Vu Thanh Tung

August 29, 2020

Theorem. Consider $\triangle A B C$ and six points $A_{1}, A_{1}^{\prime} \in B C, B_{1}, B_{1}^{\prime} \in C A$, $C_{1}, C_{1}^{\prime} \in A B$ that do not coincide with A, B, C. Let A_{2} be the point, other than A, that circles $\left(A A_{1} A_{1}^{\prime}\right)$ and $(A B C)$ intersect and define B_{2}, C_{2} cyclically. Let $A_{3}=B B_{2} \cap C C_{2}, B_{3}=C C_{2} \cap A A_{2}, C_{3}=A A_{2} \cap B B_{2}$.

Then $\triangle A_{3} B_{3} C_{3}$ and $\triangle A B C$ are perspective if and only if six points A_{1}, A_{1}^{\prime}, $B_{1}, B_{1}^{\prime}, C_{1}, C_{1}^{\prime}$ lie on the same conic.

Vu Thanh Tung, 250 Quang Trung, Nam Dinh city, Vietnam E-mail address: tungvtt@gmail.com

