Phylum Arthropoda

Similarities between Annelids and Arthropods

Arthropods are metameric and the segments have appendages
Their nervous system is to that of annelids

Some biologists have speculated that the early arthropods may have resembled the Onychophora

Onychophorans are Annelid-like:

Segmented, but segments have unjointed appendages
Similar to annelids in structure of the body wall,
Possess segmentally arranged nephridia
Possess pigment-cup ocelli like annelids

Onychophorans are Arthropod-like:

Reduced coelom, open circulatory system, trachea; soft cuticle composed of chitin

Members of the phylum Tartigrada or “water bears” also have shared features of annelids and arthropods

Annelid-like features:
Unjointed (8) legs; annelid-type nervous system

Arthropod-like features:
Presence of a cuticle (nonchitinous) that is periodically molted, similar attachment of muscle fibers to the exoskeleton

The arthropods evolved along four main lines, which most zoologists recognize as subphyla

1. Trilobitomorpha - extinct trilobites
2. Chelicerata - horseshoe crabs, spiders, ticks, mites, and some extinct groups
3. Crustacea - crabs, lobsters, shrimps, barnacles
4. Uniramia - insects, centipedes, millipedes
The Arthropod Exoskeleton

Epidermis secretes an external skeleton called the **exoskeleton** or **cuticle**

Functions/advantages:

- provides strong support
- provides rigid levers that muscles can attach to and pull against
- offers protection
- serves as a barrier to prevent internal tissues from drying out; important because many arthropods live on land
- serves as a barrier to prevent infection

The outer surface of the cuticle is called the **epicuticle**
The thicker portion is called the **procuticle**, with an **exocuticle** and the **endocuticle**
In the exocuticle the glycoprotein chains are cross linked - **tanning**

In order to grow the arthropod must shed its exoskeleton, and secrete a new and larger one - **molting** or **ecdysis**.

Jointed Appendages

The exoskeleton is divided into a number of plates and numerous cylinders around the appendages
At the junction point between plates and cylinders, the arthropod exoskeleton remains thin and flexible = the **joints**.
The word arthropod means "jointed foot" and arthropods are said to have **jointed appendages**.

The coelom has become reduced in arthropods when compared to the annelids and this is probably related to the importance of muscles rather than a hydrostatic skeleton in locomotion

Specialized Arthropod Segments: Reduction in Metamerism

The arthropods evolved modified groups of segments
The fusion of groups of segments into functional groups is called **tagmatization**
In so doing, various appendages on segments became specialized for functions other than locomotion
Arthropod Respiratory Advances

Special respiratory structures allow the arthropods to metabolize more efficiently and thus move rapidly

Many aquatic arthropods (crabs and lobsters) have gills, which are typically modifications of appendages or outgrowths of the body wall
Gas exchange in terrestrial arthropods accomplished by invaginations of the integument
Insects have tracheae; spiders have book lungs

Acute Senses

Arthropods have a well-developed nervous system that is of the same overall design as the annelids.
The head usually bears various kinds of sense organs with extreme sensitivity

Many arthropods have compound eyes - eyes that are composed of many visual units called facets (ommatidia)
Some eyes are simple eyes with only a few photoreceptors; however, they are capable of forming crude images

Other Arthropod Characteristics

Digestive System

The arthropod gut differs from most other animals
It is divided into 3 main regions: foregut, midgut, and hindgut

Internal Transport and Excretion

Arthropods have an open circulatory system

Many crustaceans possess an excretory organ called the green gland (antennal gland), which filters fluid from the blood

Most insects and spiders have an excretory system called malpighian tubules

Reproduction

Sexes are separate
Fertilization is external in aquatic forms, internal among the terrestrial forms
Arthropod Diversity

Subphylum Chelicerata

Lack antennae
Body is composed of two regions the cephalothorax and abdomen
Cephalothorax is usually covered dorsally by a structure called the carapace

They possess six pairs of appendages: first pair are chelicerae; second pair are pedipalps
The four additional pairs of appendages are walking legs
There are no abdominal appendages

Some have compound eyes, but most have simple eyes that are capable of forming crude images.

Chelicerate Diversity

Class Meristomata

Marine chelicerates known from the Ordovician (400 mya)
Have a large dorsal carapace that bears compound eyes
Possess the chelicerae, pedipalps and 4 pair of walking legs; all but the last pair are chelate
The abdomen terminates in a long tail called the telson
The underside of the abdomen has a series of gill plates called book gills

Class Arachnida

Among spiders, the cephalothorax and abdomen shows no external segmentation; these tagma are joined by a narrow pedicel
Respiration is accomplished via book lungs, tracheae, or both
Usually have 8 simple eyes

Many species have evolved poison glands associated with the chelicerae

Many of the spiders and mites are capable of producing silk via silk glands; open to the exterior part of the abdomen through opening called spinnerets
Most spiders are predaceous and have all kinds of sensory hairs (mechanoreception) and relatively well-developed eyes for motion detection.

Prey capture among the spiders can take on one of two forms: **cursorial predators** and **web building spiders**.

SubPhylum Crustacea

Differ from other arthropods because they possess 2 pair of antennae. First pair is homologous to those of insects, but the second pair is unique to the crustaceans.

The head usually bears a pair of compound eyes and 3 pairs of mouthparts for grinding, chewing or filtering, including a pair of **mandibles**, and 2 pairs of **maxillae**.

The trunk varies considerably among the various classes. Primitively, the first three pairs of thoracic segments are **maxillipeds**; they, along with the maxillae function in food handling. Also, there are usually 5 pairs of appendages strengthened for walking and protection (**chelipeds**, pincer-like claws).

The abdomen is also highly variable, but it is primitively a large structure. In the groups that have a well-developed abdomen there are usually six pairs of appendages. Five pairs of structures called **simmerets (=pleopods)**. The last pair of abdominal structures is called **uropods**, these are wide and together with the terminal **telson** they form a tail fan than can serve as rudders during locomotion.

Primitively many of the appendages of the crustaceans are **biramous**, two-branched. There is an outer **exopod** and an inner **endopod**.

They usually have an extremely hardened exoskeleton, which is impregnated with calcium carbonate. The exoskeleton forms a protective shell called the **carapace**.

The primitive larva of the crustaceans is called the **nauplius larva**.
SubPhylum Uniramia

All uniramia possess a single pair of antennae
The first pair of feeding appendages are mandibles and there are one or 2 pairs of maxillae
Number of legs vary from 3 pair to many pairs; they are unbranched or uniramous

Class Chilopoda (Centipedes)

Serial segmented, flattened body and each segment has a pair of jointed appendages
Active predators, killing their prey with poison claws, which are modified legs on first segment

Class Diplopoda (Millipedes)

Serially segmented, rounded body with 2 smaller pairs of legs per segment
Slow moving
Feed on decaying plants

Class Insecta

Body is divided into 3 parts: the head, thorax and the abdomen.

On the head: a pair of antennae, a pair of compound eyes, and several sets of simple eyes
Mouthparts: a pair of mandibles, and two pairs of maxillae
Primitively, one pair of maxillae are fused together to form a lower lip - labium
There is an upper lip - labrum - formed from an extension of the head
Mouthparts are highly modified depending on the group you are discussing
Mosquitoes have pointed mouthparts for piercing and sucking; grasshoppers have mouthparts that are well adapted for chewing; butterflies for siphoning; flies for sponging

The thorax is composed of 3 segments and each one has a pair of legs
The last two have a pair of wings
Exceptions include: halteres of Diptera, wingless fleas, males ants (and females during certain periods)

The wings of insects are modified portions of the exoskeleton
The 1st pair is usually tough and leathery and fold over the inner pair for protection.

The segmented abdomen does not have appendages
However, the terminal portions do harbor the reproductive structures
Most insects undergo **metamorphosis** (=a change in form) during their development.

1. **Incomplete Metamorphosis (Hemimetabolous)**

 Early developmental stages are very similar to the adults
 Thus development is egg ----> nymph ----> adult

2. **Complete Metamorphosis (Holometabolous)**

 Each of the developmental stages is structurally and functionally very different
 Common among flies, beetles, and butterflies
 Egg ----> larva ----> pupa ----> adult

Learn the insect orders on pages 245-246