Theorem. In the plane, consider \(\triangle ABC \) with centroid \(G \) and medial triangle \(\triangle A_0B_0C_0 \). \(\triangle A_1B_1C_1 \) is the pedal triangle of a point \(P \) with respect to \(\triangle ABC \). Let \(A_2, B_2, C_2 \) be respectively the centroid of \(\triangle A_1B_0C_0, \triangle B_1A_0C_0, \triangle C_1A_0B_0 \). Then four points \(G, A_2, B_2, C_2 \) are concyclic.