Theorem. Let $\triangle A_1B_1C_1$ be the cevian triangle of a point P with respect to $\triangle ABC$. Let A_2 be the point, other than A, that circles (ABC) and (AB_1C_1) intersect. Define B_2, C_2 cyclically. Let $A' = BB_2 \cap CC_2$ and define B', C' cyclically. Then:

1. AA', BB', CC' are concurrent.
2. A_2A', B_2B', C_2C' are concurrent.