Let ω be a circle and P, Q two distinct points not on ω . Then the radical axes of ω and all the circles through P and Q have a common point. ## Proof: Let ω_1 be any circle through P and Q. Let e_1 be the radical axis of ω , ω_1 . Let $X = PQ \cap e_1$. From X draw tangents XT, XT₁ to ω , ω ₁, resp. Then $$XT_1 = XT$$ and $XT_1^2 = XP \cdot XQ$ (1) Let ω_2 be any other second circle through P and Q. From X draw a tangent XT_2 to ω_2 . Then $XT_2^2 = XP \cdot XQ$ (2). From (1) and (2), $XT = XT_2$. Therefore, X lies on the radical axis of ω and ω_2 . César E. Lozada - October 31, 2023.