POINTS ON CUBICS
This continuation of Points on Cubics has two sections, accessible by scrolling down or clicking:
C(U,P): Cross Conjugate Collinearity CubicsAccess to introductory and other material is provided at the end of this page.
ZC(U,P): ZC-Cubics
Locus: The cross conjugate collinearity cubic C(U,L) is the locus of a point X = x : y : z such that the U-cross conjugate of X, but not the point U itself, is on the line Lα + Mβ + Nγ = 0. C(U,L): Cross Conjugate Collinearity Cubics
defined by
L(wy + vz)x2 + M(uz + wx)y2 + N(vx + uy)z2 - (Lu + Mv + Nw)xyz = 0Notes:
1. C(U,L) is also given by
(Mwy2 + Nvz2)x + (Nuz2 + Lwx2)y + (Lvx2 + Muy2)z - (Lu + Mv +Nw)xyz = 0. 2. The cubic C(P -1U -1, U -1) is given byup(qy2 + rz2)x + vq(rz2 + px2)y + wr(px2 + qy2)z - Kxyz = 0, where K = (v2w2qr + w2u2rp + u2v2pq)/uvw.Thus, if K = 0, the cubic C(P -1*U -1, U -1) is the cubic ZP(U,P).
Equivalently, the cubic C(U,L) is the cubic ZP(P -1, P*U -1).For all K, the cubic C(P -1*U -1, U -1) is an nK-cubic as defined in Ehrmann and Gibert, "Special Isocubics in the Triangle Plane," downloadable from Cubics in the Triangle Plane.
3. C(U,L) passes through the points A, B, C and these points:
0 : N : - M, - N : 0 : L, M : - L : 0. 4. If U is on the line Lα + Mβ + Nγ = 0, then the left-hand side of the defining equation is satisfied by every point in the extended plane of triangle ABC.5. The discriminant d of C(U,P), obtained by solving the defining equation for x in terms of y and z, is given by
d2 = J2 + K2 - 2(3Lu + Mv + Nw)(Mwy3z + Nvyz3), where J = Mwy2 + Nvz2 and K = (Lu - Mv - Nw)yz.It follows that if J2 = 2(3Lu + Mv + Nw)(Mwy3z + Nvyz3), then there are four solutions for z as multiples of y, and the discriminant simplifies so that
d = (Lu - Mv - Nw)yz. For each of the four z, there are two resulting x, yielding eight points x : y : z on C(U,P). Each of the eight begets two others by cyclic permutations of L,M,N; u,v,w; x,y,z, for a total of 24 points on C(U,P). Of the eight points, four are written here using E as an abbreviation for (- MNvw)1/2:uE : v(Nw + E) : w(Mv + E) and uE : v(- Nw + E) : w(Mv - E); 6. In the list of cubics C(U,L(I,J)), the notation L(I,J) denotes the line X(I)X(J).(Mv + Nw)E : Lv(Nw + E) : Lw(- Mv + E) and (Mv + Nw)E : Lv(- Nw + E) : Lw(Mv + E).
C(X(25),L(1,2)) passes through these centers:
4, 101, 1113, 1114, 37p1113, 37p1114Collinear triples
4 1113 1114 4 37p1113 37p1114 101 1113 37p1113 101 1114 37p1114 C(X(56),L(1,2)) passes through these centers:
57, 100, 1381, 1382, 2p1381, 2p1382, 1280p1617Collinear triples
57 100 1280p1617 57 1381 1382 57 2p1381 2p1382 100 1381 2p1381 100 1382 2p1382 C(X(764),L(1,2)) passes through these centers:
513, 514, 900, 1022Collinear triple
513 514 900 C(X(1470),L(1,2)) passes through these centers:
100, 104, 109, 2p997, 2p1381, 2p1382, 2p1470, 997p1381, 997p1382Collinear triples
100 104 2p997 100 109 997p1381 100 2p997 997p1382 104 109 2p1470 2p1381 2p1382 2p1470 2p1470 997p1381 997p1382 C(X(255),L(1,3)) passes through these centers:
63, 1822, 1823, 3p109, 1214p1822, 1214p1823Collinear triples
63 1822 1823 63 1214p1822 1214p1823 1822 3p109 1214p1822 1823 3p109 1214p1823 C(X(3),L(1,4)) passes through these centers:
2, 109, 1113, 1114, 226p1822, 226p1823Collinear triples
2 1113 1114 2 226p1822 226p1823 109 1113 226p1822 109 1114 1214p1823 C(X(56),L(1,4)) passes through these centers:
57, 108, 1381, 1382, 19p2338, 278p1381, 278p1382, 658p1456Collinear triples
57 108 19p2338 57 1381 1382 57 278p1381 278p1382 108 1381 278p1381 108 1382 278p1382 C(X(255),L(1,4)) passes through these centers:
57, 108, 1381, 1382, 19p2338, 278p1381, 278p1382, 658p1456Collinear triples
63 1822 1823 63 226p1822 226p1823 109 1822 278p1822 109 1823 226p1823 C(X(56),L(1,5)) passes through these centers:
57, 1381, 1382, 2222, 1381p2006, 1382p2006Collinear triples
57 1381 1382 57 1381p2006 1382p2006 1381 2222 1381p2006 1382 2222 1382p2006 C(X(255),L(1,5)) passes through these centers:
63, 1822, 1823, 3p2222Collinear triple
63 1822 1823 C(X(41),L(1,6)) passes through these centers:
55, 101, 1381, 1382, 220p1381, 220p1382Collinear triples
55 1381 1382 55 220p1381 220p1382 101 1381 220p1381 101 1382 220p1382 C(X(48),L(1,6)) passes through these centers:
3, 101, 1381, 1382, 55p2338, 219p1381, 219p1382Collinear triples
3 101 55p2338 3 1381 1382 3 219p1381 219p1382 101 1381 219p1381 101 1382 219p1382 C(X(56),L(1,6)) passes through these centers:
1, 57, 1381, 1382Collinear triple
57 1381 1382 C(X(73),L(1,6)) passes through these centers:
101, 1214, 1381, 1382, 72p1381, 72p1382Collinear triples
101 1381 72p1381 101 1382 72p1382 1214 1381 1382 1214 72p1381 72p1382 C(X(172),L(1,6)) passes through these centers:
101, 171, 1381, 1382, 1381p2329, 1382p2329Collinear triples
101 1381 1381p2329 101 1382 1382p2329 171 1381 1382 171 1381p2329 1381p2329 C(X(198),L(1,6)) passes through these centers:
40, 101, 1381, 1382, 1381p2324, 1382p2324Collinear triples
40 1381 1382 40 1381p2324 1382p2324 101 1381 1381p2324 101 1382 1382p2324 C(X(255),L(1,6)) passes through these centers:
63, 906, 1822, 1823, 72p1822, 72p1823Collinear triples
63 1822 1823 63 72p1822 72p1823 906 1822 72p1822 906 1823 72p1823 C(X(604),L(1,6)) passes through these centers:
56, 101, 1381, 1382, 6p1381, 6p1382, 218p1477, 1279p1292Collinear triples
56 101 218p1477 56 1381 1382 56 6p1381 6p1382 101 1381 6p1381 101 1382 6p1382 C(X(56),L(1,7)) passes through these centers:
6, 651, 1020, 1400, 2p1381, 2p1382, 6p2283, 10p1462, 1381p1400, 1382p1400Collinear triples
57 1381 1382 57 279p1381 279p1382 934 1381 279p1381 934 1382 279p1382 C(X(213),L(1,7)) passes through these centers:
6, 651, 1020, 1400, 2p1381, 2p1382, 6p2283, 10p1462, 1381p1400, 1382p1400Collinear triples
6 651 10p1462 6 1400 6p2282 651 1020 6p2282 651 2p1381 1381p1400 651 2p1382 1382p1400 1020 1400 10p1462 1400 2p1381 2p1382 1400 1381p1400 1382p1400 C(X(220),L(1,7)) passes through these centers:
9, 651, 1815, 2p1381, 2p1382, 9p1381, 9p1382, 100p1886Collinear triples
9 65 1815 9 2p1381 2p1382 9 9p1381 9p1382 651 2p1381 9p1381 651 2p1382 9p1382 C(X(255),L(1,7)) passes through these centers:
63, 1822, 1823, 3p934Collinear triple
63 1822 1823 C(X(603),L(2,3)) passes through these centers:
58, 162, 222, 651, 2p104, 3p1381, 3p1382, 27p1381, 27p1382, 109p859Collinear triples
58 162 2p104 58 222 109p859 162 651 109p839 162 3p1381 27p1381 162 3p1382 27p1382 222 651 2p104 222 3p1381 3p1382 222 27p1381 27p1382 C(X(1464),L(2,3)) passes through these centers:
1, 81, 278, 2p1983, 36p653, 100p1835Collinear triples
1 812 2p1983 1 278 100p1835 81 278 36p653 2p1983 36p653 100p1835 C(X(25),L(2,6)) passes through these centers:
4, 110, 1113, 1114Collinear triple
4 1113 1114 C(X(51),L(2,6)) passes through these centers:
5, 110, 1113, 1114, 5p1822, 5p1823Collinear triples
5 1113 1114 5 5p1822 5p1823 110 1113 5p1822 110 1114 5p1823 C(X(154),L(2,6)) passes through these centers:
20, 110, 1113, 1114, 20p1822, 20p1823Collinear triples
20 1113 1114 20 20p1822 20p1823 110 1113 20p1822 110 1114 20p1823 C(X(159),L(2,6)) passes through these centers:
110, 1113, 1114, 1370, 1370p1822, 1370p1823Collinear triples
110 1113 1370p1822 110 1114 1370p1823 1113 1114 1114 1114 1370p1822 1370p1823 C(X(161),L(2,6)) passes through these centers:
110, 1113, 1114, 75p161Collinear triple(This is the Euler line.)
1113 1114 75p161 C(X(184),L(2,6)) passes through these centers:
3, 110, 1113, 1114, 1370, 3p1822, 3p1823Collinear triples
3 1113 1370p1822 3 3p1822 3p1823 110 1113 3p1822 110 1114 3p1823 C(X(206),L(2,6)) passes through these centers:
22, 110, 1113, 1114, 1370, 22p1822, 22p1823, 255p1297Collinear triples
22 110 255p1297 22 1113 1114 22 22p1822 22p1823 110 1113 22p1822 110 1114 22p1823 C(X(232),L(2,6)) passes through these centers:
22, 110, 1113, 1114, 1370, 22p1822, 22p1823, 255p1297Collinear triples
110 1113 297p1822 110 1114 297p1823 297 1113 1114 297 297p1822 297p1823 C(X(311),L(2,6)) passes through these centers:
76, 300, 301, 662Collinear triple
300 301 5p662 C(X(25),L(2,7)) passes through these centers:
4, 109, 1113, 1114, 65p1113, 65p1114Collinear triples
4 1113 1114 4 65p1113 65p1114 109 1113 65p1113 109 1114 65p1114 C(X(31),L(2,7)) passes through these centers:
1, 109, 1822, 1823, 65p1113, 65p1114, 104p1470Collinear triples
1 109 104p1470 1 1822 1823 1 65p1113 65p1114 109 1822 65p1113 109 1823 65p1114 C(X(55),L(2,7)) passes through these centers:
1, 100, 1381, 1382, 8p1381, 8p1382, 999p1320Collinear triples
1 100 999p1320 1 1381 1382 1 8p1381 8p1382 100 1381 8p1381 100 1382 8p1382 C(X(222),L(2,7)) passes through these centers:
77, 651, 2338, 7p1381, 7p1382, 63p1381, 63p1382Collinear triples
77 651 2338 77 7p1381 7p1382 77 63p1381 63p1382 651 7p1381 63p1381 651 7p1382 63p1382 C(X(5),L(3,6)) passes through these centers:
2, 13, 14, 1625Collinear triple
13 14 1625 C(X(71),L(3,6)) passes through these centers:
1, 906, 1822, 1823, 37p1822, 37p1823Collinear triples
1 1822 1823 1 37p1822 37p1823 906 1822 37p1822 906 1823 37p1823 C(X(2140),L(3,6)) passes through these centers:
7, 86, 673, 692p2140Collinear triple
7 673 692p2140 C(X(3),L(4,6)) passes through these centers:
2, 112, 1113, 1114Collinear triple
2 1113 1114 C(X(15),L(4,6)) passes through these centers:
112, 470, 1113, 1114Collinear triple
470 1113 1114 C(X(16),L(4,6)) passes through these centers:
112, 471, 1113, 1114Collinear triple
471 1113 1114 C(X(32),L(4,6)) passes through these centers:
25, 112, 1113, 1114, 923p1995, 1113p1973, 1114p1973Collinear triples
25 112 923p1995 25 1113 1114 25 1113p1973 1114p1973 112 1113 1113p1973 112 1114 1114p1973 C(X(39),L(4,6)) passes through these centers:
112, 427, 1113, 1114Collinear triple
427 1113 1114
C(X(50),L(4,6)) passes through these centers:
112, 186, 1113, 1114Collinear triple
186 1113 1114 C(X(52),L(4,6)) passes through these centers:
112, 467, 1113, 1114Collinear triple
467 1113 1114 C(X(58),L(4,6)) passes through these centers:
27, 112, 1113, 1114, 28p1113, 28p1114Collinear triples
27 1113 1114 27 28p1113 28p1114 112 1113 28p1113 112 1114 28p1114 C(X(61),L(4,6)) passes through these centers:
112, 473, 1113, 1114Collinear triple
473 1113 1114 C(X(62),L(4,6)) passes through these centers:
112, 472, 1113, 1114Collinear triple
472 1113 1114 C(X(182),L(4,6)) passes through these centers:
112, 458, 1113, 1114Collinear triple
458 1113 1114 C(X(187),L(4,6)) passes through these centers:
112, 468, 1113, 1114Collinear triple
468 1113 1114 C(X(216),L(4,6)) passes through these centers:
5, 112, 1113, 1114, 53p1822, 53p1823Collinear triples
5 1113 1114 5 53p1882 53p1823 112 1113 53p1822 112 1114 53p1823 C(X(284),L(4,6)) passes through these centers:
29, 112, 1113, 1114, 1113p1172, 1114p1172Collinear triples
29 1113 1114 29 1113p1172 1114p1172 112 1113 1113p1172 112 1114 1114p1172 C(X(2193),L(4,6)) passes through these centers:
21, 112, 1113, 1114, 284p1113, 284p1114Collinear triples
21 1113 1114 21 284p1113 284p1114 112 1113 284p1113 112 1114 284p1114
ZC(U,L): ZC-Cubics
L(wy - vz)x2 + M(uz - wx)y2 + N(vx - uy)z2 = 0
Locus: The cubic ZC(U,L) is the locus of a point X = x : y : z such that the point
(wy - vz)x2 : (uz - wx)y2 : (vx - uy)z2 lies on the line L given by Lα + Mβ + Nγ = 0.Notes:
1. The bicentrics of the U-cross conjugate of a point X are the points
- v/y + w/z + u/x : - w/z + u/x + v/y : - u/x + v/y + w/z and - w/z + u/x + v/y : - u/x + v/y + w/z : - v/y + w/z + u/x. It is easy to check that these bicentrics lie, respectively, on the cubicsL(wy - vz)x2 + M(uz - wx)y2 + N(vx - uy)z2 + (Lu + Mv + Nw)xyz = 0 andL(wy - vz)x2 + M(uz - wx)y2 + N(vx - uy)z2 - (Lu + Mv + Nw)xyz = 0. These equal ZC(U,L) if and only if U is on L; i.e., Lu + Mv + Nw = 0;
thus, in this case, the two bicentrics lie on ZC(U,L).2. ZC(U,L) is also given by
(Mwy2 - Nvz2)x + (Nuz2 - Lwx2)y + (Lvx2 - Muy2)z = 0. 3. The cubic ZC(P -1*U -1), U -1) is the cubic Z(U,P); c.f., Note 2 in the section on the class of C-cubics. Conversely, the cubic ZC(U,L) is the cubic Z(L -1,L*U -1); here, the coefficients L, M, N are regarded as the point L having trilinears L : M : N, so that L -1 denotes the trilinear pole of the line Lα + Mβ + Nγ = 0.
Example: ZC(X(32),L(30,511)) = Z(X(2),X(75)).4. The point U is on ZC(U,L).
5. The discriminant d of ZC(U,L), obtained by solving the defining equation for x in terms of y and z, is given by
d2 = (Mwy2 - Nvz2)2 - 4Luyz(My - Nz)(wy -vz). 6. Suppose F = f : g : h is a triangle center. The collineation X --> F*X that carries each point x : y : z to the trilinear product fx : gy : hz also carries the cubic ZC(U,L) onto the the cubic ZC(F*U,L[F]), where L[F} denotes the line Lghα + Mhfβ + Nfgγ = 0, this being the line consisting of the points F*X as X ranges through the line Lα + Mβ + Nγ = 0.ZC(X(1),L(1,2)) passes through these centers:
1, 190, 649, 2p1016Collinear triple
190 649 2p1016 ZC(X(2),L(1,2)) passes through these centers:
2, 190, 514, 1016, 1016p1054Collinear triples
2 1016 1016p1054 190 514 1016 ZC(X(1),L(1,3)) passes through these centers:
1, 650, 651, 2p1262Collinear triple
650 651 2p1262 ZC(X(1),L(1,4)) passes through these centers:
1, 652, 653, 393p1275Collinear triple
652 653 653p1275 ZC(X(1),L(1,5)) passes through these centers:
1, 654, 655, 655p655Collinear triple
654 655 655p655 ZC(X(1),L(1,6)) passes through these centers:
1, 100, 513, 765, 765p1054Collinear triples
1 764 765p1054 100 513 764 ZC(X(6),L(1,6)) passes through these centers:
1, 100, 667, 1016Collinear triple
100 667 1016 ZC(X(279),L(1,7)) passes through these centers:
279, 658, 1275, 244p658, 1054p1275, 1987p1987Collinear triples
279 1275 1054p1275 658 1275 244p658 ZC(X(2),L(2,3)) passes through these centers:
2, 525, 648, 92p250Collinear triple
525 648 92p250 ZC(X(524),L(2,6)) passes through these centers:
99, 524, 1649, 662p892, 1379p1577, 1380p1577Collinear triples
99 1649 662p892 524 1379p1577 1380p1577 ZC(X(100),L(2,11)) passes through these centers:
100, 190, 664, 666, 2284, 2p919, 6p874, 8p919, 105p660, 666p673Collinear triples
100 190 6p874 100 2p919 8p919 190 664 2284 190 666 2p919 664 666 8p919 666 2284 666p673 666 6p874 105p660 2284 2p919 105p660 6p874 8p919 666p673 ZC(X(110),L(2,11)) passes through these centers:
99, 110, 648, 666, 919m 48p666Collinear triples
99 666 919 110 919 48p666 648 666 48p666 ZC(X(658),L(2,11)) passes through these centers:
651, 658, 664, 666, 883, 927, 2p927, 105p927, 165p927, 190p1456, 664p1376, 932p1447Collinear triples
651 658 190p1456 651 664 883 651 666 2p927 651 664p1376 932p1447 658 883 664p1376 658 927 165p927 664 666 927 666 883 105p927 927 2p927 664p1376 927 105p927 190p1456 ZC(X(665),L(2,11)) passes through these centers:
1, 101, 514, 665, 666, 1026, 1027, 2p1279, 6p1280, 10p1438, 21p241Collinear triples
1 101 10p1438 1 514 1027 1 1026 2p1279 101 514 666 514 665 2p1279 665 1027 10p1438 666 1026 1027 666 2p1279 6p1280 666 10p1438 21p241 ZC(X(1638),L(2,11)) passes through these centers:
2, 514, 527, 651, 666, 673, 918, 1638, 2p1027, 2p1279, 2p1308, 100p527, 105p527, 190p1456, 513p1121, 527p885, 666p1155Collinear triples
2 527 190p1456 2 666 105p527 2 673 666p1155 2 918 1638 2 2p1027 527p885 2 2p1279 100p527 514 527 918 514 666 666p1155 514 1638 2p1279 514 2p1027 105p527 527 666 673 651 666 527p885 651 673 105p527 651 918 100p527 651 1638 190p1456 666 2p1027 100p527 673 1628 2p1027 ZC(X(1639),L(2,11)) passes through these centers:
2, 519, 522, 644, 666, 918, 1639, 2p294, 2p2342, 7p1023, 8p910, 8p1022, 8p1024, 8p2222, 44p666, 105p2325, 190p2348, 214p885, 666p678, 666p1647, 673p1145Collinear triples
2 519 190p2348 2 666 105p2325 2 918 1639 2 2p294 44p666 2 7p1023 8p910 2 8p1024 666p1647 519 522 918 519 666 2p294 519 105p2325 666p678 519 214p885 666p1647 522 666 44p666 522 1639 8p910 522 8p1024 105p2325 644 666 666p16476 644 1639 7p1023 644 2p294 190p2348 666 2p2342 673p1145 666 7p1023 8p1024 666 8p1022 666p678 666 8p2222 214p885 1639 2p294 8p1024 1639 44p666 666p678 1639 105p2325 214p885 1639 666p1647 673p1145 2p294 8p1022 214p885 2p294 8p2222 673p1145 2p2342 8p1024 214p885 7p1023 44p666 214p885 7p1023 105p2325 673p1145 8p1024 8p2222 666p678 ZC(X(3),L(3,6)) passes through these centers:
3, 110, 250, 520Collinear triple
110 250 520 ZC(X(6),L(3,6)) passes through these centers:
6, 110, 249, 512, 148p1101Collinear triples
6 249 148p1101 110 249 512 ZC(X(101),L(3,6)) passes through these centers:
101, 110, 662, 692, 31p932, 43p662Collinear triples
101 662 43p662 101 31p932 932p1613 110 662 692 110 31p932 43p662 ZC(X(190),L(3,6)) passes through these centers:
100, 110, 190, 662, 932, 43p662Collinear triples
100 110 662 110 932 43p662 190 662 43p662 ZC(X(512),L(3,6)) passes through these centers:
100, 110, 190, 662, 932, 43p662Collinear triples
6 1379 1380 6 25p1822 25p1823 6 163p1312 523p1822 6 163p1313 523p1823 110 1379 661p1380 110 1380 661p1379 110 25p1822 523p1823 110 25p1823 523p1822 110 163p1312 163p1313 512 25p1822 163p1312 512 25p1823 163p1313 512 523p1822 523p1823 512 661p1379 661p1380 ZC(X(513),L(3,6)) passes through these centers:
110, 513, 942, 1175, 1381, 1382, 28p1822, 28p1823, 523p1822, 523p1823Collinear triples
110 942 1175 110 28p1822 523p1823 110 28p1823 523p1822 513 523p1822 523p1823 942 1381 1382 942 28p1822 28p1823 ZC(X(521),L(3,6)) passes through these centers:
110, 521, 960, 1798, 21p1822, 21p1823, 523p1822, 523p1823Collinear triples
110 960 1178 110 21p1822 523p1823 110 21p1823 523p1822 521 523p1822 523p1823 960 21p1822 21p1823 ZC(X(523),L(3,6)) passes through these centers:
1, 5, 54, 110, 523, 1113, 1114, 9p1019, 523p1822, 523p1823Collinear triples
1 5 9p1020 1 523 9p1019 5 54 110 5 1113 1114 110 1113 523p1823 110 1114 523p1823 110 9p1019 9p1020 523 523p1822 523p1823 ZC(X(32),L(3,512)) passes through these centers:
6, 25, 32, 511, 31p2065, 1755p2065, 1959p2065Collinear triples
6 32 511 6 1755p2065 1959p2065 511 31p2065 1959p2065 ZC(X(39),L(3,512)) passes through these centers:
2, 6, 39, 511, 38p2065, 1959p2065Collinear triples
6 39 511 511 38p2065 1959p2065 ZC(X(2088),L(3,512)) passes through these centers:
6, 323, 511, 525, 526, 2088, 74p661, 255p1300, 1959p2065Collinear triples
6 511 2088 511 525 526 ZC(X(6),L(3,513)) passes through these centers:
1, 6, 57, 517, 2323, 3p915, 57p2077, 63p915, 78p913, 915p1795Collinear triples
1 6 2323 1 57 517 1 3p915 63p915 6 57 57p2077 6 3p915 78p913 57 63p915 78p913 517 63p915 915p1795 2323 78p913 915p1795 3p915 57p2077 v ZC(X(37),L(3,513)) passes through these centers:
1, 2, 37, 2323, 63p915, 71p915, 72p915Collinear triples
1 37 2323 1 63p915 72p915 2 63p915 71p915 37 71p915 72p915 ZC(X(109),L(3,517)) passes through these centers:
101, 109, 651, 934, 100p2362, 109p366, 109p1489, 144p1461, 651p2067, 653p2066, 934p2066Collinear triples
101 651 934 101 100p2362 653p2066 109 934 144p1461 109 651p2067 934p2066 651 100p2362 934p2066 651 651p2067 653p2066 ZC(X(112),L(3,517)) passes through these centers:
108, 110, 112, 651, 63p1301, 101p229, 108p610Collinear triples
108 110 651 108 112 108p610 110 112 101p229 651 63p1301 108p610 ZC(X(163),L(3,517)) passes through these centers:
162, 163, 651, 662, 1415, 3p109, 99p2305, 163p1762, 1247p1415Collinear triples
162 651 3p109 162 662 163p1762 163 662 99p2305 163 1415 3p109 651 662 1415 651 99p2305 1247p1415 1415 163p1762 1247p1415 ZC(X(222),L(3,517)) passes through these centers:
222, 651, 905, 1262, 1262p1768Collinear triples
222 1262 1262p1768 651 905 1262 ZC(X(513),L(3,517)) passes through these centers:
6, 7, 509, 513, 651, 100p2350Collinear triple
6 7 651 ZC(X(514),L(3,517)) passes through these centers:
81, 174, 226, 514, 651, 2p1381, 2p1382, 514p1381, 514p1382Collinear triples
81 226 651 226 2p1381 2p1382 514 514p1381 514p1382 651 2p1381 514p1382 651 2p1382 514p1381 ZC(X(654),L(3,517)) passes through these centers:
101, 104, 109, 651, 654, 2316, 2p654, 3p1845, 7p654, 44p1443, 57p102, 515p2323Collinear triples
101 104 515p2323 101 109 654 101 651 7p654 101 2316 3p1845 104 109 44p1443 104 651 3p1845 109 651 2p654 109 3p1845 57p102 651 2316 44p1443 651 57p102 515p2323 654 2p654 515p2323 654 7p654 44p1443 2p654 3p1845 7p654 ZC(X(665),L(3,517)) passes through these centers:
101, 105, 109, 651, 665, 1362, 2254, 6p1280, 7p665, 7p911, 59p1566, 241p1279, 241p1381, 241p1382, 513p1381, 513p1382, 514p1381, 514p1382, 518p1381, 518p1382, 650p1381, 650p1382, 672p1381, 672p1382Collinear triples
101 105 59p1566 101 109 665 101 651 7p655 101 1362 6p1280 101 518p1381 650p1382 101 518p1381 650p1381 105 109 241p1279 105 651 1362 109 651 2254 109 1362 7p911 109 241p1381 513p1382 109 241p1382 513p1381 651 6p1280 241p1279 651 7p911 58p1566 651 241p1381 650p1382 651 241p1382 650p1381 651 513p1381 518p1382 651 513p1382 518p1381 651 514p1381 672p1382 651 514p1382 672p1381 665 59p1566 59p1566 665 241p1279 241p1279 665 650p1382 650p1382 665 650p1381 650p1381 665 514p1382 514p1382 1362 2254 7p665 1362 241p1381 518p1382 1362 241p1382 518p1381 1362 672p1381 672p1382 2254 650p1381 650p1382 7p665 513p1382 513p1382 59p1566 241p1382 241p1382 241p1279 518p1382 518p1382 241p1381 514p1381 650p1381 241p1382 514p1382 650p1382 241p1381 518p1381 518p1381 241p1381 672p1381 672p1381 241p1382 514p1382 518p1382 241p1382 650p1382 672p1382 ZC(X(668),L(3,517)) passes through these centers:
190, 651, 664, 668, 2p932, 43p664, 99p171, 100p508, 190p978, 662p1999, 664p979Collinear triples
190 651 664 190 668 190p978 651 2p932 43p664 651 190p978 664p999 664 668 43p664 668 99p171 662p1999 2p932 99p171 190p978 43p664 662p1999 664p979 ZC(X(812),L(3,517)) passes through these centers:
190, 651, 673, 812, 56p812, 190p978, 238p241Collinear triples
190 651 56p812 190 812 190p978 651 673 238p241 812 56p812 238p241 ZC(X(905),L(3,517)) passes through these centers:
2, 222, 651, 905, 63p1381, 63p1382, 226p1822, 226p1823, 514p1381, 514p1382, 514p1822, 572p693Collinear triples
2 222 651 2 905 572p693 2 226p1822 226p1823 222 63p1381 63p1382 651 63p1381 514p1382 651 63p1382 514p1381 651 226p1823 514p1822 905 514p1381 514p1382 ZC(X(906),L(3,517)) passes through these centers:
101, 109, 651, 906, 1331, 1813, 35p110, 46p1813, 90p101, 101p224, 906p1708Collinear triples
101 109 906 101 651 1813 101 90p101 906p1708 109 651 1331 109 1813 35p110 651 46p1813 90p101 906 1331 101p224 906 1813 46p1813 1331 1813 906p1708 35p110 90p101 101p224 ZC(X(928),L(3,517)) passes through these centers:
101, 109, 651, 928, 2p928, 7p928Collinear triples
101 109 906 101 651 7p928 109 651 2p928 ZC(X(1018),L(3,517)) passes through these centers:
100, 190, 651, 1018, 9p1020, 10p1415, 100p1745, 190p978, 226p1293Collinear triples
100 651 9p1020 100 1018 100p1743 190 651 10p1415 190 1018 190p978 651 100p1743 226p1293 1018 9p1020 10p1415 ZC(X(1022),L(3,517)) passes through these centers:
57, 88, 651, 1022, 2p901, 7p649Collinear triples
57 88 651 57 1022 7p649 651 2p901 7p649 ZC(X(1024),L(3,517)) passes through these centers:
6, 513, 651, 673, 1024, 2p919Collinear triples
6 513 1024 6 651 673 513 651 2p919 ZC(X(1026),L(3,517)) passes through these centers:
100, 651, 660, 664, 1025, 1026, 2284, 8p919, 43p664, 87p2284, 100p1743, 190p1477, 238p1025, 241p1025, 1025p2348Collinear triples
100 651 1025 100 1026 100p1743 100 8p919 1025p2348 651 660 238p1025 651 664 2284 651 8p919 241p1025 651 43p664 87p2284 651 190p1477 1025p2348 660 43p664 241p1025 664 1026 43p664 664 8p919 238p1025 1025 1026 238p1025 1025 2284 241p1025 1026 2284 1025p2348 100p1743 190p1477 241p1025 ZC(X(1415),L(3,517)) passes through these centers:
101, 108, 109, 651, 1415, 1461, 3p109, 40p1461, 64p1813, 84p101, 108p610Collinear triples
101 109 1415 101 651 1461 101 3p109 84p101 101 40p1461 64p1813 108 109 40p1461 108 651 3p109 108 1415 108p610 109 1461 3p109 109 84p101 108p610 651 40p1461 84p101 651 64p1813 108p610 1415 1461 40p1461 ZC(X(1643),L(3,517)) passes through these centers:
1, 6, 57, 513, 650, 651, 1643, 2246, 7p649, 7p2246, 44p2222, 56p528, 100p2246, 109p528, 514p840, 516p919, 517p2222, 528p1461, 1155p1308Collinear triples
1 6 100p2246 1 57 109p528 1 650 1643 1 651 56p528 1 2246 516p919 1 7p2246 517p2222 6 57 528p1461 6 513 1643 6 651 7p2246 6 2246 1155p1308 6 44p2222 56p528 57 651 2246 57 1643 7p649 513 650 2246 513 651 109p528 513 7p649 56p528 513 517p2222 528p1461 650 651 528p1461 650 7p649 7p2246 650 44p2222 109p528 651 7p649 100p2246 1643 44p2222 517p2222 7p649 109p528 1155p1308 7p649 516p919 528p1461 ZC(X(2283),L(3,517)) passes through these centers:
101, 109, 651, 927, 1025, 2283, 7p2283, 56p660, 101p1362, 238p1025Collinear triples
101 109 2283 101 651 7p2283 101 927 238p1025 109 651 1025 109 56p660 101p1362 651 927 101p1362 651 56p660 238p1025 1025 2283 238p1025 1025 7p2283 101p1362 ZC(X(6),L(3,520)) passes through these centers:
3, 6, 74, 1073, 3p2173, 3p2349, 20p2159, 74p2349Collinear triples
3 6 3p2173 3 74 3p2349 6 74 20p2159 1073 3p2349 20p2159 3p2173 3p2349 74p2349 ZC(X(6),L(3,523)) passes through these centers:
2, 4, 6, 30, 323, 19p2071, 48p1300, 63p1300, 255p1300Collinear triples
2 4 30 2 6 323 2 48p1300 63p1300 4 6 19p2071 4 63p1300 255p1300 6 48p1300 255p1300 ZC(X(30),L(3,523)) passes through these centers:
6, 13, 14, 30, 63p1300Collinear triple
6 13 14 ZC(X(190),L(4,6)) passes through these centers:
100, 107, 190, 823, 932, 43p823, 100p1714Collinear triples
100 107 823 100 190 100p1714 107 932 43p823 190 823 43p823 ZC(X(512),L(4,6)) passes through these centers:
19, 107, 512, 800, 1379, 1380, 6p821, 19p1020, 19p1021Collinear triples
19 512 19p1021 19 800 19p1020 107 800 6p821 107 19p1020 19p1021 800 1379 1380 ZC(X(523),L(4,6)) passes through these centers:
4, 107, 523, 1113, 1114, 162p1312Collinear triples
4 1113 1114 523 1113 162p1312 ZC(X(684),L(4,6)) passes through these centers:
107, 110, 132, 684, 1297, 110p920, 158p684Collinear triples
107 110 158p684 107 132 1297 110 684 110p920 132 684 158p684 ZC(X(112),L(4,8)) passes through these centers:
100, 107, 112, 648, 1783, 2p1897, 112p502, 191p648Collinear triples
100 107 2p1897 100 112 1783 112 648 191p648 648 1783 2p1897 2p1897 112p502 191p648 ZC(X(162),L(4,8)) passes through these centers:
100, 162, 811, 823, 1783, 2p1897, 112p1330, 648p1654, 1897p2248Collinear triples
100 162 1783 100 823 2p1897 162 811 648p1654 811 823 112p1330 811 1783 2p1897 1783 112p1330 1897p2248 2p1897 648p1654 1897p2248 ZC(X(112),L(4,9)) passes through these centers:
101, 107, 112, 648, 1897, 4p692, 112p1761, 162p1654, 1783p2248Collinear triples
101 107 1897 101 112 4p692 107 648 112p1761 112 648 162p1654 648 1897 4p692 1897 162p1654 1783p2248 4p692 112p1761 1783p2248 ZC(X(1459),L(4,9)) passes through these centers:
1, 109, 522, 1459, 1897, 27p836, 71p837, 109p1158Collinear triples
1 109 27p836 1 522 1459 1 71p837 109p1158 109 522 1897 109 1459 109p1158 1897 27p836 71p837 ZC(X(112),L(4,511)) passes through these centers:
99, 107, 112, 648, 2p811, 22p162, 66p811, 159, 823, 162p1670, 162p1671, 811p1676, 811p1677Collinear triples
99 107 2p811 99 112 648 107 112 159p823 107 648 22p162 112 162p1670 162p1671 648 66p811 159p823 2p811 22p162 66p811 2p811 162p1670 811p1677 2p811 162p1670 811p1676 22p162 811p1677 1783p2248 ZC(X(647),L(4,511)) passes through these centers:
2, 110, 647, 850, 1899, 2p811, 157p662Collinear triples
2 110 1899 2 647 850 110 647 157p662 110 850 2p811 ZC(X(4),L(4,512)) passes through these centers:
4, 98, 232, 264, 2p158, 4p1821, 4p1910, 4p1966, 92p1687, 92p1688, 98p1956, 158p401Collinear triples
4 98 4p1910 4 264 4p1966 4 2p158 158p401 4 92p1687 92p1688 98 232 98p1956 98 2p158 4p1821 232 264 2p158 264 4p1821 4p1910 4p1821 98p1956 158p401 ZC(X(39),L(4,512)) passes through these centers:
2, 4, 6, 39, 232, 248, 2p1733, 4p1821, 19p1235, 24p293, 38p98, 38p847, 311p1821, 427p1821, 427p1910Collinear triples
2 39 2p1733 2 232 19p1235 2 4p1821 427p1910 2 24p293 38p98 4 39 232 4 248 427p1910 4 2p1733 38p847 4 4p1821 38p98 6 248 211p1821 6 4p1821 427p1821 39 248 24p293 39 38p98 211p1821 39 427p1821 427p1910 248 4p1821 19p1235 4p1821 24p293 38p847 19p1235 38p98 427p1821 38p847 211p1821 427p1910 ZC(X(4),L(4,514)) passes through these centers:
4, 281, 1861, 1886, 92p103, 103p273Collinear triples
1 2 3 2 5 6 ZC(X(10),L(4,514)) passes through these centers:
2, 10, 75, 281, 1861, 2p1736, 92p103, 103p1441, 103p1826Collinear triples
2 10 2p1736 10 281 1861 75 92p103 103p1826 281 92p103 103p1441 ZC(X(516),L(4,514)) passes through these centers:
7, 281, 516, 673, 1861, 92p103Collinear triples
7 281 92p103 281 516 1861 673 1861 92p103 ZC(X(112),L(4,515)) passes through these centers:
107, 109, 112, 648, 653, 4p1415, 112p1762, 648p1046Collinear triples
107 109 653 107 648 112p1762 109 112 4p1415 112 648 648p1046 648 653 4p1415 ZC(X(163),L(4,515)) passes through these centers:
109, 162, 163, 653, 662, 4p1415, 162p1781Collinear triples
109 162 653 109 163 4p1415 162 163 162p1781 653 662 4p1415 ZC(X(112),L(4,516)) passes through these centers:
101, 107, 112, 648, 1897, 4p692, 112p1761, 162p1654, 1783p2248Collinear triples
101 107 1897 101 112 4p692 107 648 112p1761 112 648 162p1654 648 1897 4p692 1897 162p1654 1783p2248 4p692 112p1761 1783p2248 ZC(X(1459),L(4,516)) passes through these centers:
1, 109, 522, 1459, 1897, 27p836, 71p837, 109p1158Collinear triples
1 109 27p836 1 522 1459 1 71p837 109p1158 109 522 1897 109 1459 109p1158 1897 27p836 71p837 ZC(X(3),L(4,523)) passes through these centers:
3, 470, 471, 485, 486, 4p2349, 371p2349, 372p2349Collinear triples
3 470 471 3 371p2349 372p2349 485 4p2349 371p2349 486 4p2349 372p2349 ZC(X(4),L(4,523)) passes through these centers:
4, 470, 471, 1990, 4p2349Collinear triple
4 470 471 ZC(X(6),L(4,523)) passes through these centers:
2, 4, 6, 74, 186, 1990, 2p1725, 4p2159, 4p2349, 74p2166, 74p2349, 1138p2173, 1300p2159Collinear triples
2 4 186 2 6 2p1725 2 4p2159 4p2349 4 6 1990 4 74 4p2349 6 74 4p2159 74 186 74p2349 74 2p1725 74p2166 186 1990 1138p2173 186 4p2159 1300p2159 186 4p2349 74p2166 1990 4p2159 74p2166 1990 4p2349 74p2349 2p1725 4p2349 1300p2159 ZC(X(30),L(4,523)) passes through these centers:
13, 14, 30, 470, 471, 4p2349Collinear triples
13 470 4p2349 14 471 4p2349 30 470 471 ZC(X(140),L(4,523)) passes through these centers:
17, 18, 140, 470, 471, 4p2349Collinear triple
140 470 471 ZC(X(440),L(4,523)) passes through these centers:
226, 440, 470, 471, 1751, 4p2349, 950p2349Collinear triples
226 4p2349 950p2349 440 470 471 ZC(X(1865),L(4,523)) passes through these centers:
4, 281, 445, 860, 1865, 1990, 2p225, 4p2349, 1859p2349, 1865p2349Collinear triples
4 445 860 4 1865 1990 4 4p2349 1865p2349 281 860 1865 1865 1859p2349 1865p2349 2p225 4p2349 1859p2349 ZC(X(512),L(5,6)) passes through these centers:
216, 512, 925, 1379, 1380, 4p2168Collinear triples
216 925 4p2168 216 1379 1380 ZC(X(523),L(5,6)) passes through these centers:
3, 523, 847, 925, 1113, 1114Collinear triples
3 847 925 3 1113 1114 ZC(X(1),L(6,7)) passes through these centers:
651, 658, 664, 927, 2283, 2p919, 6p927, 56p874, 292p927, 673p927Collinear triples
651 664 56p874 651 2p919 6p927 658 664 2283 658 927 2p919 664 927 6p927 927 2283 673p927 927 56p874 292p927 2283 6p927 292p927 2p919 56p874 673p927 ZC(X(30),L(6,7)) passes through these centers:
30, 514, 516, 927Collinear triple
30 514 516 ZC(X(190),L(6,7)) passes through these centers:
100, 190, 664, 666, 927, 932, 2p927, 7p1025, 56p874, 85p1293, 190p1279, 192p927, 291p666, 294p666, 658p1376, 666p1743, 927p1280Collinear triples
100 190 190p1279 100 664 7p1025 100 927 2p927 190 664 56p874 190 666 666p1743 190 2p927 192p927 190 7p1025 658p1376 664 666 927 666 2p927 658p1376 666 190p1279 294p666 927 932 192p927 927 7p1025 294p666 927 56p874 291p666 927 85p1293 666p1743 927 190p1279 927p1280 932 56p874 658p1376 2p927 56p874 294p666 7p1025 192p927 291p666 7p1025 666p1743 927p1280 85p1293 190p1279 658p1376 ZC(X(511),L(6,7)) passes through these centers:
511, 514, 516, 927Collinear triple