Theorem. Let $\triangle A_1B_1C_1$ be the circlecevian triangle of a point P with respect to $\triangle ABC$. Let A_2 be the point, other than A, that circles (ABC) and (AB_1C_1) intersect and define B_2, C_2 cyclically. Let $A_3 = BB_2 \cap CC_2, B_3 = CC_2 \cap AA_2, C_3 = AA_2 \cap BB_2$. Then $\triangle A_3B_3C_3$ and $\triangle ABC$ are perspective.