Some Problems On Apollonian Gasket

Dao Thanh Oai

April 21, 2018

Abstract

I proposed some problems on Apollonian gasket configuration

Consider ABC be a triangle, construct three circles (A), (B), (C) such that them tangent to each other. Let (A_1) is the circle tangent to the Soddy circle and (B) and (C), let (A_{k+1}) is the circle tangent the (A_k) and (B) and (C) for $k = 2, 3, ... n$ define (B_i), (C_i) cyclically. We have some problems in next pages.

![Figure 1]
Problem 1. Three lines $A_j A_k$, $B_j B_k$, $C_j C_k$ are concurrent for any $j \neq k, j, k = 1, 2, ..., n$ (Figure 2).
Problem 2. Three line AA_k, BB_k, CC_k are concurrent, for $k = 1, 2, ..., n$
Problem 3. Let (A) tangent to (B_k), (C_k) at A_{ck}, A_{bk}. Define B_{ck}, B_{ak}, C_{ak}, C_{bk} cyclicly. Then six points A_{bk}, A_{ck}, B_{ck}, B_{ak}, C_{ak}, C_{bk} lie on a circle for $k = 1, 2, \ldots, n$, and the centers of these new circles lie on a line.

Figure 4
Problem 4. Let \((A_k)\) tangent to \((A_{k+1})\) at \(T_{ak}\), define \(T_{ak}, T_{ck}\) cyclically. Then three lines \(T_{aj}T_{ak}, T_{bj}T_{bk}, T_{cj}T_{ck}\) are concurrent for any \(j \neq k, j, k = 1, 2, \ldots, n\).
Problem 5. Circle \((T_{ak}T_{bk}T_{ck}) \) tangent to six circles \((A_k), (A_{k-1}), (B_k), (B_{k-1}), (C_k), (C_{k-1}) \) any \(k = 1, 2, ..., n \).
Problem 6. Three lines $AT_{ak}, BT_{bk}, CT_{ck}$ are concurrent, for any $k = 1, 2, \ldots, n$.

Figure 7
Problem 7. Three lines $A_jT_{ak}, B_jT_{bk}, C_jT_{ck}$ are concurrent for any $j, k = 1, 2, ..., n$.

Figure 8

References

[2] https://artofproblemsolving.com/community/c6h555078p3225247

Dao Thanh Oai: Kien Xuong, Thai Binh, Viet Nam

E-mail address: daothanhoai@hotmail.com