Cell death in early neural development: beyond the neurotrophic theory

Enrique J. de la Rosa and Flora de Pablo

The important effect of cell death on projecting neurons during development is well established. However, this mainstream research might have diverted recognition of the cell death that occurs at earlier stages of neural development, affecting proliferating neural precursor cells and young neuroblasts. In this article, we briefly present observations supporting the occurrence of programmed cell death during early neural development in a regulated fashion that to some extent parallels the death of projecting neurons lacking neurotrophic support. These findings raise new questions, in particular the magnitude and the role of this early neural cell death.

neuroblasts at early stages of neural development. Consideration of the available evidence on early neural cell death should promote studies of the incidence of this regulated form of cell death and of its role in building the complex cellular organization and function of the nervous system.

Early neural cell death affects proliferating neural precursor cells and young postmitotic neuroblasts

A regulated balance between cell proliferation and cell death is, in many developmental systems, an appealing mechanism to determine the size and the cytoarchitecture of tissues, organs and organisms. Although coordination is considered necessary among the main cellular processes in neurogenesis (i.e. proliferation, migration, differentiation and cell death), the effect of cell death on proliferating or recently differentiated cells has largely been ignored. This is surprising, because the natural incidence of cell death in the early embryo neuroepithelium was described in the seminal work of Glücksmann in 1951 (Ref. 26). Few neurons, if any, are differentiated at these developmental stages, therefore the dead cells must be proliferating neural precursor cells or recent postmitotic cells, not neurons connected with their targets. Unfortunately, most of the observations to date, some of which are summarized in Table 1, do not provide a thorough identification of the dead cells, in spite of the existence of early studies that move toward cell characterization (Ref. 51). In a few cases where the dead cells were characterized at early developmental stages, most apoptotic cells were identified as having been recently engaged in the cell cycle (based on their capacity to synthesize DNA shortly before death) (Ref. 26, 36, 39, 45, 47) (Fig. 1).

Recent knockout mouse studies have provided dramatic proof of the occurrence of cell death during early neural vertebrate development; inactivation of several regulatory or executor molecules in the apoptotic pathway caused embryonic or perinatal lethality (Ref. 32, 34). Unexpectedly, the CNS was the most affected tissue, presenting a large excess of neurons in disorganized structures. Interestingly, morphological defects were already visible well before neuronal generation, as early as embryonic day (E) 9.5 in the null mutant for the apoptotic activator Apaf-1 (Ref. 54), and at E10.5 in the null mutants for caspase 9 (Ref. 53) and caspase 3 (Ref. 52). These observations unequivocally support the necessity of neural precursor cell death in the normal neural development in vertebrates. Identification of dead cells in normal development or, conversely, of the excess of surviving neural cells in models of knockout mice, as either proliferating-neuroepithelial cells or young neuroblasts is possible (Ref. 32, 36, 39, 45, 47) and should be performed routinely.

Is early neural cell death a significant process?

Determination of cell death numbers is an important piece of the puzzle for assessing the physiological relevance of this process, as well as for the accurate interpretation of observations such as lineage analysis, or proliferative and differentiative effects of signals. For example, some of the effects of growth factors, originally interpreted as stimulation of proliferation, might be the result of inhibition of cell death. This possibility has not been analyzed because early neural cell death has previously been ignored or assumed to be insignificant. In addition, determination of the magnitude of neural precursor cell death is not an easy task. The impact of target-derived neurotrophic competition in the reduction of neuron numbers has been evaluated by tracking the reduction of a differentiated population as development proceeds and in rescue experiments by

TABLE 1. Localization of early neural cell death in vertebrates

<table>
<thead>
<tr>
<th>Developmental process</th>
<th>Location</th>
<th>Refs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neurulation</td>
<td>Neural plate, neural fold and neural tube</td>
<td>26–29</td>
</tr>
<tr>
<td>Neural crest formation</td>
<td>Premigratory and migratory neural crest cells</td>
<td>30–33</td>
</tr>
<tr>
<td>Eye induction and formation</td>
<td>Forebrain, optic vesicle and optic cup</td>
<td>26</td>
</tr>
<tr>
<td>Neurogenesis</td>
<td>Neural tube and spinal cord</td>
<td>29,32,34,35</td>
</tr>
<tr>
<td>Neurogenesis</td>
<td>CNS</td>
<td>36</td>
</tr>
<tr>
<td>Neurogenesis</td>
<td>Cerebral cortex</td>
<td>37–39</td>
</tr>
<tr>
<td>Neurogenesis</td>
<td>Retina</td>
<td>40–46</td>
</tr>
<tr>
<td>Neurogenesis</td>
<td>PNS ganglia</td>
<td>26,47–50</td>
</tr>
</tbody>
</table>

Fig. 1. Early cell death in the embryonic chick retina prominently affects cells other than neurons. (a) and (b) Embryonic day (E) 5 neuroretinas were cultured for 6 hrs in the presence of [methyl-3H]thymidine, then processed as dissociated cells for DAPI staining (blue) to characterize dead cells [the arrow in (a) indicates a pyknotic nucleus]. The same preparation had been processed for autoradiography to develop [methyl-3H]thymidine labeling present in pyknotic nuclei, and in normal nuclei (b). (c) and (d) Cryosections of E4 neuroretinas stained for Islet-1/2 [shown in green in (c)], a marker of differentiated ganglion cells, and by TUNEL [terminal deoxynucleotidyltransferase (TdT)-mediated dUTP nick end-labeling] [shown in red in (d) a serial section with a similar field to (c)] to localize the dead cells. The TUNEL-positive cells are more broadly distributed than the Islet-1/2-positive cells, the only postmitotic neurons at this stage. The pigmented epithelium (PE) is labeled with a broken line in (d). Scale bar, 2 μm in (a) and (b), and 40 μm in (c) and (d). Reproduced, with permission, from Refs 45 and 46.
administration of survival factors56–58. A similar approach cannot be used to quantify the incidence of programmed cell death in early neurogenesis, because proliferation, differentiation and apoptosis coexist. Dead cells are studied at isolated time points in development, routinely by visualization of late apoptotic stages after staining of pyknotic nuclei or by labeling of DNA breaks using TUNEL [terminal deoxynucleotidyltransferase (TdT)-mediated dUTP nick end-labeling] or ISEL+ (in situ end labeling). Dead cells are normally found in low proportions, both in the few available quantitative studies35,44 and in the more frequent non-quantitative observations (Table 1). These observations parallel studies at later developmental stages, in which reported dead cell numbers are low in spite of the fact that defined neuronal and glial populations are halved as a result of cell death9,11. This is illustrated in oligodendrocyte generation in the optic nerve, where the maximum proportion of pyknotic nuclei found is 0.30\%, in spite of the estimated 50\% accumulative cell death during development11,59. Similarly, in the retina there is 51\% total neuronal cell death in the ganglion cell layer and 46\% in the inner nuclear layer but these are visualized as only 0.33\% and 0.46\% pyknotic nuclei, respectively55. These values are in the range for the proportion of pyknotic nuclei (~0.20\%) found for early neural cell death in the retina45,46. Nonetheless, it is misleading to extrapolate the true relevance of the neural cell death process from the actual numbers of dead cells found because apoptotic cells are rapidly removed by their neighbors in an estimated time of a few hours or less53,58. Using the ISEL+ technique Blaschke \textit{et al.}50,58 performed a thorough analysis of cell death in the mammalian brain. However, the high proportion of labeled cells (over 50\%) found at each particular time-point analyzed is not easy to harmonize with the growth of the nervous system during embryogenesis. Thus, additional studies in different regions of the developing nervous system, at various developmental stages, are required to ascertain the validity of the method and the generality of the observations. In addition, the results should be re-evaluated in terms of additional sources of DNA breaks60,61. Estimations based on the neurogenesis rate with respect to cell-cycle time also suggest that 50–70\% of total neural precursor cells might die during proliferation62. Although all the available extrapolations have shown that the magnitude of early neural precursor cell death is similar to that of late neuronal cell death, more direct quantitative experiments need to be carried out. Earlier markers of the commitment to cell death as well as specific markers of neural precursor cells should assist in this direction. Determination of neural cell types and numbers in the early developmental stages of the knock-out mice for the apoptotic pathway showing neural hyperplasia, should confirm the magnitude of early neural cell death.

\textbf{Cell survival and death are precisely regulated processes in early neural development.}

Recognition of cell death in early stages of neural development has been slow, but identification of the signals that control it is lagging even more. However, the few available examples suggest that survival is regulated by limiting amounts of locally produced growth factors: the products of the same cell or neighboring cells. Furthermore, progression of the cells through neurogenesis appears to require a coordinated, sequential action of various survival signals acting in an integrated network9,16. The chick embryonic neuroretina, a relatively well characterized structure in this respect, presents defined patterns of death, termed isothanas43. In this system, two members of the insulin family sequentially promote neurogenesis, first proinsulin and later insulin-like growth factor-1 (IGF-I) (Refs 45,46,63,64). These factors mediate their actions on proliferation and differentiation, at least in part, by a primary decrease in apoptosis, affecting neuroepithelial cells and recently differentiated neuroblasts35,46. Brain-derived neurotrophic factor (BDNF) acts subsequently to promote survival of young-retinal neuroblasts44 and, finally, neurotrophin-3 (NT-3) controls retinal ganglion cell numbers65,66. Altogether these results suggest the existence of at least two distinct waves of cell death in neurogenesis for the chick embryonic retina (Fig. 2). The scenario of an integrated network of growth factors and other extracellular signals maintaining early neural cells is also supported by observations in motoneuron development. An early phase of young motoneuron cell death, unresponsive to all the tested factors, is followed by a later phase of neuronal cell death responsive to trophic support44. Neural crest development also provides several examples of coordinated growth factor support, including concerted
action by stem cell factor (SCF), fibroblast growth factor 2 (FGF-2), BDNF and NT-3 (Refs 33,67), by IGFs, FGFs and NT-3 (Refs 33,68), and by neuregulin and NT-3 (Ref. 48). Additional studies, in different parts of the nervous system, using comparable techniques are required for an integrated view of the different phases of cell death and of the signals promoting survival. Moreover, early neural cell death can be provoked by death-factor signaling. The BMP (bone morphogenetic protein) signal results in neural crest cell depletion in specific locations31 and the NGF signal results in retinal cell death through the p75 receptor46. Both cell survival and death are likely to be mediated by apoptotic pathways, which have been characterized in other systems69,70. However, there has been little investigation of the defined pathways that act in early neural cell death in vertebrates.

In addition to exogenous signaling, asymmetries intrinsic to the neuroepithelial cells might also be relevant in determining the susceptibility of cells to death11. This aspect is poorly understood and would include asymmetric cell division1, scattered Delta expression associated with lateral inhibition of neuronal differentiation72 and the dynamic, restricted expression of the chaperone heat shock cognate 70 (Hsc70) (Refs 73,74) of known antiapoptotic activity. Depending on the expression of these cell autonomous determinants, some cell populations might be more death-prone.

What is the role of cell death in early neurogenesis?

Data presented to date are suggestive of an important role for early neural cell death in neural development. This is specially supported by the dramatic phenotype observed when death is lacking, as a consequence of caspase 3, caspase 9 and Apaf1 gene disruption23–25. However, the precise biological function of developmental cell death, including that affecting differentiated neurons remains largely speculative26,17. Indeed, in the pioneering C. elegans model, animals with reduced cell death and thus, with extra neurons, present no obvious dysfunctional phenotype27,78. Multiple roles for developmental cell death in neurogenesis are possible in principle, as have been postulated for developmental cell death in general15,26,75. These include morphogenesis, sharpening of compartment limits, selecting fitness by eliminating abnormally located or differentiated cells and controlling cell numbers. A possible specific role might be closely related to the central point of neurogenesis, this is the commitment to leave the cell cycle and differentiate, or to continue proliferating with subsequent phenotypic selection12,26,45,79. Detailed analysis of genetically modified models should clarify the role of cell death in neural development, as in the case of Drosophila. In this model, cell death is considered a final cell fate contributing to retinal patterning80. An in-depth analysis of the apoptotic pathway in knockout mice might also answer why, and how many, cells have to die to achieve normal neural development. In addition to the possibilities already mentioned, the intriguing implication of somatic gene recombination and subsequent cellular selection by apoptosis in the generation of neuronal diversity has recently been postulated60,61,81.

Knockout mice for the molecules responsible for repairing double-strand DNA breaks caused during somatic recombination of B-lymphocyte immunoglobulin or T-cell receptor genes, showed increased early neural cell death that was already visible at E10.5 (Refs 82,83), illustrating at least one of the possible reasons why a cell might die.

Concluding remarks

Although we are still far from a coherent, integrated view, the evidence presented supports the relevance of early neural cell death in nervous system development. Careful analysis at early stages of neural development of the available knockout mice, showing alterations in neuronal or neural precursor cell numbers, should validate the viewpoint formulated here. In addition, complementary approaches to modify gene expression, such as retroviral gene transfer or interference with mRNA, have started to provide powerful tools for dissecting the process of early neural cell death. To extend and adapt the neurotrophic concept to early neural development will require a lot of effort in multiple model systems, but it will be as fascinating a task as when the theory was originally elaborated for projecting-neuron cell death.

Selected references

TINS Vol. 23, No. 10, 2000 457

E.J. de la Rosa and F. de Pablo – Early neural cell death

VIEWPOINT
Acknowledgements
Research in the authors laboratory is supported by the Dirección General de Investigación y Desarrollo (grants PM96-0003 to E.J. de la Rosa and PB97-0143 to F. de P. and by the Comunidad Autónoma de Madrid. We are grateful to the members of our laboratory who worked in this project, especially to Begona Díaz and Belén Pimentel for their contribution to the figures and Carlos Vicario-Abeñón and Carolina Hernández-Sánchez for critical reading of the manuscript.

54 Frade, J.M. et al. (1996) Insulin-like growth factor-3 stimulates neurogenesis in chick retina by a mechanism that requires expression of the ß6 integrin subunit. Development 122, 2497–2506
55 de la Rosa E.J. et al. (1994) Role of neurotrophins in the control of neural development: neurophin-3 promotes both neuron differentiation and survival of cultured chick retinal cells. Neuroscience 58, 347–352
58 Díez-Cicco-Bloom, E. et al. (1993) NT-3 stimulates sympathetic neuroblastoma cell differentiation by promoting precursor survival. Neuron 11, 1101–1111
71 Hood, L. et al. (1977) The area-code hypothesis: the immune system provides the means to find a missing child. Cell 14, 161–170
72 Barnes, J.S. et al. (1977) Understanding the genetic and molecular basis of cell recognition during development. J. Supramolecular Struct. 7, 531–559
74 Gao, Y. et al. (1998) A critical role for DNA end-joining proteins in both lymphogenesis and neurogenesis. Cell 95, 891–902

E.J. de la Rosa and F. de Pablo – Early neural cell death