Review of Financial Mathematics

Notation

\[\begin{align*}
A &= \text{Future Value} & n &= \text{Number of times compounded annually} \\
P &= \text{Present Value} & N &= \text{Number of payments} \\
r &= \text{Interest Rate (annual)} & m &= \text{Amount of payment} \\
t &= \text{Time (in years)} &
\end{align*} \]

Interest Formulae

Simple Interest

Interest: \(I = Prt \)

Future Value: \(A = P + I = P(1 + rt) \)

Compound Interest

Future Value: \(A = P \left(1 + \frac{r}{n} \right)^{nt} \)

Present Value: \(P = A \left(1 + \frac{r}{n} \right)^{-nt} \)

Continuous Compounding: \(A = Pe^{rt} \)

Installment Buying (Add-on Interest)

Interest: \(I = Prt \)

Amount to repay: \(A = P(1 + rt) \)

Number of payments: \(N = 12t \)

Amount of payment: \(m = \frac{A}{N} \)

Annual Percentage Rate: \(APR = \frac{2Nr}{N + 1} \)

Annuities and Amortization

Future Value: \(A = m \left[\frac{(1 + \frac{r}{n})^{nt} - 1}{\frac{r}{n}} \right] \)

Present Value: \(P = m \left[\frac{1 - (1 + \frac{r}{n})^{-nt}}{\frac{r}{n}} \right] \)

Sinking Fund: \(m = \frac{A(\frac{r}{n})}{(1 + \frac{r}{n})^{nt} - 1} \)

Amortization: \(m = \frac{P(\frac{r}{n})}{1 - (1 + \frac{r}{n})^{-nt}} \)