Two Essential DNA Polymerases at the Bacterial Replication Fork

Etienne Dervyn,1 Catherine Suski,1 Richard Daniel,2 Claude Bruand,1 Jérôme Chapuis,1 Jeff Errington,2 Laurent Jannière,1 S. Dusko Ehrlich 1*

DNA replication in bacteria is carried out by a multiprotein complex, which is thought to contain only one essential DNA polymerase, specified by the dnaE gene in *Escherichia coli* and the polC gene in *Bacillus subtilis*. *Bacillus subtilis* genome analysis has revealed another DNA polymerase gene, *dnaEBS*, which is homologous to *dnaE*. We show that, in *B. subtilis*, *dnaEBS* is essential for cell viability and for the elongation step of DNA replication, as is *polC*, and we conclude that there are two different essential DNA polymerases at the replication fork of *B. subtilis*, as was previously observed in eukaryotes. *dnaEBS* appears to be involved in the synthesis of the lagging DNA strand and to be associated with the replication factory, which suggests that two different polymerases carry out synthesis of the two DNA strands in *B. subtilis* and in many other bacteria that contain both *polC* and *dnaE* genes.

The paradigm of the bacterial replication fork is that of *Escherichia coli* (1). The fork includes the DNA polymerase III holoenzyme, which contains 10 different subunits. One of the subunits, α, is the catalytic DNA polymerase. There are two α molecules in the holoenzyme, each of which copies a different DNA strand. The holoenzyme from *B. subtilis* is not as well characterized, but was reported to contain a similar number of polypeptides, including a catalytic DNA polymerase subunit (2). The *E. coli* and *B. subtilis* catalytic subunits of the holoenzyme, encoded by *dnaE* and *polC* genes, respectively, are prototypes of two different DNA polymerase classes within the so-called family C, which groups replicate DNA polymerases from eubacteria (3). The *B. subtilis* genome sequence (4) indicated the existence of two other genes encoding family C DNA polymerases, in addition to *polC*, both of the *E. coli* class. One of these genes, *yorl*, is carried on a prophage that can be eliminated from *B. subtilis* (5) and thus is not essential for cell growth. The other gene, referred to here as *dnaEBS*, is encoded chromosomally. Genes homologous to *polC* and *dnaEBS* are present in all fully sequenced genomes of bacteria belonging to the *Bacillus/Clostridium* group and in the genome of a thermophilic microorganism species called *Thermotoga maritima*. *dnaEBS* encodes a protein with DNA polymerase activity (6), as does its homolog from *Streptococcus pyogenes* (7).

The *polC* gene is essential for *B. subtilis* cell growth (8). We show here that *dnaEBS* is also essential. First, inactivation of the gene by recombinational insertion of an insertionally plasmid vector, *pmUTIN* (9), carrying an internal segment of the gene, was not successful. The failure was not due to a polar effect of insertion, which we know because a downstream

References and Notes

15. Single-letter abbreviations for the amino acid residues are as follows: A, Ala; C, Cys; D, Asp; E, Glu; F, Phe; G, Gly; H, His; I, Ile; K, Lys; L, Leu; M, Met; N, Asn; P, Pro; Q, Gin; R, Arg; S, Ser; T, Thr; V, Val; W, Trp; and Y, Tyr.
17. D. Cortes, unpublished data.
18. See supplemental Web information available on Science Online at www.sciencemag.org/cgi/content/full/294/5547/1713/DC1.
24. The siRNA duplexes were 21 base pairs including a 2-base pair deoxynucleotide overhang. The coding strands of the three ATR siRNAs were GGUCACAGAUAUAUGGUCUCAGAUAUGGUGAAGCGCAGGCCGCGCCGAGGUGAAGUU and UGGCUUUUCUUGAGAACAAUACCC. Italicics indicate deoxynucleotides.
26. We thank T. Lee for technical assistance. D.C. is a Fellow of the Jane Coffin Childs Memorial Fund for Research. S.J.E. is an Investigator with the Howard Hughes Medical Institute.

20 August 2001; accepted 9 October 2001
gene (ytsJ; Fig. 1, top) could be inactivated. Similar results were obtained with the polC gene and the downstream ytsS gene (Fig. 1, top). Second, it was possible to place the dnaEBS gene under the control of the Pspac promoter, which is regulated by the LacI repressor and is therefore induced by isopropyl-β-D-thiogalactopyranoside (IPTG), by insertion of pMUTIN carrying a DNA segment overlapping the 5′-end of the gene (Fig. 1, top). However, the resulting strain required IPTG for growth (Fig. 1, middle) (10). Analogous observations were obtained with the polC gene (Fig. 1, middle). Third, we isolated 11 different thermosensitive dnaEBS mutants (10).

To test whether dnaEBS is required for DNA synthesis, we cultivated cells having the gene under Pspac control, with or without IPTG, and monitored incorporation of [3H]-thymidine into acid-insoluble material (11). DNA synthesis was inhibited by depletion of DnaEBS whereas RNA and protein synthesis were not (Fig. 1, bottom). Analogous results were obtained for the polC gene (Fig. 1, bottom). We conclude that because both genes are required for DNA synthesis, their products must not have the same role in this process.

Because PolC is required for elongation (8), it seemed possible that DnaEBS might be required for initiation. Two lines of evidence show that DnaEBS is essential for elongation. First, incorporation of labeled thymidine was arrested immediately upon a shift of a thermosensitive dnaEBS mutant from 30°C to 47°C (Fig. 2, left). Second, the relative abundance of chromosomal markers close to the origin and terminus of replication did not change upon depletion of DnaE or PolC (Fig. 2, right). The origin-to-terminus ratio is between 2:1 and 4:1 in B. subtilis cells during exponential growth (12). We would expect this ratio to remain constant if the elongation of replication were arrested, whereas it would change to 1:1 if the elongation continued but the initiation ceased. We derived two conclusions from these observations. First, deple- tion of the unaltered catalytic subunit of the B. subtilis holoenzyme PolC interferes with elongation of DNA replication. This suggests that the polymerase is frequently lost from and then reloaded onto the progressing replication fork, which might explain the presence of high PolC levels in B. subtilis, revealed by the analysis of cells carrying the protein fused to green fluorescent protein (GFP) (13). Second, depletion of DnaEBS also arrests elongation, indicating that DnaEBS is required for this replication step.

Because both PolC and DnaEBS are required for the elongation step of DNA replication, they must have different roles in this process. We considered that each might be involved in the synthesis of a different DNA strand, and so we used a pAMβ1-derived plasmid to test this possibility. Replication of pAMβ1 is initiated by DNA polymerase I, which progresses for about 200 base pairs, thus generating a D loop intermediate (14). A PriA-dependent primosome then assembles at a specific site present within the single-stranded part of the D loop (15–17) and promotes assembly of the holoenzyme, which completes the replication of the plasmid. This process mimics the restart of the arrested replication fork. pAMβ1 replication is unidirectional, and the leading and lagging strands are thus known (18). A derivative plasmid was introduced into dnaEBS or polC thermosensitive mutants, and the resulting strains were propagated at 37°C, the temperature at which we speculated the polymerase activity might already be affected. Total cell DNA was prepared and hybridized with probes specific for one or the other of the plasmid strands (Fig. 3). As expected, only the double-stranded plasmid DNA was detected in the control wild-type strain. In contrast, in the dnaEBS mutant, the probe complementary to the leading strand revealed, in addition to double-stranded DNA, a fast-migrating DNA form. This form did not hybridize with the probe specific for the other strand, which shows that it was single stranded and corresponded to only one DNA strand. The amount of single-stranded DNA was relatively low (about 3%), possibly for two reasons. One is that inactivation of DnaEBS at 37°C is incomplete, because sufficient polymerase activity had to be maintained to allow cell viability, and thus the uncoupling of the synthesis of the two strands may have taken place in only a fraction of molecules. The other is that the conversion of plasmid single-stranded DNA into a double-stranded form is efficient in B. subtilis. For instance, rolling circle plasmids, in which leading and lagging strand synthesis are fully uncoupled, often accumulate no more than 10% of single-stranded DNA.

Fig. 1. dnaEBS and polC genes are essential for B. subtilis growth and DNA replication. (Top) dnaEBS and polC regions in B. subtilis. DNA segments overlapping the 5′ end of each gene (thick lines) were used for single cross-over integration of pMUTIN2 (depicted as a thin line; boxes, lollipops, and bent arrows indicate genes, transcription terminators, and promoters, respectively; the emR gene derives from plasmid pE194) to obtain the strains in which the dnaE or polC genes are placed under the control of the Pspac promoter and were designated HV5614 and HV5609, respectively. (Middle) Growth of HV5614 (left) and HV5609 (right). Cells were grown in Luria broth (LB) medium supplemented or not supplemented with IPTG (open and solid symbols, respectively) and were diluted periodically to maintain exponential growth. Optical density (squares) and colony-forming units (on IPTG-supplemented plates, triangles) were determined. (Bottom) Macromolecular synthesis in HV5609 and HV5614 grown with or without IPTG, measured as described previously (11). Average values and dispersion from four experiments for DNA (circles) and two experiments for RNA (triangles) or protein (squares) are shown.

Fig. 2. DnaEBS is required for elongation. (Left) The dnaEBS thermosensitive strain EDJ51 and the parental strain 168 were grown at 30°C in the presence of [3H]-thymidine. At the 1-hour point, half of each culture was transferred to 47°C and the [3H]-thymidine incorporation was determined at 30°C and 47°C (open and solid symbols). Squares and circles refer to the mutant (dnaE) and parental (wt) strains, respectively. (Right) Exponentially growing cells having dnaEBS or polC genes under the control of Pspac (HV5614 or HV5609, respectively) were inoculated into the rich LB medium with or without IPTG and grown for 3 hours. Their DNA was extracted, cleaved with EcoRV, and analyzed by Southern blotting with probes from seven different chromosomal regions (positions are indicated in degrees) (10). Gray and white bars refer to samples with and without IPTG.
Fig. 3. Synthesis of plasmid pAM81 lagging strand is deficient in dnaEBS mutant cells. Bacillus subtilis cells harboring plasmid pIL258p1 (20), were grown exponentially at 30°C and shifted to 37°C for 90 min. Their total DNA was prepared and hybridized with probes homologous to the plasmid. +, E, and C refer to the wild-type strain, dnaEBS thermosensitive strain EDJ51, and polC thermosensitive mutant dnaF33, respectively. Probes were double-stranded (ds) plasmid DNA or oligonucleotides complementary to the leading or lagging plasmid DNA strand. Positions of ds and single-stranded (ss) DNA are indicated.

stranded DNA (19). We conclude that synthesis of the lagging strand of the plasmid is affected in the dnaEBS mutant. A different plasmid phenotype was observed in the polC mutant, in which the plasmid copy number was drastically reduced (Fig. 3). A low level of single-stranded plasmid DNA could have therefore escaped detection. However, inefficient synthesis of the leading DNA strand could reduce the plasmid copy number, without any accumulation of single-stranded DNA. A simple explanation of these observations is that the plasmid replication fork normally contains two polymerases, PolC and DnaE, each of which synthesizes one DNA strand. We suggest that an incomplete fork can assemble without DnaE, and progress far enough to allow formation of a full plasmid single-stranded DNA (about 5 kb). Formation of a fork containing only one catalytic polymerase subunit has been reported for E. coli (20).

Is the fork that assembles on plasmid pAM81, in a process that mimics the restart of replication, identical to that which normally replicates the B. subtilis chromosome? An argument in favor of this hypothesis is that, in B. subtilis, the process that leads to holonzyme assembly during restart of the replication fork and initiation of chromosomal replication involves the same four proteins (DnaB, DnaC, DnaD, and DnaT) and only one specific protein [PriA, involved in restart, or DnaA, in initiation at the origin, (16, 17, 21)]. It has been predicted, then, that PolC and DnaE should both be present within the replication factory (13). We therefore examined the localization of the two proteins in the cell, using functional polymerase-GFP protein fusions (10). As shown in Fig. 4, A and B, cells containing a PolC-GFP fusion protein usually exhibited a single discrete focus localized at about mid-cell (lines in Fig. 4A), as reported previously (13). The foci were frequently offset from the central long axis of the cell, which is suggestive of a submembrane localization. In some cells (33%), generally the longer ones, there were two foci, one on either side of mid-cell (arrowheads in Fig. 4A). Under the conditions used, most cells would be expected to have a single ongoing round of DNA replication, with initiation of new rounds occurring just before cell division (22). The localization of a DnaE-GFP fusion was similar to that of a PolC-GFP fusion (Fig. 4, C and D). Most cells showed a single mid-cell focus (lines), with a minor proportion (30%) showing two foci (arrowheads). Again, the foci were often offset from the central long axis of the cell, and the dual foci were spaced out on either side of mid-cell. The low levels of fluorescence associated with the fusions prevented us from testing for colocalization directly. However, the striking similarity of the distributions of the two fusion proteins indicates that the PolC and DnaE proteins colocalize in the replication factory.

The B. subtilis replication fork thus appears to contain two different polymerases. This is similar to the situation regarding the eukaryotic replication fork, which also contains two polymerases—delta and epsilon—which have been proposed to be involved in the synthesis of different DNA strands (23, 24). However, the catalytic domain of the latter polymerase is not essential, indicating that, if missing, it can be replaced by another polymerase, whereas a noncatalytic domain has an essential structural role (25). Further work should clarify whether an analogous situation holds true for B. subtilis. It was recently reported that the E. coli holoenzyme is asymmetric, with distinguishable leading and lagging polymerases (26). The need for the difference between the leading and lagging polymerase may thus be universal, the latter being more amenable to recycling than the former (26); and only the means to achieve the difference may vary, relying either on holoenzyme properties, as in E. coli, or on two different enzymes, as appears to be the case in B. subtilis, phylogenetically related bacteria, and eukaryotes.

Our results do not rule out additional non-essential roles of DnaE in the cell, such as mismatch correction or DNA repair [B. subtilis mutants strongly affected in these processes are viable (27)]. In particular, the B. subtilis genome sequence indicates that DNA polymerase II is absent, and DnaE could possibly fulfill the role this enzyme plays in E. coli (28).

References and Notes

10. See supplementary Web materials available on Science Online at www.sciencemag.org/cgi/content/full/294/5547/1716/DC1 for experimental details (29).
Blocks of Limited Haplootype Diversity Revealed by High-Resolution Scanning of Human Chromosome 21

Global patterns of human DNA sequence variation (haplotypes) defined by common single nucleotide polymorphisms (SNPs) have important implications for identifying disease associations and human traits. We have used high-density oligonucleotide arrays, in combination with somatic cell genetics, to identify a large fraction of all common human chromosome 21 SNPs and to directly observe the haplotype structure defined by these SNPs. This structure reveals blocks of limited haplotype diversity in which more than 80% of a global human sample can typically be characterized by only three common haplotypes.