Vu Thanh Tung

June 14, 2020

Theorem. Consider $\triangle A B C$ on the plane with circumcenter $O . P$ is a point on the plane, not lying on the lines $O A, O B, O C$. Let $\triangle A_{1} B_{1} C_{1}$ be the pedal triangle of a point $P$ with respect to $\triangle A B C . A_{2}$ is the point, other than $A$, that circles $(A B C)$ and $\left(A B_{1} C_{1}\right)$ intersect and define $B_{2}, C_{2}$ cyclically. $A_{3}=$ $B B_{2} \cap C C_{2}$ and define $B_{3}, C_{3}$ cyclically. Let $\triangle A_{4} B_{4} C_{4}$ be the circumcevian triangle of $P$ with respect to $\triangle A B C$. Then:

1. $\triangle A_{2} B_{2} C_{2}$ and $\triangle A_{4} B_{4} C_{4}$ are perspective.
2. $\triangle A_{3} B_{3} C_{3}$ and $\triangle A_{4} B_{4} C_{4}$ are perspective.


Vu Thanh Tung, 250 Quang Trung, Nam Dinh city, Vietnam E-mail address: tungvtt@gmail.com

