Population Genetics

How Much Genetic Variation exists in Natural Populations?

Phenotypic Variation

If we closely examine the individuals of a population, there is almost always **PHENOTYPIC VARIATION** - that is, *variation between individuals in their structure*.

Some of the phenotypic variation in a population results from **ENVIRONMENTAL VARIATION** - *differences in phenotype can result from differences in environmental conditions*.

Genetic Variation

However, much of the phenotypic variation within a population results from **GENETIC VARIATION** - *that is, differences between individuals are often a result of differences in the alleles possessed by these individuals*.

Evidence for Genetic Variation among Plant Populations (Molles p. 193)

Turesson attempted to address whether the differences among plant **ecotypes** were: 1) responses to different environmental conditions or 2) genetic differences that emerged as a result of exposure to different environments

In one set of experiments he harvested seeds of _Campanula rotundifolia_ from 9 different geographic localities in Europe and grew them in plots in a common garden. The results (Figure 8.8., p. 194 Molles) showed that the differences among plant ecotypes persisted even when grown in the same environmental conditions. Thus, supporting Turesson’s hypothesis of genetic differences among populations.

These experiments were taken one step further by _Clausen_ and his associates, working with Grew clones of several ecotypes of the flowering plant _Potentilla glandulosa_ in 3 different experimental gardens: 30 m, 1400 m, and 3000m elevations.
Results are indicated in Figure 8.10 (p. 195 of Molles)
First, they did observe genetic differences among ecotypes; cloned plants from different elevations expressed different heights when grown in the same garden
Second, they apparently revealed evidence of adaptation by ecotypes to local environmental conditions
Each plant clone responded differently to the 3 environmental garden types

Quantifying Genetic Variation

Q. How do we quantify genetic variation?

Three lines of evidenced indicated that natural populations possess a great deal of genetic variation

1. Inbreeding Experiments
As a consequence of these experiments, recessive genes become expressed; before they were hidden

2. Artificial Selection Experiments
In artificial selection the individuals chosen to breed the next generation are those that exhibit the greatest expression of the desired characteristic
If over the generations, the selected population changes in the direction of the selection, it is clear that the original organisms had genetic variation with respect to the selected trait

3. Molecular Genetics
The most convincing evidence that populations possess a large amount of genetic variation came from discoveries in molecular genetics
For example, if we examine a protein and find that it is variable, we can infer that the gene coding for this protein also is variable
We can then measure how variable it is (e.g. how many variant forms exist) and in what frequencies
The Technique of Gel Electrophoresis

Information about the genetic variation of populations can also be obtained by studying the allozymes (genetic variants of proteins coded for by different alleles at a locus) of populations.

Tissue samples for individuals are homogenized in order to release enzymes and other proteins from the cells.

Homogenate supernatant is then placed in a gel and the gel is subjected to an electric current.

Each protein in the gel migrates in a *direction* and at a *rate* that depends on the protein’s net electric charge and molecular size.

The gel is removed from the electric field it is treated with a chemical solution containing a substrate that is specific for the enzyme to be assayed, and a salt that reacts with the product of the reaction catalyzed by the enzyme.

\[
\text{enzyme} \\
\text{Substrate} \rightarrow \text{product + salt} \rightarrow \text{colored spot}
\]

The genotype at the gene locus coding for the enzyme can be inferred for each individual in the sample from the number and positions of the spots observed in the gels - the banding patterns observed:

\[
\begin{align*}
100/100 &= 2 \\
50/50 &= 2 \\
100/50 &= 2
\end{align*}
\]
There is a relationship between **quaternary structure** of the enzyme and the allozyme phenotype.

For example, if the quaternary structure is a dimer, 2 subunits make the functional enzyme.

Subunit assembly is random, therefore, in an individual heterozygous at a dimeric enzyme for slow (S) and fast (F) alleles, three configurations will be seen (SS, SF, and FF).

Because subdivision is random, an SF heterodimer will be 2X more abundant than a homodimer (SS or FF).

Thus, there will be 3 bands with a darker center band.

DNA Fingerprinting

DNA fingerprinting allows you to determine genetic variation among closely related individuals based on the specific kinds of bands that are produced on gels.

There are duplicated noncoding regions (or repetitive regions) of the DNA referred to as mini- and microsatellite sequences.

This DNA is similar among closely related organisms – that is, there is a core sequence of nucleotides shared among closely related individuals.

However, each individual also has a rather unique sequence - these are highly variable regions and they experience random mutations through time giving.

The Process of DNA Fingerprinting (see diagram below)

a. DNA is isolated from cells and cleaved at specific sites with an endonuclease.

b. The sample containing DNA fragments from each individual is placed in an electrophoretic gel where the fragments are separated by size and charge, producing a streak of fragments of different sizes in each lane of the gel.

c. The DNA fragments are then denatured into single-stranded segments and transferred to a nitrocellulose membrane by a Southern blot transfer.

d. The membrane is then washed with a solution containing single-stranded, radioactively labeled probes for the minisatellite DNA. The probe hybridizes with homologous fragments on the filter.

e. A piece of X-ray film is placed over the membrane and exposed. Each labeled hybrid fragment exposes the film and upon development shows up as a band. The pattern of bands comprises the individuals unique DNA fingerprint.
Summary of DNA Fingerprinting

a. DNA sample from one individual

b. Sample placed in gel

DNA fragments migrate according to size and charge

Dashed line indicates migration of DNA fragments

Smaller highly charged fragments

Larger less charged fragments

Southern transfer of DNA to membrane

D. Membrane is washed with solution containing radioactively labeled DNA probe

E. Autoradiograph shows where probe is bound to DNA fragments
Putting Molecular Data Quantifiable Terms

Polymorphism and Heterozygosity

Polymorphism (P) - the proportion of polymorphic (e.g. variable) loci in a population

We can also determine the average polymorphism by examining the degree of polymorphism in 3 or more populations

<table>
<thead>
<tr>
<th>Number of Loci</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polymorphic</td>
</tr>
<tr>
<td>Population</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

Average: 0.525

The amount of polymorphism is a useful measure of variation for certain purposes, but it suffers from 2 defects: arbitrariness and imprecision

1. Arbitrary because the number of variable loci observed depends on how many individuals are examined

So, in order to avoid the effect of sample size it is necessary to adopt a *criterion of polymorphism*

One criterion often used is that a locus be considered polymorphic only when the most common allele has a frequency of no greater than 0.95 (or rare allele freq no less than 0.05)
2. Imprecise because a slightly polymorphic locus counts as much as a very polymorphic one does
Assume at a certain locus there are 2 alleles with freq of 0.95 and 0.05, while at another locus there are 20 alleles each with a freq of 0.05
More genetic variation exists at the second locus, yet both will weight equally under the 0.95 criterion of polymorphism

Heterozygosity

Heterozygosity - the average frequency of heterozygous individuals per locus of a population

Calculations

Obtain the freq of heterozygous individuals at each locus and then average these frequencies over all loci

![Table 2.8](image)

<table>
<thead>
<tr>
<th>Locus</th>
<th>Heterozygotes</th>
<th>Total</th>
<th>Heterozygosity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
<td>100</td>
<td>25/100 = 0.25</td>
</tr>
<tr>
<td>2</td>
<td>42</td>
<td>100</td>
<td>42/100 = 0.42</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>100</td>
<td>9/100 = 0.09</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>100</td>
<td>0/100 = 0</td>
</tr>
</tbody>
</table>

Average: 0.19

Heterozygosity is a good measure of variation because it estimates the probability that 2 alleles taken at random from the population for a locus are different
Genetic Variation in Natural Populations

Electrophoretic studies indicate that a considerable amount of genetic variation exists in most natural populations:

<table>
<thead>
<tr>
<th></th>
<th>%P</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plants</td>
<td>0.26</td>
<td>0.05</td>
</tr>
<tr>
<td>Invertebrates</td>
<td>0.47</td>
<td>0.13</td>
</tr>
<tr>
<td>Vertebrates</td>
<td>0.25</td>
<td>0.06</td>
</tr>
<tr>
<td>Humans</td>
<td>0.30</td>
<td>0.067</td>
</tr>
</tbody>
</table>

Genotypic and Allelic Frequencies

Genotype frequency - the proportion of the population that occurs in each genotype
Allele frequency - the relative proportions of different alleles in a population for a particular gene

Genotype frequency

An electrophoretic examination of the ADH enzyme in a population of field mice reveal 2 alleles for this particular locus: ADH100 and ADH50
Examine 100 individuals and find: 50 ADH100/ADH100, 25 ADH100/ADH50, 25 ADH50/ADH50

<table>
<thead>
<tr>
<th>Genotype</th>
<th># individuals</th>
<th>Genotype frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADH100/ADH100</td>
<td>50</td>
<td>0.50</td>
</tr>
<tr>
<td>ADH100/ADH50</td>
<td>25</td>
<td>0.25</td>
</tr>
<tr>
<td>ADH50/ADH50</td>
<td>25</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Note: freq ADH100/ADH100 + freq ADH100/ADH50 + freq ADH50/ADH50 = 1
Allele frequency

frequency of allele = freq of homozygous individuals + 1/2 the freq of the heterozygote for the allele

Therefore, freq of ADH^{100} allele = 0.50 + 1/2 (0.25) = 0.625

ADH^{50} allele = 0.25 + 1/2 (0.25) = 0.375

\[
1.00 = ADH^{100} + ADH^{50}
\]

Q. How reliable are these estimates?

Two conditions are required for making good estimates of genetic variation:

1. That a random sample of all gene loci is obtained, otherwise, the estimates would be biased
2. That all alleles be detected at every locus

Hardy-Weinberg: Allele Frequencies in the Absence of Evolutionary Change

Q: How do we measure rates of change in the genetic composition of populations?
This is where we begin our discussion of **THEORETICAL POPULATION GENETICS**.

The theory of population genetics is the most fundamental body of theory in evolutionary biology because it provides precise mathematical **predictions**, which can then be **tested**, about how various factors will affect allele frequencies within populations.

How can we predict what allele frequencies will be in the absence of evolutionary change?
This question is important for two reasons:

1. If we want to measure evolution (changes in the frequency of alleles), we need a baseline, or what’s called a **NULL HYPOTHESIS** -
2. Before we can construct models that incorporate various types of evolutionary change, we need a model that describes the behavior of alleles in the absence of evolution.
In 1908, the mathematician G. H. HARDY and the geneticist T. WEINBERG, independently published what is now the HARDY-WEINBERG PRINCIPLE (LAW).

The Hardy-Weinberg Principle provides a mathematical description of the behavior of alleles in a population in the absence of evolution.

The H-W principle states the following: for a large population of diploid organisms in which mating is random and no evolutionary processes are occurring (e.g. in the absence of evolutionary processes such as mutation, migration, drift, selection), allele and genotype frequencies will reach a stable equilibrium after one generation and do not change thereafter. Or, in the absence of evolution, allele and genotype frequencies for a population will stabilize after one generation and remain constant in subsequent generations. This stable state is called the Hardy-Weinberg Equilibrium.

Overall, there are 2 steps in calculating a H-W equilibrium.

1. The first step is to calculate the allele frequencies in the current generation from the genotype frequencies

<table>
<thead>
<tr>
<th>genotype</th>
<th>no. indvs.</th>
<th>genotype frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADH(^{100}) / ADH(^{100})</td>
<td>60</td>
<td>0.60</td>
</tr>
<tr>
<td>ADH(^{100}) / ADH(^{50})</td>
<td>20</td>
<td>0.20</td>
</tr>
<tr>
<td>ADH(^{50}) / ADH(^{50})</td>
<td>20</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1.00</td>
</tr>
</tbody>
</table>

freq of ADH\(^{100}\) (or p) allele = 0.60 + 1/2 (0.20) = 0.70

freq of ADH\(^{100}\) (or q) allele = 0.20 + 1/2 (0.20) = \(\frac{0.30}{1.00} \)

Thus we have the genotype and allele frequencies for our population in generation 1.

Note:
p + q = 1
This is always true for 2 alleles at one locus
Once you calculate p, just subtract 1 from it to get q (1 - p = q)
2. Now that we know the genotype and allele frequencies for our population in generation 1, the second step in determining a H-W equilibrium is to calculate the frequencies of genotypes among the progeny of this population after one round of random mating.

E.g., if this population were to mate what would be the genotype frequencies of the progeny? This is important because we want to see if there has been a change from generation to generation.

Let’s first look at the possible genotypes of the offspring (2nd generation) in our population.

Possible mating types and offspring genotypes:

<table>
<thead>
<tr>
<th>Possible Mating Types</th>
<th>ADH^{100} / ADH^{100}</th>
<th>ADH^{100} / ADH^{50}</th>
<th>ADH^{50} / ADH^{50}</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADH^{100} / ADH^{100}</td>
<td>ADH^{100} / ADH^{100}</td>
<td>ADH^{100} / ADH^{100}</td>
<td>ADH^{100} / ADH^{50}</td>
</tr>
<tr>
<td>ADH^{100} / ADH^{50}</td>
<td>ADH^{100} / ADH^{50}</td>
<td>ADH^{100} / ADH^{50}</td>
<td>ADH^{100} / ADH^{50}</td>
</tr>
<tr>
<td>ADH^{50} / ADH^{50}</td>
<td>ADH^{100} / ADH^{50}</td>
<td>ADH^{100} / ADH^{50}</td>
<td>ADH^{50} / ADH^{50}</td>
</tr>
</tbody>
</table>

There are 9 possible mating types:
Each of these mating types produces offspring with a characteristic ratio of genotype.
To determine the genotype frequencies of the offspring in our population we need 2 pieces of information: the probability of each mating type and the number offspring of each genotype produced by each mating type.

We could perform our calculations this way or take advantage of a shortcut. The short cut we’ll use makes use of the fact that diploid organisms produce haploid gametes.

Individuals from our population can produce two types of gametes: they can produce ADH^{100} gametes or they can produce ADH^{50} gametes.

The frequency of each type of allele in the gametes is the same as the frequency of each type of allele in the parental population.
Recall the frequency of the ADH100 allele in our population is 0.7, so the frequency of ADH100 gametes is also 0.7.
Similarly, the frequency of the ADH50 allele in our population is 0.3, so the frequency of ADH100 gametes is also 0.3.

The probability of a ADH100 gamete from a male uniting with a ADH100 gamete from a female is simply the frequency of ADH100 male gametes times the frequency of ADH100 female gametes
This is $p \times p$, or p^2.

Similarly, the probability of a ADH50 gamete from a male uniting with a ADH50 gamete from a female is simply the frequency of ADH50 male gametes times the frequency of ADH50 female gametes
This is $q \times q$, or q^2.

Finally, a ADH100 and a ADH50 gamete can come together in two ways:
1. a ADH100 from a male and a ADH50 from a female
2. a ADH50 from a male and a ADH100 from a female.

The probability of a ADH100 male gamete uniting with a ADH50 female gamete is $p \times q$, and the probability of a ADH50 male gamete uniting with a ADH100 female gamete is also $q \times p$.
When a ADH100 and a ADH50 gamete unite this produces ADH100/ADH50 offspring
So the frequency of ADH100/ADH50 offspring is: $(p \times q) + (q \times p)$, or $2pq$.

So, the genotype frequencies in the offspring (2nd gen.) is given by the binomial expansion:

$$(p + q)^2 = p^2 + 2pq + q^2 = 1.$$
Gamete frequencies and offspring genotype frequencies:

<table>
<thead>
<tr>
<th></th>
<th>p (ADH$_{100}^+$)</th>
<th>q (ADH$_{50}^-$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>p (ADH$_{100}^+$)</td>
<td>p^2 (ADH${100}^+$/ADH${100}^+$)</td>
<td>pq (ADH${100}^+$/ADH${50}^-$)</td>
</tr>
<tr>
<td>q (ADH$_{50}^-$)</td>
<td>qp (ADH${50}^-$/ADH${100}^+$)</td>
<td>q^2 (ADH${50}^-$/ADH${50}^-$)</td>
</tr>
</tbody>
</table>

So, the frequency of genotypes in second generation is reflected in frequency of alleles in the male and female gametes of the first generation.

Back again to our hypothetical population. Recall that the frequency of R was 0.7 and that the frequency of r was 0.3. The genotype frequencies of the offspring are then:

\[
p^2 = \text{frequency of } \text{ADH}_{100}^+/\text{ADH}_{100}^+ = (0.7)^2 = 0.49
\]
\[
2pq = \text{frequency of } \text{ADH}_{100}^+/\text{ADH}_{50}^- = 2(0.7)(0.3) = 0.42
\]
\[
q^2 = \text{frequency of } \text{ADH}_{50}^-/\text{ADH}_{50}^- = (0.3)^2 = 0.09
\]

Note that the genotype frequencies have changed from those present in the first generation, but that the allele frequencies have remained stable.

For evolution to occur there must be a change in allele frequencies. Thus, there has been no evolution.

However, there has been a change in genotype frequency as a result of segregation of alleles and recombination. These new genotype frequencies represent an EQUILIBRIUM. More specifically, these genotype frequencies represent the H-W equilibrium. All subsequent generations will have the same genotype frequencies.
Testing for Fit - HW Equilibrium

Use the MN blood group as an example

Observed

<table>
<thead>
<tr>
<th>Genotype</th>
<th># individuals</th>
<th>frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>114</td>
<td>0.57</td>
</tr>
<tr>
<td>MN</td>
<td>76</td>
<td>0.38</td>
</tr>
<tr>
<td>NN</td>
<td>10</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Expected values based on HW Equilibrium

1. Calculate the freq of M and N

\[
f_M = 0.57 + \frac{1}{2} (0.38) = 0.76 \\
f_N = 0.05 + \frac{1}{2} (0.38) = 0.24
\]

2. Calculate the expected genotype frequencies

\[
MM = p^2 = (0.76)^2 = 0.58 \\
MN = 2pq = 2(0.76)(0.24) = 0.36 \\
NN = q^2 = (0.24)^2 = 0.06
\]

3. Expected genotypes (number of individuals)

\[
MM = 0.58 \times 200 = 116 \\
MN = 0.36 \times 200 = 72 \\
NN = 0.06 \times 200 = 12
\]
4. Perform a Chi-square (χ^2) analysis

$$\chi^2 = \sum \frac{(O-E)^2}{E} = \frac{(114 - 116)^2}{116} + \frac{(76 - 72)^2}{72} + \frac{(10 - 12)^2}{12}$$

$$= 0.034 + 0.222 + 0.333 = 0.589$$

The Hardy-Weinberg Law for 3 alleles

The H-W model can be easily expanded to take account of three or more alleles at a single locus.

We’ll quickly look at a 3 allele example.

We’ll designate these 3 alleles as A_1, A_2, and A_3 or p, q, and r respectively.

The Table (p. 65 Ayala) demonstrates the equilibrium genotype frequencies for a locus with 3 alleles, with the freq p, q, and r, so that $p + q + r = 1$.

For three alleles the genotype frequencies in the second generation can be determined by the multinomial expansion

$$(p + q + r)^2 = p^2 + 2pq + 2pr + q^2 + 2qr + r^2 = 1.$$

Six genotypes are possible with three alleles:

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>A_1</td>
<td>A_2</td>
<td>A_1</td>
<td>A_3</td>
<td>A_1</td>
</tr>
<tr>
<td>p^2</td>
<td>$2pq$</td>
<td>$2pr$</td>
<td>q^2</td>
<td>$2qr$</td>
<td>r^2</td>
</tr>
</tbody>
</table>

where p is the frequency of A_1, q is the frequency of A_2, and r is the frequency of A_3.

If we assign frequencies to these genotypes in generation 1 you should be able to calculate the genotype frequencies in generation 2, which will be the H-W equilibrium.

Work through this example to make sure you understand how genotype frequencies behave in a 1 gene, 3 allele situation.

Allele frequencies:

- p or $A_1^1 = 0.2 + 1/2(0.1) + 1/2(0.3) = 0.4$
- q or $A_2^2 = 0.1 + 1/2(0.1) + 1/2(0.2) = 0.25$
- r or $A_3^3 = 0.1 + 1/2(0.3) + 1/2(0.2) = 0.35$
A Note About Sex-Linked Genes

For sex-linked loci -- those carried on either the X or Y chromosome, the equilibrium frequencies are attained only gradually.

In the case of sex-linked genes (e.g., on the X), the equilibrium genotype frequencies for the females (homogametic sex) are the same as in the case for autosomal genes. e.g., if the alleles are A and a, with the freq p and q, there will be p^2 AA, 2pq Aa, and q^2 aa females.

Calculation of Allele Frequencies for the POPULATION and Approach to Equilibrium for Sex Linked Genes

In the case of sex linked genes, the homogametic sex carries 2/3 of all genes (on the 2 Xs) in the population. The heterogametic sex carries only 1/3 (on one X).

Assume that there are 2 alleles (A and a or p and q) in a population and that the freq of A is p_f among the females and p_m among the males.

The freq of A in the whole population will be

$$p = \frac{2}{3}p_f + \frac{1}{3}p_m$$

Similarly,

$$q = \frac{2}{3}q_f + \frac{1}{3}q_m$$

where q, q_f, and q_m are the freqs of the a allele in the whole population, in females and males respectively.

When the allele freqs at sex-linked loci are different between males and females, the population does not reach the equilibrium freq in a single generation. Rather, the freq of a given allele among the males in a given generation is the freq of that allele among females in the previous generation. This is because the males inherit their only X chromosome from their mothers.
The freq among the females in a given generation is the average of its freq in the females and the males of the previous generation.

This is because the females inherit one X chromosome from their fathers and the other from their mothers.

Consequently, the distribution of the allele freq of the 2 sexes oscillates, but the difference between the sexes is halved each generation.

The population gradually approaches an equilibrium in which both sexes have the same freq.