Vu Thanh Tung

July 4, 2020

Theorem. Suppose that $T_{1}=U_{1} V_{1} W_{1}$ and $T_{2}=U_{2} V_{2} W_{2}$ are triangles and that T_{1} is not perspective to T_{2}. Let $T=U V W$ be the vertex triangle of T_{1} and T_{2}. Let U_{0} be the point, other than U, that $\left(U V_{1} W_{1}\right)$ and $\left(U V_{2} W_{2}\right)$ intersect, and define V_{0}, W_{0} cyclically. Let M_{1}, M_{2} be respectively the Miquel point of T_{1} and T_{2} with respect to T, i.e., $M_{1}=\left(U V_{1} W_{1}\right) \cap\left(V W_{1} U_{1}\right) \cap\left(W U_{1} V_{1}\right)$ and $M_{2}=\left(U V_{2} W_{2}\right) \cap\left(V W_{2} U_{2}\right) \cap\left(W U_{2} V_{2}\right)$. Let Vn be the Vietnamese point of T_{1} and T_{2}. Then six points $U_{0}, V_{0}, W_{0}, M_{1}, M_{2}, V n$ lie on a circle.

Vu Thanh Tung, 250 Quang Trung, Nam Dinh city, Vietnam E-mail address: tungvtt@gmail.com

