The title Points on Cubics covers several URLs devoted to the subject of cubic curves (henceforth, simply cubics) in the plane of an arbitrary triangle ABC. Most of the material consists of lists of triangle centers on selected cubics and tables of collinear triples of triangle centers.The lists and tables should be of interest to those who seek to discover new properties of cubics, including on-cubic triangle centers, especially polynomial centers, more especially those of low degree, and most especially those of low degree with all coefficients in the set of integers.
Further properties for investigation include on-cubic bicentric pairs, on-cubic vertices of central triangles, and on-cubic vertices of bicentric triangles, as well as collinear triples among on-cubic points, asymptotes, related conics, pivot-properties, tangency, degeneracy, and transformations that preserve various properties.
The cubics are classed according to forms of equations using trilinear coordinates. The first edition of Points on Cubics, (December 13, 2003) contains ten classes:
Z(U,P): Pivotal Self-Isoconjugate Cubics (begins just below)The cubics are defined in terms of points P = p : q : r and U = u : v : w, or else a point U and line given by trilinear coefficients L, M, N; these are arbitrary except for occasional tacitly understood cases, as when P or U lies on a sideline of triangle ABC.Names of the other nine classes are as follows. (Click for transportation.)
H(U,P): Hirst Cubics
HP(U,P): H-Plus CubicsC(U,P): Cross Conjugate Collinearity Cubics
ZC(U,P): ZC-CubicsB(U,P): Bicentrics Collinearity Cubics
BP(U,P): B-Plus CubicsD(U,P): Cross-Bicentrics Collinearity Cubics
DP(U,P): D-Plus CubicsSingle numbers 1, 2, 3, . . . , up to 2364, refer to triangle centers X(1), X(2), X(3), . . . as listed in the Encyclopedia of Triangle Centers - ETC, and expressions of the form IpJ refer to trilinear products; specifically, IpJ abbreviates the trilinear product of centers X(I) and X(J).
Definitions of terms (e.g., isoconjugate, Hirst inverse, cross conjugate, bicentric points) are given in the Glossary (atop ETC).
A General Form: tricentral cubics. The cubics covered by Points on Cubics fit a certain general form. In order to define it, let
F = f1x3 + f2y3 + f3z3, H = xyz, Suppose that the following conditions hold:G = g1x2y + g2y2z + g3z2x - g4x2z - g5y2x - g6z2y, G+ = g1x2y + g2y2z + g3z2x + g4x2z + g5y2x + g6z2y.
(1) Either f1 = f2 = f3 = 0 or else f1 : f2 : f3 is a triangle center; that is, f1 is a nonzero function of a,b,c, homogeneous in a,b,c, such thatA curve in the extended plane of triangle ABC (including the line at infinity) is a tricentral cubic if it consists of all the points x : y : z satisfying F + G + sH = 0 or F + G+ + sH = 0, where F, G, H, and G+ are as just described.f2(a,b,c) = f1(b,c,a), f3(a,b,c) = f1(c,a,b), |f1(a,c,b)| = |f1(a,b,c)|. (2) One of the following holds:g1 = g2 = g3 = g4 = g5 = g6 = 0;(3) s is a function of a,b,c symmetric in a,b,c.g1 : g2 : g3 and g4 : g5 : g6 are equal and are a triangle center;
g1 : g2 : g3 and g4 : g5 : g6 are a bicentric pair.
(4) At least one of the functions F, G, s is not identically zero, and if two or three of them are nonzero, then they all have the same degree of homogeneity in a,b,c.
The collection of tricentral cubics is closed under various transformations: reflections, inversions, conjugations, products, quotients, collineations, intersections, etc., in much that same way that collections of triangle centers, central lines, and central conics are closed under such transformations.
With a computer algebra system, each of the equations
F + G + sH = 0 and F + G+ + sH = 0 can be solved for x in terms of y and z, with solutions of the formx = J(K + d) and x = J(K - d). For some of the classes discussed below, the discriminant d is useful for finding and confirming that certain points are on certain cubics.Acknowledgments. I thank Amanda Singer and Brandi Warren for transcribing collinearity tables and the University of Evansville Alumni Association for financial support.
Z(U,P): Pivotal Self-Isoconjugate Cubics,
defined by
upx(qy2 - rz2) + vqy(rz2 - px2) + wrz(px2 - qy2) = 0Locus: The cubic Z(U,P) is the locus of a point X = x : y : z such that the P-isoconjugate of X is on the line UX.
Notes:
1. Z(U,P) is also given by
(vqy - wrz)px2 + (wrz - upx)qy2 + (upx - vqy)rz2 = 0. 2. A list of cubics Z(U,X(1)) is given in TCCT (1998), and the more general class Z(U,P) is defined in publications dating from 2001. A rich discussion of these cubics, using barycentric coordinates, with notation pK, is given by Jean-Pierre Ehrmann and Bernard Gibert: "Special Isocubic in the Triangle Plane," downloadable from Gibert's magnificent site, Cubics in the Triangle Plane, which includes sketches of Z and ZP cubics.
3. The descriptor self-isoconjugate indicates that if X is on Z(U,P), then the P-isoconjugate of X is on Z(U,P). The point U, also on Z(U,P), is the pivot of Z(U,P), and the three points U, X, P-isoconjugate of X are collinear.
4. If X is on Z(U,P), then the U-Ceva conjugate of X is also on Z(U,P). This is proved here: let
x1 = x( - x/u + y/v + z/w), y1 = y(x/u - y/v + z/w), z1 = z(x/u + y/v - z/w); Then x1 : y1 : z1 is the U-Ceva conjugate of X, and the equation that results from replacing X by U-Ceva conjugate of X in the equation that defines Z(U,P) is this: t1 + t2 + t3 = 0. Next, lett1 = upx1(qy12 - rz12), t2 = vqy1(rz12 - px12), t3 = wrz1(px12 - qy12).
F1 = - u -3v -3w -3, F2 = xvw - yuw - zuv, F3 = ywu - zvu - xvw, F4 = zuv - xwv - ywu, Then t1 + t2 + t3 factors as F1F2F3F4F5. Now, if X is on Z(U,P), then F5 = 0, so that t1 + t2 + t3 = 0, as asserted.F5 = upx(qy2 - rz2) + vqy(rz2 - px2) + wrz(px2 - qy2).
5. Other points on Z(U,P) are the vertices A, B, C; the vertices of the cevian triangle of U, namely 0 : v : w, u : 0 : w, and u : v : 0; and the four points invariant under P-isoconjugation, namely P -1/2 and the vertices of the anticevian triangle of P -1/2.
6. The discriminant d of Z(U,P), obtained by solving the defining equation for x in terms of y and z, under the assumption that X is not the P-isoconjugate of X, is given by
d2 = u2p2(qy2 - rz2)2 - 4pqryz(wy - vz)(vqy - wrz). 7. Suppose that F = f : g : h is a triangle center. The collineation X --> F*X that carries each point x : y : z to the trilinear product fx : gy : hz also carries the cubic Z(U,P) onto the the cubic Z(F*U,P*F -2). For example, if F = X(6), then Z(X(1),X(2)) is carried onto Z(X(6),X(76)).8. The trilinear square P -1*P -1 is on Z(X(1),P).
Z(X(1),X(2)) passes through these centers:
1, 6, 55, 57, 365, 1419, 2067, 4p2066, 6p1489, 9p2362, 57p2066, 364p365, 1419p2125Collinear triples
1 55 57 1 2067 4p2066 1 9p2362 57p2066 6 57 1419 6 365 364p365 6 2067 57p2066 55 1419 1419p2125 55 4p2066 9p2362 Z(X(1),X(3)) passes through these centers:
1, 4, 1148Z(X(1),X(4)) passes through these centers:
1, 3, 90, 3p46Collinear triple
1 90 3p46 Z(X(1),X(6)) passes through these centers:
1, 2, 87, 192, 366Collinear triple
1 87 192 Z(X(1),X(7)) passes through these centers:
1, 6, 9, 55, 259, 6p236, 9p289, 9p1743, 523p1293Collinear triples
1 6 9 1 6p236 9p289 1 9p1743 513p1293 6 259 9p289 9 55 9p1743 55 259 6p236 Z(X(1),X(8)) passes through these centers:
1, 56, 84, 221, 266, 2067, 2362, 6p557, 6p558, 56p175, 56p176, 57p2066, 164p266, 225p1806, 266p505Collinear triples
1 84 221 1 2067 225p1806 1 2362 57p2066 1 6p557 6p558 1 164p266 266p505 56 266 164p266 56 2067 57p2066 56 56p175 56p176 221 266 266p505 221 2362 225p1806 266 2067 6p558 266 6p557 57p2066 2067 2362 56p176 2362 6p558 164p266 6p557 164p266 225p1806 56p175 57p2066 225p1806 Z(X(1),X(9)) passes through these centers:
1, 57, 509, 1419Z(X(1),X(10)) passes through these centers:
1, 58, 267, 501Collinear triple
1 267 501 Z(X(1),X(11)) passes through these centers:
1, 59, 100p266Z(X(1),X(12)) passes through these centers:
1, 21, 58, 60, 501, 21p266, 21p267, 21p1046, 21p2306, 21p2307, 58p1247, 284p554, 284p559Collinear triples
1 21 58 1 501 21p267 1 21p1046 58p1247 1 21p2306 21p2307 1 284p554 284p559 21 60 21p1046 58 60 501 58 21p2307 284p559 501 21p2306 284p554 Z(X(1),X(21)) passes through these centers:
1, 4, 65, 73, 1148Collinear triples
1 4 73 4 65 1148 Z(X(1),X(27)) passes through these centers:
1, 6, 55, 71, 72, 1214, 1751, 3p209, 72p1724, 1214p1754Collinear triples
1 6 72 1 55 1214 1 1751 3p209 6 55 71 6 1751 1214p1754 55 1751 72p1724 71 72 72p1724 71 1214 1214p1754 72 1214 3p209 Z(X(1),X(29)) passes through these centers:
1, 3, 65, 73, 2067, 3p46, 10p2067, 12p1806, 46p921, 57p2066, 65p90, 485p2067Collinear triples
1 3 65 1 2067 12p1806 1 3p64 65p90 1 10p2067 57p2066 3 73 3p46 65 2067 485p2067 65 3p64 46p921 65 10p2067 12p1806 73 2067 57p2066 3p46 10p2067 485p2067 Z(X(1),X(31)) passes through these centers:
1, 2, 75, 192, 330, 2p194Collinear triples
1 192 330 2 75 192 2 330 2p194 Z(X(1),X(33)) passes through these centers:
1, 77, 2p2067, 7p2066, 77p1721Collinear triple
1 2p2067 7p2066 Z(X(1),X(34)) passes through these centers:
1, 78, 2p2066, 8p2067, 78p1722Collinear triple
1 2p2066 8p2067 Z(X(1),X(37)) passes through these centers:
1, 81, 2p2248, 58p1654Collinear triple
1 2p2248 58p1654 Z(X(1),X(55)) passes through these centers:
1, 7, 174, 7p1742, 174p503Collinear triple
7 174 174p503 Z(X(1),X(56)) passes through these centers:
1, 8, 188, 979, 8p978, 188p361Collinear triples
1 979 8p978 8 188 188p361 Z(X(1),X(57)) passes through these centers:
1, 9, 9p509, 9p1743, 514p1293Collinear triple
1 9p1743 514p1293 Z(X(1),X(59)) passes through these centers:
1, 11, 523, 9p1019, 11p1381, 11p1382, 174p650, 522p1381, 522p1382Collinear triples
1 523 9p1019 1 11p1381 522p1382 1 11p1382 522p1381 11 11p1381 11p1382 523 522p1381 522p1382 Z(X(1),X(63)) passes through these centers:
1, 19, 204, 2184Collinear triple
1 204 2184 Z(X(1),X(65)) passes through these centers:
1, 21, 1247, 2136, 21p1046, 21p2137Collinear triples
1 1247 21p1046 1 2136 21p2137 Z(X(1),X(75)) [ K175] passes through these centers:
1, 6, 19, 31, 48, 55, 56, 204, 221, 2192, 3p64, 64p1498, 207p268, 1034p2199Collinear triples
1 19 48 1 55 56 1 204 3p64 1 221 2192 1 207p268 1034p2199 6 19 221 6 31 55 6 48 56 6 204 2192 6 3p64 207p268 6 64p1498 1034p2199 19 31 204 19 56 207p268 31 56 221 31 2192 207p268 31 3p64 64p1498 48 55 2192 48 221 1034p2199 55 204 1034p2199 55 221 3p64 56 2192 64p1498 Z(X(1),X(76)) passes through these centers:
1, 32, 6p365, 31p1631Z(X(1),X(77)) passes through these centers:
1, 33, 282, 2331Z(X(1),X(78)) passes through these centers:
1, 34, 207, 56p1034Collinear triple
1 207 56p1034 Z(X(1),X(79)) passes through these centers:
1, 35, 1129, 35p481, 35p482, 35p1127Collinear triples
1 1129 35p1127 35 35p481 35p482 Z(X(1),X(80)) passes through these centers:
1, 15, 16, 36, 58, 106, 202, 203, 214, 501, 758, 1130, 13p36, 14p36, 36p484, 36p502, 36p1128, 38p202, 80p203Collinear triples
1 15 13p36 1 16 14p36 1 58 758 1 106 214 1 202 80p203 1 203 80p202 1 501 36p502 1 1130 36p1128 15 16 58 15 36 202 15 214 80p202 16 36 203 16 214 80p203 36 58 501 36 214 758 58 106 36p484 106 202 203 202 758 14p36 203 758 13p36 501 13p36 14p36 758 36p484 36p502 13p36 36p484 80p203 14p36 36p484 80p202 Z(X(1),X(81)) passes through these centers:
1, 2, 37, 42, 192, 37p2162Collinear triples
1 2 42 1 192 37p2162 2 37 192 Z(X(1),X(82)) passes through these centers:
1, 38, 75, 1964, 2p194Collinear triples
1 75 1964 38 75 2p194 Z(X(1),X(85)) passes through these centers:
1, 41, 2067, 33p2066, 41p169, 41p508, 57p2066, 220p2362Collinear triples
1 2067 33p2066 1 57p2066 220p2362 41 2067 57p2066 33p2066 41p169 220p2362 Z(X(1),X(86)) passes through these centers:
1, 6, 33, 37, 42, 55, 65, 73, 2331, 3p1903, 20p2357, 40p64, 64p1490Collinear triples
1 6 37 1 33 73 1 55 65 1 2331 3p1903 1 20p2357 40p64 6 33 20p2357 6 42 55 6 65 2331 6 3p1903 64p1490 33 37 55 33 42 2331 33 65 64p1490 37 73 3p1903 37 2331 40p64 42 65 73 42 3p1903 20p2357 42 40p64 64p1490 55 73 40p64 Z(X(1),X(88)) passes through these centers:
1, 44, 88, 678, 13p1250Collinear triple
1 88 678 Z(X(1),X(92)) passes through these centers:
1, 31, 48, 63, 2066, 2067, 2p184, 3p193, 3p371, 3p372, 6p485, 6p486, 9p2067, 57p2066, 371p493, 372p494Collinear triples
1 31 63 1 2066 2067 1 3p371 6p485 1 3p372 6p486 1 9p2067 57p2066 31 2066 9p2067 31 3p371 371p493 31 3p372 372p494 31 6p485 6p486 48 63 3p193 48 2067 57p2066 48 3p371 3p372 63 2p184 3p193 2066 3p371 57p2066 2067 2p184 57p2066 2067 3p372 9p2067 2p184 3p371 3p372 3p193 6p485 372p494 3p193 6p486 371p493 Z(X(1),X(98)) passes through these centers:
1, 511, 511p1756Z(X(1),X(99)) passes through these centers:
1, 512, 1015, 1018Collinear triple
1 1015 1018 Z(X(1),X(100)) passes through these centers:
1, 100, 244, 513, 100p1054Collinear triples
1 100 244 100 513 100p1054 Z(X(1),X(101)) passes through these centers:
1, 514, 190p2350, 1086p1621Collinear triple
1 190p2350 1086p1621 Z(X(1),X(104)) passes through these centers:
1, 80, 517, 3p1845Collinear triple
1 80 3p1845 Z(X(1),X(105)) passes through these centers:
1, 291, 518, 238p518, 291p2108Collinear triples
1 291 238p518 291 518 291p2108 Z(X(1),X(107)) passes through these centers:
1, 520, 40p1364, 282p1020Collinear triple
1 40p1364 282p1020 Z(X(1),X(158)) passes through these centers:
1, 3, 255, 921, 1069, 1124, 1335, 3p46, 3p155, 3p371, 3p372, 3p485, 3p486, 3p487, 3p488, 6p493, 6p494Collinear triples
1 921 3p155 1 1069 3p46 1 1124 1335 1 3p371 3p485 1 3p372 3p486 1 3p487 6p494 1 3p488 6p493 3 255 3p46 3 1069 3p155 3 1124 3p371 3 1335 3p372 255 3p371 3p372 255 3p487 3p488 1124 3p46 3p486 1335 3p46 3p485 3p155 3p485 3p486 3p155 6p493 6p494 3p371 3p486 3p487 3p372 3p485 3p488 Z(X(1),X(226)) passes through these centers:
1, 21, 31, 48, 1172, 2194, 21p1046, 31p1247, 1762p2194Collinear triples
1 21 31 1 48 1172 1 21p1046 31p1247 21 1172 1762p2194 21 2194 21p1046 31 48 2194 31 31p1247 1762p2194 Z(X(1),X(273)) passes through these centers:
1, 3, 6, 55, 212, 219, 3p46, 9p2164, 21p2174, 55p224, 71p79, 71p1780Collinear triples
1 3 55 1 6 219 1 3p46 9p2164 1 21p2174 71p79 3 6 21p2174 3 212 3p46 3 219 71p1780 6 55 212 55 9p2164 71p1780 212 219 55p224 219 3p46 71p79 9p2164 21p2174 55p224 Z(X(1),X(279)) passes through these centers:
1, 8, 9, 37, 42, 210, 8p978, 9p1743, 42p979, 523p1293Collinear triples
1 8 42 1 9 37 1 8p978 42p979 1 9p1743 523p1293 8 210 8p978 9 210 9p1743 37 42 210 Z(X(1),X(310)) passes through these centers:
1, 6, 55, 213, 1402, 1918, 1402p1764Collinear triples
1 6 213 1 55 1402 6 55 1918 1402 1918 1402p1764 Z(X(1),X(313)) passes through these centers:
1, 31, 48, 58, 501, 1474, 2206, 31p267Collinear triples
1 31 58 1 48 1474 1 501 31p267 31 48 2206 58 501 2206 Z(X(1),X(321)) passes through these centers:
1, 28, 31, 48, 81, 1333, 6p2248, 58p199, 58p1654Collinear triples
1 28 48 1 31 81 1 6p2248 58p1654 28 81 58p199 31 48 1333 31 6p2248 58p199 81 1333 58p1654 Z(X(1),X(326)) passes through these centers:
1, 19, 33, 34, 204, 207, 1096, 2331, 4p64, 4p1033, 4p1436, 25p1032, 25p1034Collinear triples
1 33 34 1 204 4p64 1 207 25p1034 1 2331 4p1436 1 4p1033 25p1032 19 34 2331 19 204 1096 19 207 4p1436 19 4p64 4p1033 33 204 4p1436 33 207 4p64 33 1096 2331 33 4p1033 25p1034 34 207 1096 34 4p1033 4p1436 204 2331 25p1034 207 2331 25p1032 Z(X(1),X(346)) passes through these centers:
1, 56, 57, 221, 1407, 1419, 1422, 56p366Collinear triples
1 56 57 1 221 1422 56 221 1407 57 1407 1419 Z(X(1),X(561)) passes through these centers:
1, 31, 48, 560, 1973, 2156, 6p206, 6p1676, 6p1677, 25p159, 32p1670, 32p1671Collinear triples
1 48 1973 1 2156 6p206 1 6p1676 32p1671 1 6p1677 32p1670 31 48 560 31 1973 6p206 31 2156 25p159 560 1973 25p159 560 32p1670 32p1671 2p206 6p1676 6p1677 Z(X(1),X(673)) passes through these centers:
1, 6, 55, 241, 292, 518, 672, 673, 55p1362, 238p518, 291p2110Collinear triples
1 6 518 1 55 241 1 292 238p518 1 673 55p1362 6 55 672 6 292 55p1362 55 673 238p518 241 518 55p1362 292 672 291p2110 518 672 238p518 518 673 291p2110 Z(X(1),X(739)) passes through these centers:
1, 2, 192, 536, 899, 10p715, 75p739, 87p899, 899p899Collinear triples
1 2 899 1 192 87p899 1 75p739 899p899 2 192 536 192 10p715 899p899 536 899 899p899 Z(X(1),X(903)) passes through these centers:
1, 6, 44, 55, 106, 678, 902, 1319, 2161, 2342, 3p1846, 6p214Collinear triples
1 6 44 1 55 1319 1 106 678 1 2161 6p214 1 2342 3p1846 6 55 902 6 106 6p214 6 2161 3p1846 44 678 902 44 1319 6p214 55 678 2161 55 2342 6p214 902 1319 3p1846 Z(X(1),X(961)) passes through these centers:
1, 8, 21, 960, 1193, 2292, 8p978, 21p1046, 43p256, 256p846, 979p1193, 1247p2292, 1999p2269Collinear triples
1 8 1193 1 21 2292 1 8p978 979p1193 1 21p1046 1247p2292 8 21 1999p2269 8 960 8p978 8 2292 43p256 21 960 21p1046 21 1193 256p846 960 1193 2292 960 43p256 256p846 1193 979p1193 1999p2269 2292 1247p2292 1999p2269 8p978 256p846 1247p2292 21p1046 43p256 979p1193 Z(X(1),X(1043)) passes through these centers:
1, 34, 56, 64, 65, 73, 207, 221, 1042, 7p2357, 20p1042, 1034p1410Collinear triples
1 34 73 1 56 65 1 64 20p1042 1 207 1034p1410 1 221 7p2357 34 56 20p1042 34 65 221 34 207 1042 56 207 7p2357 56 221 1042 64 65 207 64 73 221 65 73 1042 65 7p2357 20p1042 73 20p1042 1034p1410 Z(X(1),X(1219)) passes through these centers:
1, 56, 221, 1191, 1697, 2334, 84p1697Collinear triples
1 56 1697 1 221 84p1697 56 221 1191 Z(X(1),X(1220)) passes through these centers:
1, 58, 501, 1193, 2067, 2292, 57p2066, 267p2292, 429p1805, 429p1806, 501p2127Collinear triples
1 58 2292 1 501 267p2292 1 2067 429p1806 1 57p2066 429p1805 58 501 1193 501 2292 501p2127 1193 2067 57p2066 2292 429p1805 429p1806 Z(X(1),X(1259)) passes through these centers:
1, 4, 34, 207, 1118, 1148, 4p266, 34p1034Collinear triples
1 4 34 1 207 34p1034 4 1118 1148 34 207 1118 Z(X(1),X(1268)) passes through these centers:
1, 6, 55, 58, 501, 1100, 1962, 2160, 2308, 6p553, 35p1100, 267p1962Collinear triples
1 6 1100 1 55 6p553 1 58 1962 1 501 267p1962 1 2160 35p1100 6 55 2308 6 58 35p1100 55 1962 2160 58 501 2308 501 1100 2160 1100 1962 2308 1100 6p553 35p1100 1962 35p1100 267p1962 Z(X(1),X(1804)) passes through these centers:
1, 4, 33, 1148, 1857, 2331, 4p259, 4p282Collinear triples
1 4 33 1 2331 4p282 4 1148 1857 33 1857 2331 Z(X(1),X(1821)) passes through these centers:
1, 31, 48, 240, 1755, 1821, 1959, 1967, 3p1987, 6p2009, 6p2010, 55p1355, 232p401, 325p1691, 511p1687, 511p1688Collinear triples
1 31 1959 1 48 240 1 1821 55p1355 1 1967 325p1691 1 3p1987 232p401 1 6p2009 511p1687 1 6p2010 511p1688 31 48 1755 31 1821 232p401 31 1967 55p1355 48 1821 325p1691 48 3p1987 55p1355 240 755 232p401 240 1959 55p1355 1755 1959 325p1691 1755 511p1687 511p1688 6p2009 6p2010 55p1355 Z(X(1),X(1911)) passes through these centers:
1, 2, 86, 192, 239, 257, 335, 350, 385, 740, 2p294, 2p2068, 2p2069, 75p727, 81p1655, 87p239, 238p239, 238p726, 239p241, 274p2107, 740p2106, 1281p2113, 1654p1929Collinear triples
1 2 239 1 86 740 1 192 87p239 1 257 385 1 335 238p239 1 2p294 239p241 1 2p2068 2p20691 1 75p727 238p726 1 274p2107 740p2106 2 86 385 2 192 350 2 335 238p726 2 2p294 238p239 86 335 740p2106 86 350 81p1655 86 238p239 1654p1929 192 257 740 192 335 239p241 192 75p727 238p239 239 257 81p1655 239 350 740p2106 239 385 239p241 239 740 238p239 257 2p294 740p2106 257 238p726 1654p1929 350 385 238p239 350 740 238p726 385 87p239 238p726 81p1655 238p239 274p2107 238p726 239p241 1281p2113 Z(X(1),X(1927)) passes through these centers:
1, 75, 336, 350, 1909, 1926, 1934, 1934, 1966, 2p83, 2p194, 2p732, 43p1909, 76p695, 76p699, 87p350, 240p1966, 384p385, 385p385, 385p698Collinear triples
1 75 1966 1 336 240p1966 1 350 1909 1 1934 385p385 1 2p83 2p732 1 43p1909 87p350 1 76p695 384p385 1 76p699 385p698 75 336 385p698 75 350 87p350 75 1926 43p1909 75 1934 385p698 75 2p83 385p385 350 87p350 385p698 1909 2p194 87p350 1909 2p732 43p1909 1926 2p732 385p698 1926 384p385 385p385 1934 2p194 240p1966 1966 2p732 385p385 1966 240p1966 384p385 2p194 2p732 76p695 2p194 76p699 385p385 Z(X(1),X(1934)) passes through these centers:
1, 31, 48, 82, 172, 1428, 1580, 1910, 1914, 1927, 1933, 2330, 4p1691, 31p1281, 31p2236, 32p695, 147p1976, 194p699, 237p385, 384p385, 385p385, 385p2076Collinear triples
1 31 1580 1 48 4p1691 1 82 31p2236 1 172 1914 1 1428 2330 1 1910 237p285 1 19275 385p385 1 32p695 384p385 31 48 1933 31 82 384p385 31 1914 2330 31 1927 237p385 31 194p699 385p385 48 172 1428 48 1910 385p385 48 31p2236 32p695 82 1927 385p2076 172 1927 31p1281 172 2330 31p2236 1428 1580 31p1281 1428 1914 237p385 1580 1933 385p2076 1580 31p2236 385p385 1910 1933 147p1976 1910 2330 31p1281 1914 1933 31p1281 1927 4p1691 147p1976 1933 31p2236 237p385 1933 384p385 385p385 4p1691 237p385 384p385 32p695 194p699 385p2076 Z(X(1),X(2221)) passes through these centers:
1, 2, 192, 612, 1219, 2345, 87p612, 1191p2345Collinear triples
1 2 612 1 192 87p612 1 1219 1191p2345 2 192 2345 612 2345 1191p2345 Z(X(1),X(2287)) passes through these centers:
1, 57, 65, 73, 278, 1419, 1427Collinear triples
1 57 65 1 73 278 57 1419 1427 65 73 1427 Z(X(2),X(1)) [Thomson cubic, K002] passes through these centers:
1, 2, 3, 4, 6, 9, 57, 223, 282, 1073, 1249, 84p1490, 204p1032, 221p1034, 1073p1712Collinear triples
1 3 57 1 4 223 1 6 9 1 282 1249 1 1073 84p1490 1 221p1034 1073p1712 2 3 4 2 9 57 2 223 282 2 1073 1249 2 84p1490 221p1034 2 204p1032 1073p1712 3 9 2823 3 223 221p1034 3 1249 204p1032 4 6 1249 4 57 84p1490 6 57 223 6 282 84p1490 6 1073 1073p1712 9 223 1073 9 1249 221p1034 9 84p1490 204p1032 57 1073p1712 1073p1712 Z(X(2),X(2)) passes through these centers:
2, 31, 365, 6p1631, 365p510Collinear triple
31 365 365p510 Z(X(2),X(3)) passes through these centers:
2, 19, 19p1763Z(X(2),X(4)) passes through these centers:
2, 48, 48p1726Z(X(2),X(5)) passes through these centers:
2, 2148Z(X(2),X(6)) passes through these centers:
1, 2, 7, 9, 366, 1489, 2p1419, 2p2067, 7p2066, 8p2362, 92p2066, 173p1489, 364p366Collinear triples
1 7 2p1419 1 366 364p366 1 2p2067 7p2066 2 7 9 2 20p2067 92p2066 2 7p2066 8p2362 9 8p2362 92p2066 1489 2p2067 173p1489 Z(X(2),X(7)) passes through these centers:
2, 41, 259, 55p1626, 259p362Collinear triple
41 259 259p362 Z(X(2),X(8)) passes through these centers:
2, 266, 604, 266p504Collinear triple
266 604 266p504 Z(X(2),X(9)) passes through these centers:
2, 56, 478, 509, 2362, 2p2067, 7p2066, 225p1806Collinear triples
2 2362 7p2066 2 2p2067 225p1806 56 2p2067 7p2066 478 2362 225p1806 Z(X(2),X(10)) passes through these centers:
2, 3, 6, 28, 81, 1333, 2p501, 6p267Collinear triples
2 3 28 2 6 81 2 2p501 6p267 3 6 1333 81 1333 2p501 Z(X(2),X(19)) passes through these centers:
2, 3, 6, 69, 485, 486, 2p2066, 2p2067, 7p2066, 8p2067, 48p491, 48p492Collinear triples
2 6 69 2 485 48p492 2 486 48p491 2 2p2066 2p2067 2 7p2066 8p2067 3 69 63p193 3 2p2067 7p2066 3 48p491 48p492 6 485 486 6 2p2066 8p2067 2p2066 7p2066 48p492 2p2067 8p2067 48p491 Z(X(2),X(29)) passes through these centers:
2, 63, 1400, 1409, 45p63, 65p2164, 1400p1764Collinear triples
2 63 1400 2 45p63 65p2164 63 1409 45p63 1400 1409 1400p1764 Z(X(2),X(32)) passes through these centers:
2, 75, 330, 2p192, 2p366Collinear triple
2 330 2p192 Z(X(2),X(33)) passes through these centers:
2, 57, 63, 222, 223, 2p1433, 46p63, 222p1158, 912p2006Collinear triples
2 57 63 2 223 2p1433 57 222 223 63 222 46p63 63 2p1433 222p1158 Z(X(2),X(34)) passes through these centers:
1, 2, 9, 63, 78, 219, 8p2164, 9p224, 12p1789, 21p35, 46p63, 72p1780Collinear triples