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Abstract. Sequences (�nr�) for 0 < r < 1 are introduced as slow Beatty sequences. They
and ordinary Beatty sequences (for which r > 1) provide examples of sequences that converge
deviously (which at first might seem to diverge), as well as partitionally divergent sequences
(which consist of convergent subsequences).

1. INTRODUCTION. Eleven years after receiving the first Ph.D. in mathematics
ever granted by a Canadian university—and 19 years before presiding over the Cana-
dian Mathematical Society and 8 more before donning the robe of the Chancellor
of the University of Toronto—Samuel Beatty sent a problem proposal [2] to this
MONTHLY. The proposal is often cast like this: if r and s are positive irrationals
satisfying 1/r + 1/s = 1, then the sequences (�nr�) and (�ns�) partition the posi-
tive integers. This is now known as Beatty’s theorem, and the sequences as Beatty
sequences (although Lord Rayleigh had published the theorem in 1894). Choosing r
to be the golden ratio (ϕ = (1 + √

5)/2) gives the lower and upper Wythoff sequences,
represented here as indexed in the Online Encyclopedia of Integer Sequences [4]:

A000201 = (1, 3, 4, 6, 8, 9, 11, 12, 14, 16, 17, 19, 21, 22, 24, 25, . . .)

A001950 = (2, 5, 7, 10, 13, 15, 18, 20, 23, 26, 28, 31, 34, 36, 39, . . .).

Now suppose that r is an irrational number. If r > 1, the sequence (�nr�) is a
Beatty sequence, but not otherwise. If 0 < r < 1, we shall call (�nr�) a slow Beatty
sequence. A close connection between the two is given by Theorem 1.

Theorem 1. Suppose that t in (0, 1) is irrational, and let s(n) = �nt�. Let a be the
sequence of numbers n such that s(n + 1) = s(n), and b the sequence of those n such
that s(n + 1) = s(n) + 1. Then b is the Beatty sequence of 1/t, and a is the Beatty
sequence of 1/(1 − t). Conversely, if c and d are a pair of Beatty sequences, say, of
1/t and 1/(1 − t), and s(n), a, and b are as before, then one of the following holds:
c = a and d = b, or c = b and d = a.

Proof. The condition s(n + 1) = s(n) + 1 is equivalent to the presence of an integer
between nt and (n + 1)t. Suppose that n = �m/t� for some m, and let ε = m/t − n.

Then 0 < ε < 1, so that

m < (m/t − ε)t + t = nt + t.

Also, nt < m, so that an integer between nt and (n + 1)t is m. There can be at most
one such integer since 0 < t < 1. Thus, (�m/t�), for m = 1, 2, . . . , is the sequence
b. By Beatty’s theorem, a is the sequence (�m/(1 − t)�). For the converse, if �nr�
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and �ns� are arbitrary Beatty sequences, let t = 1/r, so that the two sequences are
�n/t� and �n/(1 − t)� , both of which satisfy the description of s(t) in the statement
of the theorem.

Theorem 1 shows that the two kinds of Beatty sequences are so closely related that
one should ask if slow Beatty sequences occur on their own. A wonderful example [1]
is the definition of the rabbit constant (A014565):

∞∑
n=1

1

2�n/ϕ� = [2, 20, 21, 21, 22, 23, 25, . . .],

where the continued fraction consists of the numbers 2Fn , where Fn is the nth
Fibonacci number, for n ≥ −1.

Another example springs from the infinite Fibonacci word

A005614 = (1, 0, 1, 1, 0, 1, 0, 1, 1, 0, . . .),

defined as the fixed point of the morphism 1 → 10, 0 → 1, starting with 1. The partial
sums of the terms are 1, 1, 2, 3, 3, 4, 4, 5, 6, 6, . . . , given by the slow Beatty sequence
(�n/ϕ�) used to define the rabbit constant. The sequence is also closely related to the
Hofstadter G-sequence, A005206.

Frequently, Beatty sequences occur in connection with inequalities; an example
involving fractional parts follows:

{nϕ} > 1/ϕ2,

which holds if and only if n = �kϕ� for some positive integer k or n = ⌊
kϕ2

⌋
for some

negative integer k. Another example comes from the inequality

2k2 < n2,

where k and n are integers. Here, for each n, the greatest such k is given by the slow

Beatty sequence (
⌊

n/
√

2
⌋
). This last inequality suggests many other slow Beatty

sequences.

2. DEVIOUS CONVERGENCE. We turn now to quite a different feature of slow
Beatty sequences. Let t > 1 and

g(n) = g(n, t) = n

t �n/t�) .

Taking t = ϕ, a numerical analyst might notice that g(n) = F35/(ϕF34) for more
than 1000 values of n. If nearly asleep, she might conclude that (g(n)) converges to
F35/(ϕF34). However, let Ln denote the nth Lucas number. Further checking shows
that g(n) = L58/(ϕL57) for more than a million values of n, even though, clearly,
(g(n)) converges to 1. The slow and distinctive manner of convergence suggests a
definition.

Definition. A sequence (xn) converges deviously to L if (1) it converges to L , and (2)
for every real B, there exists � �= L such that xn = � for more than B numbers n.
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We next summarize without proof some well-known relevant facts for easy refer-
ence.

Lemma 1. Let Ln and Fn denote the nth Lucas and nth Fibonacci numbers. Then

1. Ln = ϕn + (−ϕ)n,
2. Fn = (ϕn − (−ϕ)n)/

√
5,

3. if N and m are integers and 0 ≤ t < 1/N , then �N (m + t)� = Nm = N �m + t�,
4. if x is real and m is an integer, then �x − m� = �x� − m.

Theorem 2. The sequence (g(n)) = (g(n, ϕ)) converges deviously to 1. Indeed,

g(F2h+1) = g(k F2h+1) for k = 1, 2, . . . , L2h+1,

g(L2h) = g(kL2h) for k = 1, 2, . . . , F2h.

Proof. We use the four items of Lemma 1 in the order written. First, L2h+1 = ⌊
ϕ2h+1

⌋
implies 1/ϕ2h+1 < 1/k for k = 1, 2, . . . , L2h+1. For these k,

F2h+1ϕ = F2h+2 + 1/ϕ2h+1

so that

{F2h+1ϕ} < 1/k

and

�k F2h+1ϕ� = k �F2h+1ϕ� .

It follows that

�k F2h+1(ϕ − 1)� = k �F2h+1(ϕ − 1)�
and hence

�k F2h+1/ϕ� = k �F2h+1/ϕ� .

Therefore,

F2h+1

ϕ �F2h+1/ϕ�) = k F2h+1

ϕ �k F2h+1/ϕ�) ,

as desired.
To prove the second identity, we start with

ϕ <
L2h+1

L2h
+ 1

F4h
,

for which the reader may supply a proof. Since F4h = L2h F2h, we have ϕL2h −
L2h+1 < 1/F2h, so that {ϕL2h} < 1/k for k = 1, 2, . . . , F2h. For these k,

�kL2h/ϕ� = k �L2h/ϕ� ,

and the desired result follows.
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It is natural to ask what happens when floor is replaced by ceiling. For t > 0, define

ĝ(n) = ĝ(n, t) = n

t �n/t� .

Theorem 3. The sequence (ĝ(n)) = (ĝ(n), ϕ) converges deviously to 1. Indeed,

ĝ(F2h) = ĝ(k F2h) for k = 1, 2, . . . , L2h − 1,

ĝ(L2h+1) = ĝ(kL2h+1) for k = 1, 2, . . . , F2h+1 − 1.

A proof similar to that of Theorem 2 can be developed from the identities L2h =⌈
ϕ2h+1

⌉
and

ϕ <
L2h

L2h+1
+ 1

F4h
+ 1.

If (g(n)) is any sequence that converges deviously, then one still has, of course,

g(n + 1) − g(n) → 0.

However, if k(n) is any function such that

h(n) := k(n)(g(n + 1) − g(n) � 0,

then the sequence (h(n)) diverges (since it does tend to 0 on a subsequence). The
simplest possibility in this case is that (h(n)) has two limit points. These observations
are especially relevant for the particular g(n) introduced above, as we shall see in the
next section.

3. PARTITIONAL DIVERGENCE.

Definition. Suppose that w1 and w2 are any two sequences that partition the positive
integers, and let w = {w1, w2}. Suppose further that (an) is a sequence such that
aw1(n) → L1 and aw2(n) → L2, so that (an) converges if and only if L1 = L2. If L1 �=
L2, we shall say that (an) diverges partitionally on w.

We now take k(n) = n and show that for our specific g(n) the sequence given by

h(n) = n(g(n + 1) − g(n))

diverges partitionally. Moreover, the relevant partition is a partition into Beatty
sequences! (Also, we can take for t any irrational number greater than 1.)

Lemma 2. Suppose that t > 1 is irrational and n is a positive integer. Then⌊�nt�
t

⌋
= n − 1 and

⌊�nt� + 1

t

⌋
= n, (1)

and if t̂ = t/(t − 1), then⌊⌊
n̂t

⌋
t

⌋
=

⌊
n

t − 1

⌋
and

⌊⌊
n̂t

⌋ + 1

t

⌋
=

⌊
n

t − 1

⌋
. (2)
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Proof. Of the four identities we prove only the third, as the other three have similar
proofs. For s > 0 we have

�ns�
s

≤ n,

so

�ns� (1 + (1/s)) ≤ �ns + n� .

Set s = 1/(t − 1) to obtain

t

⌊
n

t − 1

⌋
≤

⌊
nt

t − 1

⌋
.

Divide by t and apply the floor function to obtain⌊
n

t − 1

⌋
≤

⌊⌊
n̂t

⌋
t

⌋
.

Since clearly also ⌊
n

t − 1

⌋
≥

⌊⌊
n̂t

⌋
t

⌋
,

the third identity is proved.

Theorem 4. Suppose that t > 1 is irrational, so that the Beatty sequences given
by w1(n) = �nt� and w2(n) = �nt/(t − 1)� partition the positive integers. Then
the sequence (h(n)) is partitionally divergent; indeed, h(w1(n)) → 1 − t and
h(w2(n)) → 1.

Proof. Substitute �nt� for n and apply (1):

h(w1(n)) = �nt� (�nt + 1�)
tn

− �nt�2

t (n − 1)

= �nt�
t

(
nt − εn + 1

n
− nt − εn

n − 1

)
,

where 0 < εn < 1. The last equation readily reduces to

h(w1(n)) = �nt�
nt

(
n(1 − t)

n − 1
+ εn − 1

n − 1

)
,

so that h(w1(n)) → 1 − t. Next, let

ε̂n = nt

t − 1
−

⌊
nt

t − 1

⌋
= fractional part of n̂t .
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A calculation similar to that above but using (2) shows that

h(w2(n)) = (
nt

t − 1
− ε̂n)

⎛⎜⎜⎝
⌊

nt

t − 1

⌋
+ 1

t

⌊
n

t − 1

⌋ −

⌊
nt

t − 1

⌋
t

⌊
n

t − 1

⌋
⎞⎟⎟⎠

= (
nt

t − 1
− ε̂n)(

1

t

⌊
n

t − 1

⌋ )(1)

= n

(t − 1)

⌊
n

t − 1

⌋ − ε̂n

t

⌊
n

t − 1

⌋ ,

so that h(w2(n)) → 1.

Of course the definition of partitional divergence extends to partitions into more
than two classes. For a simple example involving three classes, consider the previously
mentioned Beatty sequences A = A000201 and B = A001950. The complement of
B is A, which partitions into the composite sequences AA = (1, 4, 6, 9, 12, . . .) and
AB = (3, 8, 11, 16, . . .); viz., if a(n) = �nϕ� and b(n) = ⌊

nϕ2
⌋

are the nth terms of
the lower and upper Wythoff sequences, respectively, then a(a(n)) is the nth term
of AA and a(b(n)) is the nth term of AB. We shall create a sequence that diverges
partitionally according to the three classes B, AA, AB. Let

f (n) = �n/ϕ� / �n/ϕ� ;
s(n) = ϕ f (n)( f (n + 2) − 2 f (n + 1) + f (n)).

Theorem 5. The sequence (s(n)) diverges partitionally. Specifically, s(AA) is the con-
stant sequence (ϕ, ϕ, . . .); s(B) is the constant sequence −s(AA); and s(AB)(n) =
2ϕ/(1 + n + �nϕ�), which converges to 0.

A proof of Theorem 5 is straightforward and omitted. It is interesting that AA is
column 1 of the Wythoff array W (described at A035513), B is the ordered sequence
of all the terms in the even numbered columns of W, and AB likewise matches the odd
numbered columns, except the first.

Remark. For a guide to much of the literature on Beatty sequences, see the introduc-
tory remarks of [3] and the references [3, 12, 14] of [3].
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100 Years Ago This Month in The American Mathematical Monthly
Edited by Vadim Ponomarenko

An interesting article on “University Registration and Statistics” appeared in Science
on January 21. The registrations from thirty of the larger universities, including the
large endowed universities and most of the state universities of the middle west, are
compiled. These tables show a total registration in September, 1915, of 100,514 stu-
dents, or approximately one student from each thousand of population in the United
States. This student body is governed and instructed by more than 12,000 officers and
instructors, or about one officer or instructor to every eight students. During the sum-
mer sessions of 1915, the thirty institutions report registrations of 35,652 students.
For the year 1915–1916, the following are the eight universities with largest registra-
tions: Columbia (7,042); Pennsylvania (6,655); California (5,977); New York Uni-
versity (5,853); Michigan (5,821); Illinois (5,511); Harvard (5,435); Cornell (5,392).

[The 30 biggest U.S. colleges in Fall 2013 together enrolled 2,708,792 students.
-Eds.]

—Excerpted from “Notes and News” 23 (1916) 97–100.
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