Hybrid Networks:
Transforming Networks for Social and Textual Analysis into
Teleodynamic and Predictive Mechanisms

Institute for Advanced Topics in the Digital Humanities
University of California, Los Angeles – October 22nd, 2011
Transforming Networks for Social and Textual Analysis into Teleodynamic and Predictive Mechanisms

“Circularity is ... the key to unlocking the mystery of the apparent time-reversed causality of self-organizing and teleological processes.”

Thermodynamics, Morphodynamics and Teleodynamics

• Thermodynamics (*first order emergence*)
• Morphodynamics (*second order emergence*)
• Teleodynamics (*third order emergence*)

These are **NOT** mere philosophical distinctions!

Deacon is an anthropologist at Berkeley with specializations in biological anthropology and neuroscience.

Edited by Philip Clayton & Paul Davies, Oxford 2006.
Thermodynamic Systems

Thermodynamics *(first order emergence)*

- No top-down effects
- Fully reductive – can be fully explained solely in reference to parts
- Causally transparent
- Still admits of property asymmetry between parts and wholes
- Example: Liquidity

T. Deacon, “Emergence: The Hole at the Wheel’s Hub.”
Morphodynamic Systems

Morphodynamics (*second order emergence*)

- Emerges from thermodynamic systems
- Exhibits “simple recurrence” that enables self-organization
- Results from the instability of thermodynamic possibilities and environmental feedback that amplifies a stable pattern – past action restrains the space of future possibilities
- Examples: Bénard cells, snowflakes

T. Deacon, “Emergence: The Hole at the Wheel’s Hub.”
Teleodynamic Systems

Teledynamics *(third order emergence)*

- Emerges from morphodynamic systems
- Exhibits goal-oriented activity thanks to memory and information
- Results from the sampling of influences that select for “self-similarity maintenance”
- Uses a circular architecture of causal self-reference analogous to “attractors”
- Examples: Memory, evolution

T. Deacon, “Emergence: The Hole at the Wheel’s Hub.”
Teleodynamic Systems

Teleodynamics (*third order emergence*)

“Third-order emergent dynamics are ... intrinsically organized around specific absences. This physical disposition to develop toward some target state of order merely by persisting and replicating better than neighboring alternatives is what justifies calling this class of physical processes *teleodynamic*, even if it is not directly and literally a ‘pull’ from the future.” (143)

T. Deacon, “Emergence: The Hole at the Wheel’s Hub.”
Our Definition of ITT (Not Deacon’s)

Information-Theoretic Teleodynamics is an approach to intelligence in both natural and artificial systems that uses the quantity and distribution of information to drive goal-oriented behavior without recourse to semantic content.

Related to Deacon, as we will see, the way in which network activation pushes its way through a trajectory that simultaneously opens before it is particularly interesting, since the trajectory dynamically modifies itself in step with changing network activation and thereby continually sets up possibilities that the network WILL actualize given further stimulus.

These possibilities allow us to conceive of the system as teleodynamic and not merely teleonomic.
Aristotle on Teleology

When an acorn is considered *according to its own internal principles*, including its material (hyle) and form (morphe), if it becomes anything at all, it will be an oak tree and not a pig or a walnut tree.
Aristotle on Teleology

When an acorn is considered *according to its own internal principles*, including its material (hyle) and form (morphe), if it becomes anything at all, it will be an oak tree and not a pig or a walnut tree.

Our Hypothesis

It is possible to reduce semantic information to the quantification of information flow *provided that other conditions respecting the internal structure of an agent and its relations to its environment are met.*
Answers to one of Floridi’s *Open Problems in the Philosophy of Information*:

“Do information or algorithmic theories … provide the necessary conditions for any theory of semantic information?” (p. 31).

“It is … quite difficult to think about the code entirely in abstracto without any kind of circuit.”

- Alan Turing 1947
Our Method

Computational (Digital) Philosophy: The use of computational techniques to aid in the discovery of philosophical insights that might not be easily discovered otherwise.

Philosophical (Cognitive) Modeling: The use of computer models to illuminate epistemic and informational processes that govern behavior and decision making while helping to settle some philosophical questions and raise others.

In other words, philosophical modeling hopes to resituate the interrogative terrain of philosophy so that headway can be made on pressing issues of current philosophical concern.
Dynamic Associative Networks: Circuits Not Software

- DANs vs ANNs
- Hebbian Learning with Circuits

1. Object identification with context sensitivity
2. Comparison of similarity and difference
3. **Automatic document classification**

4. Shape recognition on a grid
5. Association across simulated sense modalities
6. Primary sequential memory
7. Network branching across subnets
8. Eight-bit register control
9. Rudimentary natural S&R language processing
Matthias Scheutz’s Equivalency Proof

Note that the $index_i$ always refers to node i, and $maxact$ refers to the maximum activation a node can have as well as the default activation an input node gets.

$$\text{input}_i(t) = f(t) = \begin{cases} \text{maxact}, & \text{if input applied at time } t \\ \text{act}_i(t - 1) - 1, & \text{if } \text{act}_i(t) > 0 \\ 0, & \text{otherwise} \end{cases}$$

$$\text{netin}_i(t) = \sum_{i < -j} \text{input}_j(t)$$

$$\text{act}_i(t) = \begin{cases} \text{net}_i(t), & \text{net}_i(t) < \text{maxact} \\ \text{maxact}, & \text{otherwise} \end{cases}$$

We can now combine these into the following, where $\text{extin}_i(t) = 0$ if no input is applied, maxact otherwise:

$$\text{act}_i(t) = f\left(\sum f(\text{act}_j(t - 1) - 1 + \text{extin}_j(t))\right)$$
Matthias Scheutz’s Equivalency Proof

So, if the above captures the update equations of the network, then the additional application of \(f \) is not necessary. This is because:

\[
f(f(a) + f(b)) = f(a + b) \quad \text{for} \ a, b > 0
\]

Proof: Suppose \(a, b < \text{maxact} \), then \(f(a) = a \) and \(f(b) = b \) by the definition of \(f \), and thus:

\[
f(f(a) + f(b)) = f(a + b)
\]

Now suppose that one of \(a \) or \(b \) \(\geq \text{maxact} \), let’s say \(a \). Then \(f(a) = \text{maxact} \), again by the definition of \(f \), and thus:

\[
f(f(a) + f(b)) = f(\text{maxact} + f(b)) = \text{maxact} = f(\text{maxact} + b) = f(a + b)
\]

Here we use twice the fact that \(f(\text{maxact} + x) = \text{maxact} \) for \(x > 0 \).
Information Entropy and Teleodynamics

Shannon Information Entropy (1948)

The more random a piece of information the more it may decrease our ignorance.

\[H(X) = - \sum_{i=1}^{n} p(x_i) \log_b p(x_i) \]

Hence, on a semantic reading, as entropy rises so does the informativeness of a piece of information. In what follows, we use the concept and not the formula for information entropy.
Sample DAN Recurrent Wiring Schematic

Properties
- small,
- furry,
- meows,
- barks,
- winged,
- flies,
- swims,
- finned,
- crawls,
- many-legged (more than four),
- two-legged,
- warm-blooded,
- live-off-spring,
- walks,
- four-legged,
- farm animal,
- oinks,
- moos,
- ridable,
- big,
- crows,
- woodland,
- hops,
- hoofed,
- curly,
- hisses,
- cold-blooded,
- scaled,
- quacks,
- coos,
- seafaring,
- spawns,
- large-mouthed,
- web-making,
- whiskered and feathered.

Object Set: dog, cat, bird, duck, fish, caterpillar, human, pig, cow, horse, rooster, rabbit, deer, retriever, poodle, mouse, snake, crocodile, lizard, turtle, dolphin, whale, ostrich, pigeon, shark, salmon, bass, house fly, cricket, spider, catfish and seal.
Dynamic Associative Network Activation for Winged
Sample Results using $1/n^2$

Note that flies has yet to be pulled into the list, since ostriches and roosters do not fly. However, on the next recursion, rooster and ostrich are slightly demoted (but only slightly), letting the generic bird with the duck and pigeon count for more (and allowing the human, house fly and cricket to pass the threshold at a very low level).

Typicality wins out on the recursion cycle over uniqueness, as flies is elevated over the threshold, further demoting the rooster and the ostrich. Many-legged, live offspring and cold-blooded are pulled into the property set, but they do not cross the threshold.

Further recursion after the third cycle produces no further re-evaluation of nodes, unlike in other networks that can take several hundred iterations to settle.
Digital Humanities Applications

• Calculating surprise/suspense based on failed predictions

• Person clustering – as in the Platonic corpus

• Concept clustering – as in the Stanford Encyclopedia of Philosophy or Wikipedia

• Auto-cleaning of data without losing the % of cleanliness that might be available in a piece of dirty data

• Using nodes as dynamic gates to track potential activation patterns in a dynamic/interactive predictive network
Open Questions

• What constitutes genuine teleological/predictive behavior? (Can we still accept Aristotle’s definition that it is goal-oriented activity based on an agent’s internal structure? If so, then we have it here in this model.)

• Is it possible to expand the model to include something more along the lines of planning before executing a plan of action? (Really a cognitive science and not a digital humanities question.)

• What should the entropy equations be for governing dynamic weight setting?

• How should we determine threshold values for deciding what information passes through the network?
Past Work Related to this Presentation

A shorter version of this presentation was offered as part of a panel session: Info-Metrics: Information Processing across the Sciences. Info-Metrics Institute Workshop on the Philosophy of Information, American University, Washington, D.C., October 3rd, 2011.

Deriving Semantic Meaning by Measuring the Quantity of Information Flow. Fall Faculty Conference, The University of Evansville, Evansville, Indiana, August 17th, 2011.

Mechanists of the Revolution: The Case of Edison and Bell (with B. Sigler). In Proceedings of the VIII European Conference on Computing and Philosophy. Edited by Klaus Mainzer (Munich: Verlag Dr. Hut, 2010), 426-430.
Past Work Related to this Presentation

Modeling and Visualizing Dynamic Associative Networks: Towards Developing a More Robust and Biologically-Plausible Cognitive Model, M. Zlatkovsky. Winner of the 2009 University of Evansville Senior Project in Computer Science Award. See companion website for details.

Acknowledgements

National Endowment for the Humanities National Science Foundation

Also the Institute for Pure and Applied Mathematics, University of California, Los Angeles; the Cognitive Science Program and the Library Science Program, Indiana University; and the University of Evansville. For their critical comments as interlocutors in shaping our thoughts for this presentation, we wish to thank Colin Allen, J. McKenzie Alexander, Aaron Bramson, Selmer Bringsjord, Luciano Floridi, Patrick Grim, Mirsad Hadzikadic, Derek Jones, Matthias Scheutz, Talitha Washington, Hector Zenil, and the attendees of a 2011 Institute for Advanced Topics in the Digital Humanities sponsored by the National Endowment for the Humanities (USA) and the Complex Systems Institute at the University of North Carolina, Charlotte.