Theorem. Consider $\triangle ABC$ on the plane with circumcenter O. P is a point on the plane, not lying on the lines OA, OB, OC. Let $\triangle A_1B_1C_1$ be the pedal triangle of a point P with respect to $\triangle ABC$. A_2 is the point, other than A, that circles (ABC) and (AB_1C_1) intersect and define B_2, C_2 cyclically. $A_3 = BB_2 \cap CC_2$ and define B_3, C_3 cyclically. Let $\triangle A_4B_4C_4$ be the circumcevian triangle of P with respect to $\triangle ABC$. Then:

1. $\triangle A_2B_2C_2$ and $\triangle A_4B_4C_4$ are perspective.

2. $\triangle A_3B_3C_3$ and $\triangle A_4B_4C_4$ are perspective.