Each problem is worth one point for a total of ten. The worksheet is due Thursday, December 6. **You must show your work to receive full credit;** partial credit will be awarded where appropriate.

1. Let $x = t - \ln t$ and $y = t + \ln t$.

 a. Find $\frac{dy}{dx}$

 b. For what values of t does the curve have horizontal tangent lines? vertical tangent lines?

 c. Find $\frac{d^2y}{dx^2}$

 d. For what values of t is the curve concave up? concave down?

2. Describe the motion of a particle with position (x, y), where $x = \sec \theta$, $y = \tan \theta$ and $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$.
3. Find the slope of the tangent line to the polar curve \(r = \cos \theta \) at \(\theta = \pi/3 \).

4. Find the area enclosed by the loop of the strophoid \(r = 3 \cos \theta - \sec \theta \).

5. Find the length of the curve \(x = \ln(\sec t + \tan t) - \sin t, \ y = \cos t \) over the interval \(0 \leq t \leq \pi/3 \).

6. Find the length of the curve \(r = e^{\theta}/\sqrt{2} \) on the interval \(0 \leq \theta \leq 2 \).

7. Find the area of region enclosed by the circle \(r = a(\sin \theta + \cos \theta) \).