INCONICS THROUGH TWO GIVEN POINTS

An inconic of a triangle is a conic tangent to the sidelines of the triangle.
Suppose three distinct, not concurrent lines and two distinct points are given. Let $A B C$ be the triangle bounded by these lines. If the points are $U=u: v: w$ and $X=x: y: z$ (normalized barycentrics or exact trilinears with respect to $A B C)(*)$, then the perspectors Q of the inconics of $A B C$ through U, V are given by:

$$
Q(\{u, v, w\},\{x, y, z\})=\frac{1}{F(\{u, v, w\},\{x, y, z\},\{\beta, \gamma\})}: \frac{1}{G(\{u, v, w\},\{x, y, z\},\{\beta, \gamma\})}: \frac{1}{G(\{u, w, v\},\{x, z, y\},\{\gamma, \beta\})}
$$

where:

$$
\begin{aligned}
& F(\{u, v, w\},\{x, y, z\},\{\beta, \gamma\})=(v z-w y)(x(v z-w y)+w(u v-x y) \beta-v(u w-x z) \gamma) \\
& \begin{aligned}
& G(\{u, v, w\},\{x, y, z\},\{\beta, \gamma\})= \\
&((v z+w y)(u z+w x)-2 w z(u v+x y)) x \\
&+((u z+w x)(u v+x y)-2 u x(v z+w y)) w \beta \\
&+\left((w-z)^{2} u x+(u-x)^{2} w z\right) v \gamma \\
&-2(w-z)(u-x) u v w \beta \gamma
\end{aligned}
\end{aligned}
$$

$$
\beta= \pm \sqrt{\frac{x z}{u w}} \quad \gamma= \pm \sqrt{\frac{x y}{u v}}
$$

Therefore, there are four inconics of $A B C$ through the given points, obtained from the combination of the distinct values of β and γ.

If U, X are both triangle centers or if they are a bicentric pair, just one of the four inconics is a central inconic (conjectured), i.e., an inconic with center and perspector being triangle centers. We must try all the combinations of β and γ in order to find which one gives a central perspector and a central inconic, because this depends on the relative position of points U and X.
$\left(^{*}\right)$: The given points must both lie in the same side with respect to every tangent line. This means that both points must be interior or exterior to $A B C$.

Equations obtained by César Eliud Lozada from the method by:
Eagles, Thomas Henry, Constructive Geometry of Plane Curves, McMillan and Co., London, 1885, problem 83, pp. 134 and problem 112, pp. 182. (Available here).

