

Let ω be a circle and P, Q two distinct points not on ω . Then the radical axes of ω and all the circles through P and Q have a common point.

Proof:

Let ω_1 be any circle through P and Q.

Let e_1 be the radical axis of ω , ω_1 .

Let $X = PQ \cap e_1$.

From X draw tangents XT, XT₁ to ω , ω ₁, resp.

Then
$$XT_1 = XT$$
 and $XT_1^2 = XP \cdot XQ$ (1)

Let ω_2 be any other second circle through P and Q.

From X draw a tangent XT_2 to ω_2 . Then $XT_2^2 = XP \cdot XQ$ (2).

From (1) and (2), $XT = XT_2$.

Therefore, X lies on the radical axis of ω and ω_2 .

César E. Lozada - October 31, 2023.