate of X(303)
X(298) = X(15)-cross conjugate of X(470)
X(298) = X(2)-Hirst inverse of X(299)


X(299)  ISOTOMIC CONJUGATE OF 2nd ISOGONIC CENTER

Trilinears       csc2A sin(A - π/3) : csc2B sin(B - π/3) : csc2C sin(C - π/3)
Barycentrics  csc A sin(A - π/3) : csc B sin(B - π/3) : csc C sin(C - π/3)

X(299) lies on these lines:
2,6   3,616   5,633   13,76   14,533   16,532   17,635   30,617   75,554   99,530   140,627   264,473   316,531   317,472   319,559   340,471   381,621   383,511

X(299) = reflection of X(I) about X(J) for these (I,J): (298,325), (385,396)
X(299) = isotomic conjugate of X(14)
X(299) = anticomplement of X(395)
X(299) = X(301)-Ceva conjugate of X(302)
X(299) = X(16)-cross conjugate of X(471)
X(299) = X(2)-Hirst inverse of X(298)


X(300)  ISOTOMIC CONJUGATE OF 1st ISODYNAMIC CENTER

Trilinears       csc2A csc(A + π/3) : csc2B csc(B + π/3) : csc2C csc(C + π/3)
Barycentrics  csc A sin(A + π/3) : csc B sin(B + π/3) : csc C sin(C + π/3)

X(300) lies on these lines: 2,94   13,76   264,302   265,621   303,311

X(300) = isotomic conjugate of X(15)
X(300) = cevapoint of X(298) and X(303)
X(300) = X(94)-Hirst inverse of X(301)


X(301)  ISOTOMIC CONJUGATE OF 2nd ISODYNAMIC CENTER

Trilinears       csc2A csc(A - π/3) : csc2B csc(B - π/3) : csc2C csc(C - π/3)
Barycentrics  csc A sin(A - π/3) : csc B sin(B - π/3) : csc C sin(C - π/3)

X(301) lies on these lines: 2,94   14,76   264,303   265,622   302,311

X(301) = isotomic conjugate of X(16)
X(301) = cevapoint of X(299) and X(302)
X(301) = X(94)-Hirst inverse of X(300)


X(302)  ISOTOMIC CONJUGATE OF 1st NAPOLEON POINT

Trilinears       csc2A csc(A + π/6) : csc2B csc(B + π/6) : csc2C csc(C + π/6)
Barycentrics  csc A sin(A + π/6) : csc B sin(B + π/6) : csc C sin(C + π/6)

X(302) lies on these lines:
2,6   3,621   5,622   14,99   16,316   18,76   61,629   140,633   264,300   301,311   317,470   381,616   549,617

X(302) = isotomic conjugate of X(17)
X(302) = X(301)-Ceva conjugate of X(299)
X(302) = X(61)-cross conjugate of X(473)


X(303)  ISOTOMIC CONJUGATE OF 2nd NAPOLEON POINT

Trilinears       csc2A csc(A - π/6) : csc2B csc(B - π/6) : csc2C csc(C - π/6)
Barycentrics  csc A sin(A - π/6) : csc B sin(B - π/6) : csc C sin(C - π/6)

X(303) lies on these lines:
2,6   3,622   5,621   13,99   15,316   17,76   62,630   140,634   264,301   300,311   317,471   381,617   549,616

X(303) = isotomic conjugate of X(18)
X(303) = X(300)-Ceva conjugate of X(298)
X(303) = X(62)-cross conjugate of X(472)


X(304)

Trilinears       (cot A)csc2A : (cot B)csc2B : (cot C)csc2C
                        = cos A csc(A - ω) : cos B csc(B - ω) : cos C csc(C - ω)

Barycentrics  (cos A)csc2A : (cos B)csc2B : (cos C)csc2C

X(304) lies on these lines:
1,75   63,1102   69,72   76,85   92,561   255,293   279,346   305,306   309,322   341,1088   345,348

X(304) = isotomic conjugate of X(19)
X(304) = cevapoint of X(I) and X(J) for these (I,J): (63,326), (69,345), (312,322)
X(304) = X(I)-cross conjugate of X(J) for these (I,J): (63,75), (306,69)


X(305)

Trilinears       b4c4cos A : c4a4cos B : a4b4cos C
                        = cot A csc(A - ω) : cot B csc(B - ω) : cot C csc(C - ω)

Barycentrics  b3c3cos A : c3a3cos B : a3b3cos C

X(305) lies on these lines:
2,39   22,99   25,683   95,183   264,325   287,394   304,306   311,1007   341,1088   350,614

X(305) = isotomic conjugate of X(25)
X(305) = X(69)-cross conjugate of X(76)


X(306)

Trilinears       (b2c2)(b + c)cos A : (c2a2)(c + a)cos B : (a2b2)(a + b)cos C
Barycentrics  bc(b + c)cos A : ca(c + a)cos B : ab(a + b)cos C

X(306) lies on these lines:
1,2   27,1043   63,69   72,440   92,264   209,518   226,321   253,329   287,293   304,305   319,333

X(306) = isotomic conjugate of X(27)
X(306) = X(I)-Ceva conjugate of X(J) for these (I,J): (69, 72), (312,321), (313,10)
X(306) = X(I)-cross conjugate of X(J) for these (I,J): (71,10), (72,307), (440,2)
X(306) = crosspoint of X(I) and X(J) for these (I,J): (69,304), (312,345)


X(307)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b2c2(b + c)(cos A)/(b + c - a)
Barycentrics  af(a,b,c) : bf(b,c,a) :cf(c,a,b)

X(307) lies on these lines: 2,7   8,253   69,73   75,225   86,283   95,320   141,241   269,936   319,664   948,966

X(307) = isotomic conjugate of X(29)
X(307) = X(349)-Ceva conjugate of X(226)
X(307) = X(I)-cross conjugate of X(J) for these (I,J): (72,306), (73,226)
X(307) = crosspoint of X(69) and X(75)


X(308)

Trilinears       b3c3/(b2 + c2) : c3a3/(c2 + a2) : a3b3/(a2 + b2)
                        = csc2A csc(A + ω) : csc2B csc(B + ω) : csc2C csc(C + ω)
                        = [csc(A - ω)]/(b2 + c2) : [csc(B - ω)]/(c2 + a2) : [csc(C - ω)]/(a2 + b2)

Barycentrics  (b2c2)/(b2 + c2) : (c2a2)/(c2 + a2) : (a2b2)/(a2 + b2)
                        = csc A csc(A + ω) : csc B csc(B + ω) : csc C csc(C + ω)

X(308) lies on these lines: 2,702   6,76   25,183   42,313   69,263   111,689   141,670   251,385   290,311

X(308) = isotomic conjugate of X(39)
X(308) = cevapoint of X(2) and X(76)
X(308) = X(I)-cross conjugate of X(J) for these (I,J): (2,83), (385,290)


X(309)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (csc2A)/(-1 - cos A + cos B + cos C)
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(309) lies on these lines: 69,189   75,280   77,318   84,314   85,264   304,322

X(309) = isotomic conjugate of X(40)
X(309) = cevapoint of X(189) and X(280)
X(309) = X(I)-cross conjugate of X(J) for these (I,J): (7,75), (92,85)


X(310)

Trilinears       b3c3/(b + c) : c3a3/(c + a) : a3b3/(a + b)
Barycentrics  b2c2/(b + c) : c2a2/(c + a) : a2b2/(a + b)

X(310) lies on these lines: 2,39   7,314   38,75   86,350   99,675   261,272   321,335   333,673   670,903   871,982

X(310) = isotomic conjugate of X(42)
X(310) = cevapoint of X(I) and X(J) for these (I,J): (75,76), (274,314)
X(310) = X(75)-cross conjugate of X(274)


X(311)

Trilinears       csc2A cos(B - C) : csc2B cos(C - A) : csc2C cos(A - B)
Barycentrics  csc A cos(B - C) : csc B cos(C - A) : csc C) cos(A - B)

X(311) lies on these lines: 2,570   4,69   22,157   53,324   95,99   141,338   290,308   300,303   301,302   305,1007

X(311) = isotomic conjugate of X(54)
X(311) = anticomplement of X(570)
X(311) = X(76)-Ceva conjugate of X(343)
X(311) = cevapoint of X(5) and X(343)
X(311) = X(5)-cross conjugate of X(324)


X(312)

Trilinears       (b + c - a)b2c2 : (c + a - b)c2a2 : (a + b - c)a2b2
                        = (1 + cos A)csc(A - ω) : (1 + cos B)csc(B - ω) : (1 + cos C)csc(C - ω)

Barycentrics  bc(b + c - a) : ca(c + a - b) : ab(a + b - c)

X(312) lies on these lines: 1,1089   2,37   8,210   9,314   29,33   63,190   69,189   76,85   92,264   212,643   223,664   726,982   894,940   975,1010

X(312) = isogonal conjugate of X(604)
X(312) = isotomic conjugate of X(57)
X(312) = X(I)-Ceva conjugate of X(J) for these (I,J): (76,75), (304,322), (314,8)
X(312) = cevapoint of X(I) and X(J) for these (I,J): (2,329), (8,346), (9,78), (306,321)
X(312) = X(I)-cross conjugate of X(J) for these (I,J): (8,75), (9,318), (306,345), (346,341)


X(313)

Trilinears       (b + c)b3c3 : (c + a)c3a3 : (a + b)a3b3
                        = (b + c)csc(A - ω) : (c + a)csc(B - ω) : (a + b)csc(C - ω)

Barycentrics  (b + c)b2c2 : (c + a)c2a2 : (a + b)a2b2

X(313) lies on these lines: 10,75   12,349   42,308   71,190   80,314   92,264   321,594   561,696

X(313) = isotomic conjugate of X(58)
X(313) = X(76)-Ceva conjugate of X(321)
X(313) = cevapoint of X(10) and X(306)
X(313) = X(321)-cross conjugate of X(349)


X(314)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b2c2(b + c - a)/(b + c)
Barycentrics  g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = bc(b + c - a)/(b + c)

X(314) lies on these lines:
1,75   2,941   4,69   6,9817,310   9,312   21,261   29,1039   58,987   79,320   80,313   81,321   84,309   99,104   256,350   294,645

X(314) = isotomic conjugate of X(65)
X(314) = X(310)-Ceva conjugate of X(274)
X(314) = cevapoint of X(I) and X(J) for these (I,J): (8,312), (69,75)
X(314) = X(I)-cross conjugate of X(J) for these (I,J): (8,333), (69,332), (333,274), (497,29)


X(315)

Trilinears       bc(b4 + c4 - a4) : ca(c4 + a4 - b4) : ab(a4 + b4 - c4)
Barycentrics  b4 + c4 - a4 : c4 + a4 - b4 : a4 + b4 - c4

X(315) lies on these lines:
2,32   3,325   4,69   5,183   8,760   20,99   68,290   192,746   194,736   274,377   297,394   343,458   371,491   372,492   631,1007

X(315) = isotomic conjugate of X(66)
X(315) = anticomplement of X(32)
X(315) = X(I)-cross conjugate of X(J) for these (I,J): (206,2)


X(316) = DROUSSENT PIVOT

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc(b4 + c4 - a4 - b2c2)
Barycentrics  g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = b4 + c4 - a4 - b2c2

The reflection of X(99) in the polar of X(&6).

Lucien Droussent, "Cubiques circularies anallagmatiques par points réciproques ou isogonaux," Mathesis 62 (1953) 204-215.

X(316) lies on these lines:
2,187   4,69   15,303   16,302   30,99   115,385   148,538   183,381   249,297   265,290   298,530   299,531   376,1007   384,626   512,850   524,671   691,858

X(316) = midpoint between X(621) and X(622) X(316) = reflection of X(I) about X(J) for these (I,J): (99,325), (385,115)
X(316) = isotomic conjugate of X(67)
X(316) = anticomplement of X(187)


X(317)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = sec A cos 2A csc2A
Barycentrics  g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = tan A cos 2A csc2A

X(317) lies on these lines:
2,95   4,69   6,297   25,325   53,524   66,290   141,458   183,427   193,393   261,406   273,320   298,473   299,472   302,470   303,471   318,319   459,1007

X(317) = isotomic conjugate of X(68)
X(317) = anticomplement of X(577)
X(317) = cevapoint of X(52) and X(467)


X(318)

Trilinears       (1 + sec A)/a2 : (1 + sec B)/b2 : (1 + sec C)/c2
                        = sec A csc2A/2 : sec B csc2B/2 : sec C csc2C/2

Barycentrics  (1 + sec A)/a : (1 + sec B)/b : (1 + sec C)/c

X(318) lies on these lines:
2,280   4,8   10,158   29,33   53,594   63,412   75,225   77,309   108,404   200,1089   208,653   239,458   243,958   253,342   281,346   317,319   475,1068

X(318) = isogonal conjugate of X(603)
X(318) = isotomic conjugate of X(77)
X(318) = X(264)-Ceva conjugate of X(92)
X(318) = cevapoint of X(9) and X(33)
X(318) = X(I)-cross conjugate of X(J) for these (I,J): (9,312), (10,8), (281,92)


X(319)

Trilinears       (1 + 2 cos A)/a2 : (1 + 2 cos B)/b2 : (1 + 2 cos C)/c2
Barycentrics  (1 + 2 cos A)/a : (1 + 2 cos B)/b : (1 + 2 cos C)/c

X(319) lies on these lines: 2,1100   7,8   10,86   80,313   141,239   171,757   200,326   261,502   298,1082   299,559   306,333   307,664   317,318   321,1029   344,391    524,594

X(319) = isotomic conjugate of X(79)
X(319) = anticomplement of X(1100)


X(320)

Trilinears       (1 - 2 cos A)/a2 : (1 - 2 cos B)/b2 : (1 - 2 cos C)/c2
Barycentrics  (1 - 2 cos A)/a : (1 - 2 cos B)/b : (1 - 2 cos C)/c

X(320) lies on these lines:
1,752   2,44   7,8   58,86   79,314   95,307   141,894   144,344   190,527   239,524   269,326   273,317   334,660   350,513   519,679

X(320) = isotomic conjugate of X(80)
X(320) = X(214)-cross conjugate of X(1)


X(321)

Trilinears       (b + c)b2c2 : (c + a)c2a2 : (a + b)a2b2
                        = a(b + c)csc(A - ω) : b(c + a)csc(B - ω) : c(a + b)csc(C - ω)

Barycentrics  bc(b + c) : ca(c + a) : ab(a + b)

X(321) lies on these lines:
1,964   2,37   4,8   10,756   38,726   76,561  81,314   83,213   98,100   190,333   226,306   310,335   313,594   319,1029   668,671   693,824

X(321) = isotomic conjugate of X(81)
X(321) = X(I)-Ceva conjugate of X(J) for (I,J) = (75,10), (76,313), (312,306)
X(321) = cevapoint of X(37) and X(72)
X(321) = X(442)-cross conjugate of X(264)
X(321) = crosspoint of X(I) and X(J) for these (I,J): (75,76), (313,349)


X(322)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (-1 - cos A + cos B + cos C)csc2A
Barycentrics  g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (-1 - cos A + cos B + cos C)csc A

X(322) lies on these lines: 2,1108   7,8   78,273   92,264   227,347   253,341   286,1043   304,309   326,664

X(322) = isotomic conjugate of X(84)
X(322) = anticomplement of X(1108)
X(322) = X(304)-Ceva conjugate of X(312)
X(322) = X(347)-cross conjugate of X(75)


X(323)

Trilinears       sin 3A csc2A : sin 3B csc2B : sin 3C csc2C
Barycentrics  sin 3A csc A : sin 3B csc B : sin 3C csc C

X(323) lies on these lines: 2,6   20,155   23,110   30,146   140,195   187,249   401,525

X(323) = reflection of X(23) about X(110)
X(323) = isotomic conjugate of X(94)
X(323) = X(340)-Ceva conjugate of X(186)
X(323) = cevapoint of X(6) and X(399)
X(323) = X(50)-cross conjugate of X(186)


X(324)

Trilinears       bc sec A cos(B - C) : ca sec B cos(C - A) : ab sec C cos(A - B)
Barycentrics  sec A cos(B - C) : sec B cos(C - A) : sec C cos(A - B)

X(324) lies on these lines: 2,216   4,52   53,311   94,275   110,436   143,565

X(324) = isotomic conjugate of X(97)
X(324) = X(264)-Ceva conjugate of X(5)
X(324) = cevapoint of X(I) and X(J) for these (I,J): (5,53), (52,216)
X(324) = X(5)-cross conjugate of X(311)


X(325)

Trilinears       csc2A cos(A + ω) : csc2B cos(B + ω) : csc2C cos(C + ω)
                        = f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc(b4 + c4 - a2b2 - a2c2)

Barycentrics  g(a,b,c) : g(b,c,a) : b(c,a,b), where g(a,b,c) = b4 + c4 - a2b2 - a2c2

X(325) lies on these lines:
2,6   3,315   5,76   11,350   22,160   25,317   30,99   39,626   114,511   115,538   187,620   232,297   250,340   264,305   274,442   383,622   523,684   621,1080

X(325) = midpoint between X(I) and X(J) for these (I,J): (99,316), (298,299)
X(325) = reflection of X(385) about X(230)
X(325) = complement of X(385)
X(325) = anticomplement of X(230)
X(325) = cevapoint of X(2) and X(147)
X(325) = X(I)-cross conjugate of X(J) for these (I,J): (114,2), (511,297)
X(325) = X(2)-Hirst inverse of X(69)


X(326)

Trilinears       cot2A : cot2B : cot2C
Barycentrics  csc A - sin A : csc B - sin B : csc C - sin C

X(326) lies on these lines: 1,75   48,63   69,73   200,319   255,1102   269,320   322,664   610,662

X(326) = isogonal conjugate of X(1096)
X(326) = isotomic conjugate of X(158)
X(326) = X(I)-Ceva conjugate of X(J) for these (I,J): (304,63), (332,69)
X(326) = X(255)-cross conjugate of X(63)


X(327)

Trilinears       csc2A sec(A - ω) : csc2B sec(B - ω) : csc2C sec(C - ω)
                        = sin A csc(2A - 2 ω): sin B csc(2B - 2 ω) : sin C csc(2C - 2 ω)

Barycentrics  csc A sec(A - ω) : csc B sec(B - ω) : csc C sec(C - ω)

X(327) lies on these lines: 2,290   4,276   5,76   53,141   69,263   95,160

X(327) = isotomic conjugate of X(182)


X(328)

Trilinears       cot A csc 3A : cot B csc 3B : cot C csc 3C
Barycentrics  cos A csc 3A : cos B csc 3B : cos C csc 3C

X(328) lies on these lines: 2,94   69,265   95,99

X(328) = isotomic conjugate of X(186)
X(328) = X(265)-cross conjugate of X(94)


X(329)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (-1 - cos A + cos B + cos C)(csc A)
Barycentrics  g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = -1 - cos A + cos B + cos C

X(329) lies on these lines:
1,452   2,7   4,8   20,78   55,1005   69,189   100,972   190,345   191,498   196,342   200,516   219,278   220,948   223,347   253,306   388,960   392,1056   394,651   405,999   497,518

X(329) = isotomic conjugate of X(189)
X(329) = cyclocevian conjugate of X(1034)
X(329) = anticomplement of X(57)
X(329) = X(I)-Ceva conjugate of X(J) for (I,J) = (69,8), (312,2)
X(329) = X(I)-cross conjugate of X(J) for these (I,J): (40,347), (223,2)


X(330)

Trilinears       bc/(ab + ac - bc) : ca/(bc + ba - ca) : ab/(ca + cb - ab)
Barycentrics  1/(ab + ac - bc) : 1/(bc + ba - ca) : 1/(ca + cb - ab)

X(330) lies on these lines: 1,87   2,1107   8,291   56,385   57,239   76,1015   105,932   145,1002   193,959   257,982

X(330) = isotomic conjugate of X(192)
X(330) = X(87)-Ceva conjugate of X(2)
X(330) = X(75)-cross conjugate of X(2)


X(331)

Trilinears       sec2A csc(2A) : sec2B csc(2B) : sec2C csc(2C)
                        = (1 - sec A)csc(A - ω) : (1 - sec B)csc(B - ω) : (1 - sec C)csc(C - ω)

Barycentrics  sec3A : sec3B : sec3C

X(331) lies on these lines: 4,150   7,286   34,870   75,225   85,92   108,767   274,278

X(331) = isotomic conjugate of X(219)
X(331) = cevapoint of X(I) and X(J) for these (I,J): (7,278), (92,273)
X(331) = X(92)-cross conjugate of X(264)


X(332)

Trilinears       (cot A csc A)/(cos B + cos C) : (cot B csc B)/(cos C + cos A) : (cot C csc C)/(cos A + cos B)
Barycentrics  (cot A)/(cos B + cos C) : (cot B)/(cos C + cos A) : (cot C)/(cos A + cos B)

X(332) lies on these lines: 1,75   3,69   21,1036   99,102   219,345   261,284   1014,1037

X(332) = isotomic conjugate of X(225)
X(332) = cevapoint of X(I) and X(J) for these (I,J): (69,326), (78,345)
X(332) = X(I)-cross conjugate of X(J) for these (I,J): (69,314), (283,333)


X(333)  CEVAPOINT OF X(8) AND X(9)

Trilinears       bc(b + c - a)/(b + c) : ca(c + a - b)/(c + a) : ab(a + b - c)/(a + b)
Barycentrics  (b + c - a)/(b + c) : (c + a - b)/(c + a) : (a + b - c)/(a + b)

X(333) lies on these lines:
2,6   8,21   9,312   10,58   19,27   29,270   57,85   190,321   239,257   261,284   306,319   310,673   662,909   740,846   859,956   1021,1024

X(333) = isotomic conjugate of X(226)

X(333) = X(I)-Ceva conjugate of X(J) for these (I,J): (261,21), (274,86)
X(333) = cevapoint of X(I) and X(J) for these (I,J): (2,63), (8,9), (283,284)
X(333) = X(I)-cross conjugate of X(J) for these (I,J): (8,314), (9,21), (21,86), (283,332), (284,29)
X(333) = crosspoint of X(274) and X(314)


X(334)

Trilinears       b2c2/(a2 - bc) : c2a2/(b2 - ca) : a2b2/(c2 - ab)
Barycentrics  bc/(a2 - bc) : ca/(b2 - ca) : ab/(c2 - ab)

X(334) lies on these lines: 2,292   10,274   12,85   75,141   76,1089   150,295   320,660   741,839   767,813

X(334) = isotomic conjugate of X(238)
X(334) = X(75)-Hirst inverse of X(335)


X(335)

Trilinears       bc/(a2 - bc) : ca/(b2 - ca) : ab/(c2 - ab)
Barycentrics  1/(a2 - bc) : 1/(b2 - ca) : 1/(c2 - ab)

X(335) lies on these lines: 1,384   2,38   7,192   27,295   37,86   75,141   76,871   239,518   257,694   310,321   320,742   536,903   675,813   741,835   876,900

X(335) = reflection of X(190) about X(37)
X(335) = isotomic conjugate of X(239)
X(335) = cevapoint of X(I) and X(J) for these (I,J): (37,518), (292,295)
X(335) = X(I)-cross conjugate of X(J) for these (I,J): (295,337), (350,257)
X(335) = X(I)-Hirst inverse of X(J) for these (I,J): (2,291), (75,334)


X(336)

Trilinears       csc A cot A sec(A + ω) : csc B cot B sec(B + ω) : csc C cot C sec(C + ω)
Barycentrics  cot A sec(A + ω) : cot B sec(B + ω) : cot C sec(C + ω)

X(336) lies on these lines: 1,811   48,75   73,290   255,293

X(336) = isotomic conjugate of X(240)


X(337)

Trilinears       (csc A cot A)/(a2 - bc) : (csc B cot B))/(b2 - ca) : (csc C cot C)/(c2 - ab)
Barycentrics  (cot A)/(a2 - bc) : (cot B)/(b2 - ca) : (cot C)/(c2 - ab)

X(337) lies on these lines: 12,85   37,86   72,295   201,348   291,986

X(337) = isotomic conjugate of X(242)
X(337) = X(295)-cross conjugate of X(335)


X(338)  CEVAPOINT OF X(115) AND X(125)

Trilinears       (b2 - c2)2/a3 : (c2 - a2)2/b3 : (a2 - b2)2/c3
                        = csc A sin2(B - C) : csc B sin2(C - A) : csc C sin2(A - B)

Barycentrics  (b2 - c2)2/a2 : (c2 - a2)2/b2 : (a2 - b2)2/c2
                        = csc A sin2(B - C) : csc B sin2(C - A) : csc C sin2(A - B)

X(338) lies on these lines:
2,94   4,67   6,264   50,401   76,599   115,127   125,136   141,311

X(338) = isotomic conjugate of X(249)
X(338) = X(264)-Ceva conjugate of X(523)
X(338) = cevapoint of X(115) and X(125)
X(338) = X(125)-cross conjugate of X(339)


X(339)

Trilinears       (b2 - c2)2(cos A)/a4 : (c2 - a2)2(cos B)/b4 : (a2 - b2)2(cos C)/c4
                        = csc A cot A sin2(B - C) : csc B cot B sin2(C - A) : csc C cot C sin2(A - B)

Barycentrics  (b2 - c2)2(cos A)/a3 : (c2 - a2)2(cos B)/b3 : (a2 - b2)2(cos C)/c3
                        = cot A sin2(B - C) : cot B sin2(C - A) : cot C sin2(A - B)

X(339) lies on these lines: 3,76   69,265   115,127   264,381

X(339) = isotomic conjugate of X(250)
X(339) = X(76)-Ceva conjugate of X(525)
X(339) = X(125)-cross conjugate of X(338)


X(340)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where
                        f(A,B,C) = sec A sin 3A csc3A : sec B sin 3B csc3B : sec C sin 3C csc3C

Barycentrics  g(A,B,C) : g(B,C,A) : g(C,A,B), where
                        g(A,B,C) = sec A sin 3A csc2A : sec B sin 3B csc2B : sec C sin 3C csc2C

X(340) lies on these lines: 4,69   67,290   95,140   250,325   297,524   298,470   299,471   447,540    458,599   520,850

X(340) = isotomic conjugate of X(265)
X(340) = cevapoint of X(186) and X(323)


X(341)

Trilinears       csc4A/2 : csc4B/2 : csc4C/2
Barycentrics  sin A csc4A/2 : sin B csc4B/2 : sin C csc4C/2

X(341) lies on these lines: 1,1050   8,210   10,75   40,190   200,1043   253,322   280,345   304,668   305,1088

X(341) = isogonal conjugate of X(1106)
X(341) = isotomic conjugate of X(269)
X(341) = X(346)-cross conjugate of X(312)


X(342)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (csc 2A tan A/2)/(-1 - cos A + cos B + cos C)
Barycentrics  g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sec A tan A/2)/(-1 - cos A + cos B + cos C)

X(342) lies on these lines: 4,7   9,653   85,264   92,226   108,1005   196,329   253,318   393,948

X(342) = isotomic conjugate of X(271)
X(342) = X(I)-Ceva conjugate of X(J) for these (I,J): (85,92), (264,273)
X(342) = cevapoint of X(208) and X(223)


X(343)

Trilinears       cot A cos(B - C) : cot B cos(C - A) : cot C cos(A - B)
Barycentrics  cos A cos(B - C) : cos B cos(C - A) : cos C cos(A - B)

X(343) lies on these lines:
2,6   3,68   5,51   22,161   53,311   76,297   140,569   315,458   427,511   470,634   471,633   472,621   473,622

X(343) = isotomic conjugate of X(275)
X(343) = X(I)-Ceva conjugate of X(J) for these (I,J): (76,311), (311,5)
X(343) = X(216)-cross conjugate of X(5)
X(343) = crosspoint of X(69) and X(76)


X(344)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where
                        f(A,B,C) = (csc2A/2)[cos4(B/2) + cos4(C/2) - cos4(A/2)]

Barycentrics  g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = (sin A)f(A,B,C)

X(344) lies on these lines:
2,37   7,190   8,480   9,69   44,193   45,141   144,320   264,281   319,391

X(344) = isotomic conjugate of X(277)


X(345)

Trilinears       (csc A)/(1 - sec A) : (csc B)/(1 - sec B) : (csc C)/(1 - sec C)
Barycentrics  1/(1 - sec A) : 1/(1 - sec B) : 1/(1 - sec C)

X(345) lies on these lines:
2,37   8,21   22,100   57,728   63,69   78,1040   190,329   219,332   280,341   304,348   498,1089

X(345) = isogonal conjugate of X(608)
X(345) = isotomic conjugate of X(278)
X(345) = X(I)-Ceva conjugate of X(J) for these (I,J): (304,69), (332,78)
X(345) = X(I)-cross conjugate of X(J) for these (I,J): (78,69), (219,8), (306,312)


X(346)

Trilinears       bc(b + c - a)2 : ca(c + a - b)2 : ab(a + b - c)2
                        = cos(A/2) csc3(A/2) : cos(B/2) csc3(B/2) : cos(C/2) csc3(C/2)

Barycentrics  (b + c - a)2 : (c + a - b)2 : (a + b - c)2

X(346) lies on these lines:
2,37   6,145   8,9   45,594   69,144   78,280   100,198   219,644   220,1043   253,306   279,304   281,318   573,1018

X(346) = isotomic conjugate of X(279)
X(346) = X(312)-Ceva conjugate of X(8)
X(346) = X(200)-cross conjugate of X(8)
X(346) = crosspoint of X(312) and X(341)


X(347)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (-1 - cos A + cos B + cos C) sec2(A/2)
Barycentrics  af(A,B,C) : bf(B,C,A) : cf(C,A,B)

X(347) lies on these lines:
1,7   2,92   8,253   34,452   37,948   69,664   75,280   144,219   223,329   227,322   241,1108   573,1020

X(347) = isotomic conjugate of X(280)
X(347) = anticomplement of X(281)
X(347) = X(I)-Ceva conjugate of X(J) for these (I,J): (75,7), (348,2)
X(347) = cevapoint of X(40) and X(223)
X(347) = X(I)-cross conjugate of X(J) for these (I,J): (40,329), (221,196), (227,223)
X(347) = crosspoint of X(75) and X(322)


X(348)

Trilinears       cot A sec2(A/2) : cot B sec2(B/2) : cot C sec2(C/2)
                        = (csc A)/(1 + sec A) : (csc B)/(1 + sec B) : (csc C)/(1 + sec C)

Barycentrics  1/(1 + sec A) : 1/(1 + sec B) : 1/(1 + sec C)

X(348) lies on these lines: 2,85   7,21   8,664   69,73   75,280   150,944   201,337   274,278   304,345   499,1111

X(348) = isogonal conjugate of X(607)
X(348) = isotomic conjugate of X(281)
X(348) = X(274)-Ceva conjugate of X(85)
X(348) = cevapoint of X(I) and X(J) for these (I,J): (2,347), (63,77)
X(348) = X(222)-cross conjugate of X(7)


X(349)

Trilinears       (cos B + cos C)csc3A : (cos C + cos A)csc3B : (cos A + cos B) csc3C
                        = (cos B + cos C)csc(A - ω) : (cos C + cos A)csc(B - ω) : (cos A + cos B)csc(C - ω)

Barycentrics  (cos B + cos C)csc2A : (cos C + cos A)csc2B : (cos A + cos B)(csc C/2)2

X(349) lies on these lines: 12,313   73,290   75,225   76,85

X(349) = isotomic conjugate of X(284)
X(349) = cevapoint of X(226) and X(307)
X(349) = X(321)-cross conjugate of X(313)


X(350)

Trilinears       (a2 - bc)b2c2 : (b2 - ca)c2a2 : (c2 - ab)a2b2
Barycentrics  bc(a2 - bc) : ca(b2 - ca) : ab(c2 - ab)

X(350) lies on these lines:
1,76   2,37   11,325   33,264   36,99   42,308   55,183   69,497   86,310   172,384   190,672   256,314   291,726   305,614   320,513   447,811   519,668   538,1015   889,903

X(350) = isotomic conjugate of X(291)
X(350) = crosspoint of X(257) and X(335)
X(350) = X(2)-Hirst inverse of X(75)


X(351) = CENTER OF THE PARRY CIRCLE

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b2 - c2)(b2 + c2 - 2a2)
Barycentrics  g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = a2(b2 - c2)(b2 + c2 - 2a2)

X(351) is the center of the Parry circle introduced in TCCT (Art. 8.13) as the circle that passes through X(i) for i = 2, 15, 16, 23, 110, 111, 352, 353.

X(351) lies on these lines: 2,804   110,526   184,686   187,237   694,881   865,888
X(351) = isogonal conjugate of X(892)
X(351) = crosspoint of X(110) and X(111)


X(352)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(-a4 - b4 - c4 - 5b2c2 + 4a2b2 + 4a2c2)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

A point on the Parry circle; see X(351).

X(352) lies on these lines: 2,6   3,353   110,187   111,511

X(352) = inverse of X(353) in the circumcircle


X(353)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(4a4 - 2b4 - 2c4 - b2c2 - 4a2b2 - 4a2c2)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

A point on the Parry circle; see X(351).

X(353) lies on these lines: 3,352   6,23   110,574   111,182

X(353) = inverse of X(352) in the circumcircle
X(353) = inverse of X(111) in the Brocard circle


X(354) = WEILL POINT

Trilinears       (b - c)2 - ab - ac : (c - a)2 - bc - ba : (a - b)2 - ca - cb
Barycentrics  a[(b - c)2 - ab - ac] : b[(c - a)2 - bc - ba] : c[(a - b)2 - ca - cb]

X(354) is the centroid of the intouch triangle.

William Gallatly, The Modern Geometry of the Triangle, 2nd edition, Hodgson, London, 1913, page 16.

X(354) lies on these lines: 1,3   2,210   6,374   7,479   11,118   37,38   42,244   44,748   48,584   63,1001   81,105   278,955   373,375   388,938   392,551   516,553

X(354) = reflection of X(I) about X(J) for these (I,J): (210,2)
X(354) = X(101)-Ceva conjugate of X(513)
X(354) = crosspoint of X(1) and X(7)

Let X = X(354) and let V be the vector-sum XA + XB + XC; then V = X(72)X(1) = X(8)X(65).


X(355) = FUHRMANN CENTER

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a cos A - (b + c)cos(B - C)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

The center of the Fuhrmann circle, defined as the circumcircle of the Furhmann triangle A"B"C", where A" is obtained as follows: let A' be the midpoint of the shorter arc having endpoints B and C on the circumcircle of ABC; then A" is the reflection of A' about line BC. Vertices B" and C" are obtained cyclically.

Ross Honsberger, Episodes in Nineteenth and Twentieth Century Euclidean Geometry, Mathematical Association of America, 1995. Chapter 6: The Fuhrmann Circle.

X(355) lies on these lines:
1,5   2,944   3,10   4,8   30,40   65,68   85,150   104,404   165,550   381,519   382,516   388,942   938,1056

X(355) = midpoint between X(4) and X(8)
X(355) = reflection of X(I) about X(J) for these (I,J): (1,5), (3,10)
X(355) = complement of X(944)


X(356) = 1st MORLEY CENTER

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = cos A/3 + 2 cos B/3 cos C/3
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(356) is the centroid of the Morley equilateral triangle. Triangle centers bearing Morley's name possibly do not appear in the pre-1994 literature on Morley's famous theorem. For a discussion of the theorem and extensive list of references, see

C. O. Oakley and J. C. Baker, "The Morley trisector theorem," American Mathematical Monthly 85 (1978) 737-745.

X(356) lies on this line: 357,358


X(357) = 2nd MORLEY CENTER

Trilinears       sec A/3 : sec B/3 : sec C/3
Barycentrics  sin A sec A/3 : sin B sec B/3 : sin C sec C/3

X(357) is the perspector of Morley triangle and ABC.

X(357) lies on this line: 356,358

X(357) = isogonal conjugate of X(358)


X(358) = MORLEY-YFF CENTER

Trilinears       cos A/3 : cos B/3 : cos C/3
Barycentrics  sin A cos A/3 : sin B cos B/3 : sin C cos C/3

X(358) is the perspector of the adjunct Morley triangle and ABC.

X(358) lies on this line: 356,357

X(358) = isogonal conjugate of X(357)


X(359) = HOFSTADTER ONE POINT

Trilinears       a/A : b/B : c/C
Barycentrics  1/A : 1/B : 1/C

This point is the limit as r approaches 1 of the perspector of the r-Hofstadter triangle and ABC. See X(360) for details.

X(359) = isogonal conjugate of X(360)


X(360) = HOFSTADTER ZERO POINT

Trilinears       A/a : B/b : C/c
Barycentrics  A : B : C

This point is obtained as a limit of perspectors. Let r denote a real number, but not 0 or 1. Using vertex B as a pivot, swing line BC toward vertex A through angle rB and swing line BC about C through angle rC. Let A(r) be the point in which the two swung lines meet. Obtain B(r) and C(r) cyclically. Triangle A(r)B(r)C(r) is the r-Hofstadter triangle; its perspector with ABC is the point given by trilinears

sin(r(A))/sin(A - r(A)) : sin(r(B))/sin(B - r(B)) : sin(r(C))/sin(C - r(C)).

The limit of this point as r approaches 0 is X(360). The two Hofstadter points, X(359) and X(360) are examples of transcendental triangle centers, since they have no trilinear or barycentric representation using only algebraic functions of a,b,c (or sin A, sin B, sin C).

Clark Kimberling, "Hofstadter points," Nieuw Archief voor Wiskunde 12 (1994) 109-114.

X(360) = isogonal conjugate of X(359)


X(361)

Trilinears       csc B/2 + csc C/2 - csc A/2 : csc C/2 + csc A/2 - csc B/2 : csc A/2 + csc B/2 - csc C/2
Barycentrics  f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (sin A)(csc B/2 + csc C/2 - csc A/2)

The isoscelizer equation au(X) = bv(X) = cw(X) has solution X = X(361).

X(361) lies on these lines: 1,188   164,503   266,978

X(361) = X(266)-Ceva conjugate of X(1)


X(362) = CONGRUENT CIRCUMCIRCLES ISOSCELIZER POINT

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where
                        f(a,b,c) = b cos B/2 + c cos C/2 - a cos A/2

Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

The isoscelizer equations u(X)/a = v(X)/b = w(X)/c have solution X = X(362).

X(362) lies on this line: 57,234

X(362) = X(508)-Ceva conjugate of X(1)


X(363) = EQUAL PERIMETERS ISOSCELIZER POINT

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b/(1 + sin B/2) + c/(1 + sin C/2) - a/(1 + sin A/2)
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

When X = X(363), the isoscelizer triangles have equal perimeters.

X(363) lies on these lines: 1,289   40,164   165,166


X(364) = WABASH CENTER (EQUAL AREAS ISOSCELIZER POINT)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = b1/2 + c1/2 - a1/2
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

When X = X(364), the isoscelizer triangles T(X,a), T(X,b), T(X,c) have equal areas.

X(364) lies on these lines: 1,365   9,366

X(364) = X(366)-Ceva conjugate of X(1)


X(365) = SQUARE ROOT POINT

Trilinears       a1/2 : b1/2 : c1/2
Barycentrics  a3/2 : b3/2 : c3/2

For a construction of X(365), see the note at X(2), which provides for a construction barycentric square roots which one can easily extend to a construction for trilinear square roots.

X(365) lies on this line: 1,364

X(365) = isogonal conjugate of X(366)


X(366)

Trilinears       a-1/2 : b-1/2 : c-1/2
Barycentrics  a1/2 : b1/2 : c1/2

See the note at X(365).

X(366) lies on these lines: 2,367   9,364

X(366) = isogonal conjugate of X(365)
X(366) = cevapoint of X(1) and X(364)
X(366) = X(367)-cross conjugate of X(1)


X(367)

Trilinears       b1/2 + c1/2 : c1/2 + a1/2 : a1/2 + b1/2
Barycentrics  a1/2(b1/2 + c1/2) : b1/2(c1/2 + a1/2) : c1/2(a1/2 + b1/2)

X(367) lies on these lines: 1,364   2,366

X(367) = crosspoint of X(1) and X(366)


X(368) = EQUI-BROCARD CENTER

Trilinears       (reasonable trilinears are sought)
Barycentrics  (reasonable barycentrics are sought)

The center X for which the triangle XBC, XCA, XAB have equal Brocard angles. Yff proved that X(368) lies on the self-isogonal conjugate cubic with trilinear equation f(a,b,c)u + f(b,c,a)v + f(c,a,b)w = 0, where f(a,b,c) = bc(b2 - c2) and, for variable x : y : z, the cubics u, v, w are given by u(x,y,z) = x(y2 + z2), v = u(y,z,x), w = u(z,x,y).

Parry proved that X(368) lies on the anticomplement of the Kiepert hyperbola, this anticomplement being given by the trilinear equation a2(b2 - c2)(x2) + b2(c2 - a2)(y2) + c2(a2 - b2)(z2) = 0.


X(369) = TRISECTED PERIMETER POINT

Trilinears       x : y : z (see below)
Barycentrics  ax : by : cz

There exist points A', B', C' on segments BC, CA, AB, respectively, such that A'C + CB' = B'A + AC' = C'B + BA' and the lines AA', BB', CC' concur in X(369). Yff found trilinears for X(369) in terms of the unique real root, r, of the cubic polynomial

2t3 - 3(a + b + c)t2 + (a2 + b2 + c2 + 8bc + 8ca + 8ab)t - (cb2 + ac2 + ba2 + 5bc2 + 5ca2 + 5ab2 + 9abc),

as follows: x = bc(r - c + a)(r - a + b). Although x(a,c,b) ≠ x(a,b,c), Yff states that a symmetric but more elaborate form for x can be obtained.


X(370) = EQUILATERAL CEVIAN TRIANGLE POINT

Trilinears       (reasonable trilinears are sought)
Barycentrics  (reasonable barycentrics are sought)

A point P is an equilateral cevian triangle point if the cevian triangle of P is equilateral. Jiang Huanxin introduced this notion in 1997.

Jiang Huanxin and David Goering, Problem 10358* and Solution, "Equilateral cevian triangles," American Mathematical Monthly 104 (1997) 567-570 [proposed 1994].


X(371) = KENMOTU POINT (CONGRUENT SQUARES POINT)

Trilinears       cos(A - π/4) : cos(B - π/4) : cos(C - π/4)
                        = cos A + sin A : cos B + sin B : cos C + sin C

Barycentrics  sin A cos(A - π/4) : sin B cos(B - π/4) : sin C cos(C - π/4)

There exist three congruent squares U, V, W positioned in ABC as follows: U has opposing vertices on segments AB and AC; V has opposing vertices on segments BC and BA; W has opposing vertices on segments CA and CB, and there is a single point common to U, V, W. The common point, X(371), may have first been published in Kenmotu's Collection of Sangaku Problems in 1840, indicating that its first appearance may have been anonymously inscribed on a wooden board hung up in a Japanese shrine or temple. (The Kenmotu configuration uses only half-squares; i.e., isosceles right triangles). Trilinears were found by John Rigby.

The edgelength of the three squares is 21/2abc/(a2 + b2 + c2 + 4σ), where σ = area(ABC). (Edward Brisse, 2/12/00)

Hidetoshi Fukagawa, Traditional Japanese Mathematics Problems of the 18th and 19th Centuries, forthcoming.

Floor van Lamoen, Vierkanten in een driehoik: 3. Congruente vierkanten

Tony Rothman, with the cooperation of Hidetoshi Fukagawa, Japanese Temple Geometry (feature article in Scientific American

X(371) lies on these lines:
2,486   3,6   4,485   25,493   140,615   193,488   315,491   492,641   601,606   602,605

X(371) = reflection of X(372) about X(32)
X(371) = isogonal conjugate of X(485)
X(371) = inverse of X(372) in the Brocard circle
X(371) = complement of X(637)
X(371) = anticomplement of X(639)
X(371) = X(4)-Ceva conjugate of X(372)


X(372) = HARMONIC CONJUGATE OF X(371) WRT X(3) AND X(6)

Trilinears       cos(A + π/4) : cos(B + π/4) : cos(C + π/4)
                        = cos A - sin A : cos B - sin B : cos C - sin C

Barycentrics  sin A cos(A + π/4) : sin B cos(B + π/4) : sin C cos(C + π/4)

For details and references, see X(371).

X(372) lies on these lines:
2,485   3,6   4,486   25,494   193,487   315,492   601,605   602,606

X(372) = reflection of X(371) about X(32)
X(372) = isogonal conjugate of X(486)
X(372) = inverse of X(371) in the Brocard circle
X(372) = complement of X(638)
X(372) = anticomplement of X(640)
X(372) = X(4)-Ceva conjugate of X(371)


X(373) = CENTROID OF THE PEDAL TRIANGLE OF THE CENTROID

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 2bc + ac cos C + ab cos B
                        = g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = a(b4 + c4 - a2b2 - a2c2 - 6b2c2)

Barycentrics  h(a,b,c) : h(b,c,a) : h(c,a,b), where h(a,b,c) = 2abc + ca2cos C + ba2cos B

X(373) lies on these lines: 2,51   5,113   110,575   181,748   216,852   354,375

Let X = X(373) and let V be the vector-sum XA + XB + XC; then V = X(2)X(51)


X(374) = CENTROID OF THE PEDAL TRIANGLE OF X(9)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 2b + 2c - 3a + (c + a)cos C + (b + a)cos B
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(374) lies on these lines: 6,354   9,517   44,65   51,210


X(375) = CENTROID OF THE PEDAL TRIANGLE OF X(10)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = 2bc(b + c) + ca(c + a)cos C + ab(a + b)cos B
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(375) lies on these lines: 44,181   51,210   354,373

X(375) = midpoint between X(51) and X(210)


X(376) = CENTROID OF THE ANTIPEDAL TRIANGLE OF X(2)

Trilinears       5 cos A - cos(B - C) : 5 cos B - cos(C - A) : 5 cos C - cos(A - B)
                      = f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = (csc A)(5 sin 2A - sin 2B - sin 2C)

Barycentrics  g(A,B,C) : g(B,C,A) : g(C,A,B), where g(A,B,C) = 5 sin 2A - sin 2B - sin 2C

X(376) is the reflection of X(2) about X(3).

X(376) lies on these lines:
1,553   2,3   35,388   36,497   40,519   55,1056   56,1058   69,74   98,543   103,544   104,528   110,541   112,577   165,515   316,1007   390,999   476,841   477,691   487,490   488,489   516,551

X(376) = midpoint between X(2) and X(20)
X(376) = reflection of X(I) about X(J) for these (I,J): (2,3), (4,2)
X(376) = anticomplement of X(381)

Let X = X(376) and let V be the vector-sum XA + XB + XC; then V = X(382)X(3) = X(4)X(20).


X(377)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc(b4 + c4 - a4 - 2b2c2 - 2abc(a + b + c))
Barycentrics  g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = b4 + c4 - a4 - 2b2c2 - 2abc(a + b + c)

X(377) lies on these lines:
1,224   2,3   7,8   10,46   78,226   81,387   142,950   145,1056   149,1058   225,1038   274,315   908,936   1060,1068

X(377) = anticomplement of X(405)


X(378) = HARMONIC CONJUGATE OF X(24) WRT X(3) AND X(4)

Trilinears       sec A + 2 cos A : sec B + 2 cos B : sec C + 2 cos C
Barycentrics  tan A + sin 2A : tan B + sin 2B : tan C + sin 2C

X(378) lies on these lines:
1,1063   2,3   6,74   33,36   34,35   54,64   99,264   185,578   232,574   477,935   847,1105

X(378) = reflection of X(I) about X(J) for these (I,J): (4,427), (22,3)
X(378) = inverse of X(403) in the orthocentroidal circle


X(379)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc[a5 + (b + c)(bca2 - (bc + ca + ab)(b - c)2)]
Barycentrics  g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = a5 + (b + c)(bca2 - (bc + ca + ab)(b - c)2

X(379) lies on these lines: 2,3   6,7   41,226   63,169   264,823

X(379) = inverse of X(857) in the orthocentroidal circle


X(380)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b + c - a)[3a3 + (b + c)(3a2 + (b - c)2 + a(b + c))]
Barycentrics  af(a,b,c) : bf(b,c,a) : cf(c,a,b)

X(380) lies on these lines: 1,19   6,40   9,55   165,579   223,608   281,950   282,1036


X(381) = MIDPOINT OF X(2) BETWEEN X(4)

Trilinears       2 cos(B - C) - cos A : 2 cos(C - A) - cos B : 2 cos(A - B) - cos C
                      = cos A + 4 cos B cos C : cos B + 4 cos C cos A : cos C + 4 cos A cos B

Barycentrics  a(cos A + 4 cos B cos C) : b(cos B + 4 cos C cos A) : c(cos C + 4 cos A cos B)

X(381) lies on these lines:
2,3   6,13   11,999   49,578   51,568   54,156   98,598   114,543   118,544   119,528   125,541   127,133   155,195   183,316   184,567   210,517   262,671   264,339   298,622   299,621   302,616   303,617   355,519   388,496   495,497   511,599   515,551

X(381) = midpoint between X(2) and X(4)
X(381) = reflection of X(I) about X(J) for these (I,J): (2,5), (3,2)
X(381) = complement of X(376)
X(381) = anticomplement of X(549)

Let X = X(381) and let V be the vector-sum XA + XB + XC; then V = X(20)X(3) = X(3)X(4) = X(185)X(52) = X(399)X(146) = X(74)X(265) = X(40)X(355) = X(376,381) = X(4,382).


X(382) = REFLECTION OF CIRCUMCENTER ABOUT ORTHOCENTER

Trilinears       cos A - 4 cos B cos C : cos B - 4 cos C cos A : cos C - 4 cos A cos B
Barycentrics  a(cos A - 4 cos B cos C) : b(cos B - 4 cos C cos A) : c(cos C - 4 cos A cos B)

X(382) lies on these lines: 2,3   64,265   155,399   185,568   195,1078   355,516   952,962

X(382) = reflection of X(I) about X(J) for these (I,J): (3,4), (20,5)
X(382) = inverse of X(546) in the orthocentroidal circle
X(382) = anticomplement of X(550)


X(383)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where
                        f(A,B,C) = csc(B - C) [sin 2B cos(C - ω) sin(C + π/3) - sin 2C cos(B - ω) sin(B + π/3)]

Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,A,B)

X(383) lies on these lines: 2,3   13,262   14,98   183,621   299,511   325,622

X(383) = inverse of X(1080) in the orthocentroidal circle


X(384)

Trilinears       bc(a4 + b2c2) : ca(b4 + c2a2) : ab(c4 + a2b2)
Barycentrics  a4 + b2c2 : b4 + c2a2 : c4 + a2b2

A center on the Euler line; contributed by John Conway, email, 1998.

X(384) lies on these lines:
1,335   2,3   6,194   32,76   39,83   141,1031   172,350   185,287   316,626   694,695

X(384) = isogonal conjugate of X(695)
X(384) = eigencenter of anticevian triangle of X(385)


X(385) = HARMONIC CONJUGATE OF X(384) WRT X(32) AND X(76)

Trilinears       bc(a4 - b2c2) : ca(b4 - c2a2) : ab(c4 - a2b2)
Barycentrics  a4 - b2c2 : b4 - c2a2 : c4 - a2b2

Contributed by John Conway, 1998.

X(385) lies on these lines:
1,257   2,6   3,194   23,523   30,148   32,76   55,192   56,330   98,511   99,187   111,892   115,316   171,894   232,648   248,290   251,308   262,576

X(385) = reflection of X(I) about X(J) for these (I,J): (99,187), (298,395), (299,396), (316,115), (325,230)
X(385) = isogonal conjugate of X(694)
X(385) = anticomplement of X(325)
X(385) = X(I)-Ceva conjugate of X(J) for these (I,J): (98,2), (511,401)
X(385) = crosspoint of X(290) and X(308)
X(385) = X(I)-Hirst inverse of X(J) for these (I,J): (2,6), (3,194)


X(386)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = a(b2 + c2 + bc + ca + ab)
Barycentrics  g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = a2(b2 + c2 + bc + ca + ab)

X(386) lies on these lines:
1,2   3,6   31,35   40,1064   55,595   56,181   57,73   65,994   81,404   474,940   758,986   872,984

X(386) = inverse of X(58) in the Brocard circle


X(387)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc[-a4 + 2a2(a + b + c)2 + (b2 - c2)2]
Barycentrics  g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = -a4 + 2a2(a + b + c)2 + (b2 - c2)2

X(387) lies on these lines:
1,2   4,6   20,58   40,579   65,278   81,377   390,595   443,940


X(388)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc[a2 + (b + c)2]/(b + c -a)
                        = 1 + cos B cos C : 1 + cos C cos A : 1 + cos A cos B
Barycentrics  g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = a2 + (b + c)2]/(b + c - a)

X(388) lies on these lines:
1,4   2,12   3,495   5,999   7,8   10,57   11,153   20,55   29,1037   35,376   36,498   79,1000   108,406   171,603   201,984   329,960   354,938   355,942   381,496   442,956   452,1001   612,1038   750,1106   1059,1067

X(388) = isogonal conjugate of X(1036)
X(388) = anticomplement of X(958)


X(389) = CENTER OF THE TAYLOR CIRCLE

Trilinears       cos A - cos 2A cos(B - C) : cos B - cos 2B cos(C - A) : cos C - cos 2C cos(A - B)
Barycentrics  a[cos A - cos 2A cos(B - C)] : b[cos B - cos 2B cos(C - A)] : c[cos C - cos 2C cos(A - B)]

If ABC is acute then X(389) is the Spieker center of the orthic triangle. Peter Yff reports (Sept. 19, 2001) that since X(389) is on the Brocard axis, there must exist T for which X(389) is sin(A+T) : sin(B+T) : sin(C+T), and that tan(T) = - cot A cot B cot C.

X(389) lies on these lines:
3,6   4,51   24,184   30,143   54,186   115,129   217,232   517,950

X(389) = midpoint between X(I) and X(J) for these (I,J): (3,52), (4,185)
X(389) = inverse of X(578) in the Brocard circle
X(389) = crosspoint of X(4) and X(54)


X(390)  REFLECTION OF GERGONNE POINT ABOUT INCENTER

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc(b + c - a)[3a2 + (b - c)2]
Barycentrics  g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = (b + c - a)[3a2 + (b - c)2]

X(390) = lies on these lines:
1,7   2,11   3,1058   4,495   8,9   30,1056   40,938   144,145   376,999   387,595   496,631   944,971   952,1000

X(390) = midpoint between X(144) and X(145)
X(390) = reflection of X(I) about X(J) for these (I,J): (7,1), (8,9)


X(391)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = bc(3a + b + c)(b + c - a)
Barycentrics  g(a,b,c) : g(b,c,a) : g(c,a,b), where g(a,b,c) = (3a + b + c)(b + c - a)

X(391) lies on these lines:
2,6   8,9   20,573   37,145   75,144   319,344


X(392)

Trilinears       f(a,b,c) : f(b,c,a) : f(c,a,b), where f(a,b,c) = (b + c)(b2 + c2 - a2) + 4abc
Barycentrics  af(a,b,c): bf(b,c,a): cf(c,a,b)

X(392) lies on these lines:
1,6   2,517   8,1000   10,11   21,104   40,474   55,997   63,999   78,1057   210,519   329,1056   354,551   442,946   443,962   452,944   495,908

Let X = X(392) and let V be the vector-sum XA + XB + XC; then V = X(65)X(1) = X(8)X(72).


X(393)

Trilinears       bc tan2A : bc tan2B : bc tan2C
Barycentrics  tan2A : tan2B : tan2C

X(393) lies on these lines:
1,836   2,216   4,6   19,208   20,577   24,254   25,1033   27,967   33,42   37,158   69,297   107,111   193,317   230,459   278,1108   342,948   394,837   800,1093

X(393) = cevapoint of X(4) and X(459)
X(393) = X(25)-cross conjugate of X(4)


X(394)

Trilinears       cos A cot A : cos B cot B : cos C cot C
Barycentrics  cos2A : cos2B : cos2C

X(394) lies on these lines: 2,6   3,49   20,1032   22,110   25,511   63,77   72,1060   76,275   78,271   287,305   297,315   329,651   393,837   399,541   470,633   471,634   472,622   473,621   611,612   613,614   1062,1069

X(394) = X(69)-Ceva conjugate of X(3)
X(394) = crosspoint of X(493) and X(494)

Let W be the vector-sum XA' + XB' + XC', where A'B'C' is the pedal triangle of X(394); then W = X(25)X(394).


X(395) = MIDPOINT OF X(14) AND X(16)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = cos(B - C) + 2 cos(A + π/3)
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,B,A)

X(395) lies on these lines:
2,6   3,398   5,13   14,16   15,549   39,618   53,472   61,140   115,530   187,531   202,495   216,465   466,577   532,624   533,619

X(395) = reflection of X(396) about X(230)
X(395) = midpoint between X(I) and X(J) for these (I,J): (14,16), (298,385)
X(395) = complement of X(299)
X(395) = crosspoint of X(2) and X(14)


X(396) = MIDPOINT OF X(13) AND X(15)

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = cos(B - C) + 2 cos(A - π/3)
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,B,A)

X(396) lies on these lines:
2,6   3,397   5,14   13,15   16,549   39,619   53,473   62,140   115,531   187,530   203,495   216,466   465,577   532,618   533,623

X(396) = midpoint between X(I) and X(J) for these (I,J): (13,15), (299,385)
X(396) = reflection of X(395) about X(230)
X(396) = anticomplement of X(298)
X(396) = crosspoint of X(2) and X(13)


X(397)  CROSSPOINT OF ORTHOCENTER AND 1st NAPOLEON POINT

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = cos(B - C) - 2 cos(A + π/3)
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,B,A)

X(397) lies on these lines: 3,396   4,6   5,13   14,546   15,550   16,17   30,61   51,462   141,634   184,463   202,496   524,633   532,635

X(397) = crosspoint of X(4) and X(17)


X(398)  CROSSPOINT OF ORTHOCENTER AND 2nd NAPOLEON POINT

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where f(A,B,C) = cos(B - C) - 2 cos(A - π/3)
Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,B,A)

X(398) lies on these lines:
3,395   4,6   5,14   13,546   15,18   16,550   30,62   51,463   141,633   184,462   203,496   524,634   533,636

X(398) = crosspoint of X(4) and X(18)


X(399) = PARRY REFLECTION POINT

Trilinears       f(A,B,C) : f(B,C,A) : f(C,A,B), where
                        f(A,B,C) = 5 cos A - 4 cos B cos C - 8 sin B sin C cos2A

Barycentrics  (sin A)f(A,B,C) : (sin B)f(B,C,A) : (sin C)f(C,B,A)

Let L, M, N be lines through A, B, C, respectively, parallel to the Euler line. Let L' be the reflection of L about sideline BC, let M' be the reflection of M about sideline CA, and let N' be the reflection of N about sideline AB. The lines L', M', N' concur in X(399).

Cyril Parry, Problem 10637, American Mathematical Monthly 105 (1998) 68.

X(399) lies on these lines:
3,74   4,195   6,13   30,146   155,382   394,541

X(399) = reflection of X(I) about X(J) for these (I,J): (3,110), (265,113)
X(399) = X(I)-Ceva conjugate of X(J) for these (I,J): (30,3), (323,6)

Let W be the vector-sum XA' + XB' + XC', where A'B'C' is the pedal triangle of X(399); then W = X(74)X(399).


X(400) = YFF-MALFATTI POINT

Trilinears       csc4(A/4) : csc4(B/4) : csc4(C/4)
Barycentrics  sin A csc4(A/4) : sin B csc4(B/4) : sin C csc4(C/4)

In 1997, Yff considered the configuration for the 1st Ajima-Malfatti point, X(179). He proved that the same tangencies are possible in another way if the circles are not required to lie inside ABC. With tangency points labeled as before, the lines AA', BB', CC' concur in X(400).


Top of Part 2
Part 3
Front Cover