Endo-permutation modules arising from the action of a p-group on a defect zero block

Adam Salminen

(Communicated by G. Malle)

Abstract. Let p be an odd prime and let k be an algebraically closed field of characteristic p. Also, let G be a finite p'-group. By Maschke’s theorem, kG is isomorphic to a product $\prod_{i=1}^{t} \operatorname{End}_k(V_i)$ as a k-algebra. Suppose that a p-subgroup P of $\operatorname{Aut}(G)$ stabilizes $\operatorname{End}_k(V_{i_0})$ for some i_0. Such a V_{i_0} will be an endo-permutation kP-module. Puig showed that the only modules that occur in this way are those whose image is torsion in the Dade group $D(P)$.

If G is any finite group and b is a defect zero block of kG, then $kGb \cong \operatorname{End}_k(L)$ for some L. If kGb is P-stable for some p-subgroup P of $\operatorname{Aut}(G)$ and $\operatorname{Br}_P(b) \neq 0$, then L will again be an endo-permutation kP-module. We show that if $p \neq 5$, then L is torsion in $D(P)$. This result depends on the classification of the finite simple groups.

1 Introduction

Let p be an odd prime, and let k be an algebraically closed field of characteristic p. Suppose that G is a finite p'-group. Then Maschke’s theorem implies that we can write

$$kG \cong \prod_{i=1}^{t} M_{n_i}(k) \cong \prod_{i=1}^{t} \operatorname{End}_k(V_i).$$

Now suppose that P is a p-subgroup of $\operatorname{Aut}(G)$ that stabilizes $\operatorname{End}_k(V_{i_0})$ for some i_0; then V_{i_0} is an endo-permutation kP-module. It is natural to ask which endo-permutation kP-modules arise in this way.

Theorem 1.1 (Puig, [9]). With the above set-up the modules V_i are torsion in the Dade group $D(P)$.

The proof of the above result uses the fact that for every simple p'-group G, $\operatorname{Aut}(G)$ has p-rank 1, and the proof of this latter fact depends on the classification of finite simple groups. If we drop the assumption that G is a p'-group, then Maschke’s theorem no longer applies. Write kG as a product $\prod_{i=1}^{t} B_i$ of indecompos-
able algebras. Each B_i has the form kGb_i for some primitive central idempotent b_i of kG, and both the algebras B_i and the idempotents b_i are called blocks of kG. A block kGb of kG is said to be a defect zero block if $kGb \cong \text{End}_k(V)$ for some k-module V. As above, suppose that $kGb \cong \text{End}_k(V)$ is a defect zero block of kG which is P-stable for some p-subgroup P of $\text{Aut}(G)$. Also assume that $\text{Br}_P(b) \neq 0$; then V is an endo-permutation kP-module. In this paper, we investigate which endo-permutation kP-modules appear in this way. It is expected that V is always torsion in $D(P)$. In this paper we show this is true for $p \geq 5$. Our first result is a consequence of a result of Carlson and Thévenaz [2].

Theorem 1.2. Let p be odd. Assume the set-up and notation of the previous paragraph. If a non-torsion module V appears for some G, P and b, then we can find some G, P, V and b with $P \cong C_p \times C_p$ and V non-torsion in $D(P)$.

Now that we have reduced to $P \cong C_p \times C_p$, we can apply the reduction results of [10], which depend on the classification of the finite simple groups. These results allow us to reduce to the cases when G is a central extension of $\text{PSL}_{n+1}(q)$, $\text{PSU}_{n+1}(q)$, or $D_4(q)$ with $p = 3$. A recent result of Kessar [6] takes care of the first two cases. So we are left with a single open case for $p = 3$. In particular we have the following.

Theorem 1.3. Suppose that G is a finite group and $kGb \cong \text{End}_k(V)$ is a defect zero block of kG which is P-stable for some p-subgroup P of $\text{Aut}(G)$. Also assume that $\text{Br}_P(b) \neq 0$. If $p \geq 5$, then V is torsion in $D(P)$. In particular, V is self-dual.

The above result is a special case of the conjecture on the finiteness of the number of source algebra equivalence classes of nilpotent blocks, with defect group P, of finite groups for a fixed p-group P. A proof of this conjecture has been announced by Puig.

This paper is organized as follows. Section 2 recalls definitions and basic results on blocks and endo-permutation modules. Section 3 provides a proof of Theorem 1.2. Section 4 briefly recalls the results of [10] and contains a proof of Theorem 1.3.

2 Notation and preliminaries

Fix a prime p and an algebraically closed field k of characteristic p. Let G be a finite group, and let b be a block of kG. For a p-subgroup P of G, the *Brauer homomorphism* $\text{Br}_P: (kG)^P \to kC_G(P)$ is defined by $\sum_{x \in G} \lambda_{x\cdot x} \mapsto \sum_{x \in C_G(P)} \lambda_{x\cdot x}$. It is easy to check that this map is a homomorphism. A defect group of a block b is defined to be a maximal p-subgroup P of G such that $\text{Br}_P(b) \neq 0$. It is well known that any two defect groups are conjugate. A block is said to be a defect zero block if 1 is a defect group. It is also well known that b is a defect zero block if and only if $kGb \cong \text{End}_k(L)$ for some k-module L.

We now recall the definitions and some facts about endo-permutation modules and the Dade group. For a more detailed discussion see [3] and [4] or [11]. Recall that if V is a kG-module, then the dual of $V^* = \text{Hom}_k(V, k)$ is also a kG-module via the action $g \cdot \alpha(m) = \alpha(g^{-1}m)$ for $\alpha \in V^*$, $g \in G$ and $m \in V$. A kG-module V is a permutation module if it has a G-stable k-basis.
Definition 2.1 (Dade). Let \(P \) be a \(p \)-group. A \(kP \)-module \(V \) is said to be an endo-permutation module if \(\text{End}_k(V) \cong V \otimes V^* \) is a permutation \(kP \)-module.

The endo-permutation \(kP \)-modules which usually show up in the representation theory of finite groups are those which have a summand with vertex \(P \). Such endo-permutation modules are said to be capped. Dade showed that \(V \) is capped if and only if \(k \) is a summand of \(\text{End}_k(V) \). We will follow the suggestion of Thévenaz in [11] and use ‘endo-permutation’ to mean ‘capped endo-permutation’ unless stated otherwise.

If \(V \) is an endo-permutation \(kP \)-module, then any two summands of vertex \(P \) are isomorphic. Such a summand is called a cap of \(V \). Two endo-permutation \(kP \)-modules \(V \) and \(W \) are said to be equivalent if they have isomorphic caps. It is easy to see that this is an equivalence relation. We denote the class of an endo-permutation module \(V \) by \([V]_C \). The Dade group of a finite \(p \)-group \(P \), denoted by \(D(P) \), is the set of these equivalence relations with the group operation induced by the tensor product, that is, \([V] + [W] = [V \otimes W]\). The fact that this operation is well defined is the content of the following result.

Theorem 2.2 (Dade). Let \(p \) be odd, and let \(P \) be a finite \(p \)-group. If \(V \) and \(W \) are endo-permutation \(kP \)-modules, then \(V \otimes W \) is an endo-permutation \(kP \)-module. Moreover, the cap of \(V \otimes W \) is isomorphic to a summand of \(V_0 \otimes W_0 \) where \(V_0 \) and \(W_0 \) are caps of \(V \) and \(W \) respectively.

If \(V \) is a \(kP \)-module the Brauer quotient is defined by

\[
V(P) = V^P / \left(\sum_{Q < P} \text{Tr}_Q^P (V_Q) \right).
\]

Suppose that \(kGb \cong \text{End}_k(V) \) is a defect zero block and that \(P \) is a \(p \)-group that acts on \(kGb \). By [12, Corollary 21.4], \(V \) will inherit an action of \(P \), and \(V(P) \neq 0 \) if and only if \(\text{Br}_P(b) \neq 0 \). The following result which follows from Higman’s criterion is contained in [11, Lemma 2.2].

Lemma 2.3. Let \(V \) be an endo-permutation \(kP \)-module (not necessarily capped). The following are equivalent:

(i) \(V \) is capped;

(ii) the Brauer quotient \((\text{End}_k(V))(P) \) is non-zero.

Theorem 1.2 will be a consequence of the following result.

Theorem 2.4 (Carlson-Thévenaz [2, (13.1)]). Let \(p \) be odd, and let \(P \) be a finite \(p \)-group. The map

\[
\prod_{R/Q} \text{Defres}_R^P \circ D(P) : D(P) \to \prod_{R/Q} D(R/Q)
\]
is injective, where \(R/Q \) runs over the set of all sections of \(P \) that are cyclic of order \(p \) or elementary abelian of rank 2.

The Defres maps are the composites of the ordinary restriction maps with the deflation maps, which we now describe. Let \(V \) be an endo-permutation \(kP \)-module. If \(Q \) is a normal subgroup of \(P \), then it is easy to see that \(\text{End}_k(V)^Q \cong \text{End}_k(V) \) and that \(\text{End}_k(V)(Q) \) and \(\text{End}_k(V)(Q) \) are acted on naturally by \(P/Q \). By [3, Theorem 4.15] we have \(\text{End}_k(V)(Q) \cong \text{End}_k(V_Q) \) for a unique endo-permutation \(k(P/Q) \)-module \(V_Q \). In [3], Dade also showed that \(D(C_p) = C_2 \) for odd \(p \). Combining this fact with Theorem 2.4, we have the following. If an endo-permutation \(kP \)-module \(V \) has a non-torsion image \(\frac{V}{C_3} \) in \(D(P) \), then there must be a section \(R/Q \) of \(P \) such that the image of \(\text{Defres}_{P/Q}(V) \) is non-torsion in \(D(R/Q) \) and \(R/Q \cong C_p \times C_p \). Another consequence of Theorem 2.4 is that if \(p \) is odd then any torsion element of \(D(P) \) has order 2. It is also known that \([V] = [V^*] \) for any \([V] \in D(P) \). Therefore \([V] \) is torsion in \(D(P) \) if and only if \(V \) is self-dual.

3 Proof of Theorem 1.2

In this section, we prove Theorem 1.2. Let \(G \) be a finite group. Suppose that \(b \) is a defect zero block. So \(kGb \cong \text{End}_k(V) \) for some \(k \)-module \(V \). Further suppose that there is a \(p \)-group \(P \leq \text{Aut}(G) \) such that \(b \) is \(P \)-stable. Then [12, Lemma 28.1] shows that \(V \) is a \(P \)-module. The group algebra \(kG \) is a \(P \)-permutation module under the action of \(P \). So the summand \(kGb \) of \(kG \) is also a permutation module by [3, (1.5)]. Therefore \(V \) is a (not necessarily capped) endo-permutation \(kP \)-module. If we also assume that \(\text{End}_k(V)(P) \neq 0 \), then \(V \) will be a capped endo-permutation module by Lemma 2.3.

We need the following result.

Lemma 3.1. Let \(p \) be odd. Suppose that \(H \) is a finite group, and that \(kH \) has a defect zero block \(kHc \cong \text{End}_k(V) \) which is stable under an action of \(Q \cong C_p \times C_p \) on \(H \) such that the \(V \) is non-torsion in \(D(Q) \) under this action. Then the action of \(Q \) on \(H \) is faithful.

Proof. Suppose that \(Q \) does not act faithfully on \(H \). Let \(R \leq Q \) be a subgroup which acts trivially on \(H \). Then \(R \) clearly centralizes \(c \) and will therefore act trivially on \(V \) and on the dual \(V^* \) of \(V \).

Since \(Q/R \) is a cyclic group, \(V \) is isomorphic to \(V^* \) as a \(kQ/R \)-modules. But this implies that \(V \) and \(V^* \) are isomorphic as \(kQ \)-modules, and self-dual \(Q \)-modules are torsion in \(D(Q) \) from [2]. Therefore the action of \(Q \) on \(H \) must be faithful. \(\Box \)

We can now prove Theorem 1.2 which we restate for convenience.

Theorem 3.2. Let \(p \) be odd. Suppose that there exist a finite group \(G \) and a defect zero block \(kGb \cong \text{End}_k(V) \) which is \(P \)-stable for some \(p \)-subgroup \(P \) of \(\text{Aut}(G) \). Also sup-
pose that \((\text{End}_k(V))(P) \neq 0\) and the image of \(V\) in \(D(P)\) is non-torsion. Then there exist \(G, b, P\) and \(V\) as above with \(P \cong C_p \times C_p\).

Proof. Assume that \(G, b, P\) and \(V\) are as above with \([V]\) non-torsion in \(D(P)\) and

\[
(\text{End}_k(V))(P) \cong kGb(P) \neq 0.
\]

As we mentioned above, there must be \(Q \subseteq R \leq P\) such that the image of \(\text{Defres}_{R/Q}(V)\) is non-torsion in \(D(R/Q)\) and \(R/Q \cong C_p \times C_p\). In the paragraph after Theorem 2.4, we noted that \(\text{Defres}_{R/Q}(V) \cong V_Q\) for some endo-permutation \(R/Q\)-module \(V_Q\).

Let \(G = C_G(Q)\) and \(\hat{b} = \text{Br}_Q(b)\). Then \(kGb(Q) = k\hat{G}\hat{b} \cong \text{End}_k(V_Q)\). So \(\hat{b}\) is a defect zero block of \(\hat{G}\). The conjugation action of \(R/Q\) on \(\hat{G}\) induces the same action on \(k\hat{G}\hat{b}\) as the one induced by \(R/Q\) on \(V_Q\). Since \(V_Q\) is non-torsion in \(D(R/Q)\) this map must be injective by Lemma 3.1. This completes the proof of the theorem. \(\square\)

4 Proof of Theorem 1.3

Assume that we can find a finite group \(G\) and a defect zero block \(kGb \cong \text{End}_k(V)\) of \(kG\) which is \(P\)-stable for a \(p\)-subgroup \(P\) of \(\text{Aut}(G)\). Also suppose that \(\text{Br}_P(b) \neq 0\). If \(V\) is not torsion in \(D(P)\), then the results of the previous section allow us to assume that \(P \cong C_p \times C_p\). This situation was considered in [10]. We recall two results from this paper.

Theorem 4.1 ([10]). Suppose that \(G\) is a finite group such that \(C_p \times C_p \cong P \subseteq \text{Aut}(G)\), and that \(b\) is a \(P\)-stable defect zero block of \(kG\) such that \(\text{Br}_P(b) \neq 0\). Also, suppose that the source \(V\) of a simple \(k(G \rtimes P)b\)-module \(M\) is a finitely generated non-torsion endo-permutation \(kP\)-module. Then we can find \(G, b, V\) with the above properties where \(G\) is a central \(p'\)-extension of a simple group.

A detailed proof of this result can be found in [10]. The main idea is to let \(N\) be a normal subgroup of \(G\) which is maximal with respect to being \(P\)-stable. We can find a \(P\)-stable block \(d\) of \(kN\) such that \(bd \neq 0\). Applying Puig’s algebra-theoretic version of Fong reduction reduces the problem to consideration of a central \(p'\)-extension of \(G/N\). Our choice of \(N\) implies that \(G/N\) is a minimal normal subgroup of \(G/N \rtimes P\). Therefore, \(G/N\) is a direct product of isomorphic simple groups. The direct product can be eliminated using the fact, which can be found in [1], that \(\text{Ten}_P^0(\text{End}_k(M)) \cong \text{End}_k(\text{Ten}_P^0(M))\).

Now assume that \(G\) is a central \(p'\)-extension of a simple group. If \(b\) is a defect zero block of \(G\), then the assumption that \(\text{Br}_P(b) \neq 0\) implies that \(P \cap \text{Inn}(G) = 1\), so that \(P\) can be detected in \(\text{Out}(G)\). Since \(|\text{Out}(G)| \leq 2\) for all sporadic groups, they cannot provide examples in the above theorem. Moreover \(|\text{Out}(G)| = 2\) for all alternating groups except \(A_6\) and \(|\text{Out}(A_6)| = 4\), and so these groups fail to provide examples. This leaves the finite simple groups of Lie type. Looking at the structure of \(\text{Out}(G)\) reduces the problem to \(\text{PSL}_n(q), \text{PSU}_n(q)\) (with the restrictions listed below) or \(p = 3\).
and $D_4(p)$ (with the restrictions listed below), $E_6(q)$ or $^2E_6(q)$. This only involves looking at the structure of $\text{Out}(G)$. In fact we have the more restrictive condition that $P \cap \text{Inn}(G) = 1$ with $P \subseteq \text{Aut}(G)$, and from this the groups E_6 and 2E_6 can also be eliminated, and we have the following result whose detailed proof can be found in [10].

Theorem 4.2 ([10]). Assume that p is odd. Suppose that $P = C_p \times C_p \leq \text{Aut}(G)$ where G is a finite group. Suppose that b is a P-stable defect zero block of kG such that $\text{Br}_P(b) \neq 0$. Finally, suppose that the source V of a simple $k(G \rtimes P)$-b-module M is a finitely generated endo-permutation kP-module whose image is non-torsion in $D(P)$. Then we can find G, b, V such that one of the following holds.

(i) (a) G is a central p'-extension of $A_n(q) = \text{PSL}_{n+1}(q)$ with $p \mid (n+1,q-1,f)$ where $q = r^f$; or

(b) G is a central p'-extension of $^2A_n(q) = \text{PSU}_{n+1}(q)$ with $p \mid (n+1,q+1,f)$ where $q = r^f$; or

(ii) $p = 3$, $q = r^f$ and G is a central extension of $D_4(q)$ with $3 \mid f$.

The following result of Kessar takes care of the cases of A and 2A above.

Theorem 4.3 ([6, Theorem 1.2]). Let p be odd, and let H be a finite group with a normal subgroup N such that H/N is elementary abelian of order p^2. Suppose that N is a quasi-simple group, with $Z(N)$ a p'-group and such that $N/Z(N)$ is isomorphic to $\text{PSL}_n(q)$ or to $\text{PSU}_n(q)$ where q is a prime power that is not divisible by p. Suppose that b is an H-stable block of kN which is of defect zero. Let U be a simple kHb-module and let (P, W) be a vertex source pair for U. Then $[W]$ has order at most 2 in $D(P)$.

We can now prove the following result, stated earlier as Theorem 1.3.

Theorem 4.4. Let $p > 3$ be a prime. Suppose that G is a finite group and

$$kGb \cong \text{End}_k(V)$$

is a defect zero block of kG which is P-stable for some p-subgroup P of $\text{Aut}(G)$. Also assume that $\text{Br}_P(b) \neq 0$. Then V is torsion in $D(P)$.

Proof. Let G, b, V and P be as above. Theorem 1.2 allows us to assume that $P \cong C_p \times C_p$. Then applying Theorem 4.2 we may assume that G is a central p'-extension of $\text{PSL}_n(q)$ or $\text{PSU}_n(q)$ for some prime power q which is not divisible by p. Letting $N = G$ and $H = G \rtimes P$ we can apply Theorem 4.3 and conclude that V must be torsion.

Endo-permutation modules arising from the action of a p-group

Received 11 April, 2008; revised 30 April, 2008

Adam Salminen, Department of Mathematics, University of Evansville, 1800 Lincoln Avenue, Evansville, IN 47722, U.S.A.
E-mail: as341@evansville.edu